Age | Commit message (Collapse) | Author |
|
PCI configuration space should be mapped with a memory region type that
generates on the CPU host bus non-posted write transations. Update the
driver to use the devm_pci_remap_cfg* interface to make sure the correct
memory mappings for PCI configuration space are used.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Cc: Stanimir Varbanov <svarbanov@mm-sol.com>
|
|
PCI configuration space should be mapped with a memory region type that
generates on the CPU host bus non-posted write transations. Update the
driver to use the devm_pci_remap_cfg* interface to make sure the correct
memory mappings for PCI configuration space are used.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Cc: Wenrui Li <wenrui.li@rock-chips.com>
Cc: Shawn Lin <shawn.lin@rock-chips.com>
|
|
PCI configuration space should be mapped with a memory region type that
generate on the CPU host bus non-posted write transations. Update the
driver to use the devm_pci_remap_cfg* interface to make sure the correct
memory mappings for PCI configuration space are used.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Cc: Pratyush Anand <pratyush.anand@gmail.com>
|
|
PCI configuration space should be mapped with a memory region type that
generates on the CPU host bus non-posted write transations. Update the
driver to use the devm_pci_remap_cfg* interface to make sure the correct
memory mappings for PCI configuration space are used.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Cc: Bharat Kumar Gogada <bharat.kumar.gogada@xilinx.com>
Cc: Michal Simek <michal.simek@xilinx.com>
|
|
PCI configuration space should be mapped with a memory region type that
generates on the CPU host bus non-posted write transations. Update the
driver to use the devm_pci_remap_cfg* interface to make sure the correct
memory mappings for PCI configuration space are used.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Cc: Bharat Kumar Gogada <bharat.kumar.gogada@xilinx.com>
Cc: Michal Simek <michal.simek@xilinx.com>
|
|
The current ECAM kernel implementation uses ioremap() to map the ECAM
configuration space memory region; this is not safe in that on some
architectures the ioremap interface provides mappings that allow posted
write transactions. This, as highlighted in the PCIe specifications (4.0 -
Rev0.3, "Ordering Considerations for the Enhanced Configuration Address
Mechanism"), can create ordering issues for software because posted writes
transactions on the CPU host bus are non posted in the PCI express fabric.
Update the ioremap() interface to use pci_remap_cfgspace() whose mapping
attributes guarantee that non-posted writes transactions are issued for
memory writes within the ECAM memory mapped address region.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Cc: Jayachandran C <jnair@caviumnetworks.com>
|
|
The introduction of the pci_remap_cfgspace() interface allows PCI host
controller drivers to map PCI config space through a dedicated kernel
interface. Current PCI host controller drivers use the devm_ioremap_*()
devres interfaces to map PCI configuration space regions so in order to
update them to the new pci_remap_cfgspace() mapping interface a new set of
devres interfaces should be implemented so that PCI host controller drivers
can make use of them.
Introduce two new functions in the PCI kernel layer and Devres
documentation:
- devm_pci_remap_cfgspace()
- devm_pci_remap_cfg_resource()
so that PCI host controller drivers can make use of them to map PCI
configuration space regions.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
|
|
The offset parameter in the devres devm_ioremap_*() functions kerneldoc
entries is erroneously defined as BUS offset whereas it is actually a
resource address.
Since it is actually misleading, fix the devres devm_ioremap_* offset
parameter kerneldoc entry by replacing BUS offset with a more suitable
description (ie Resource address).
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Cc: Tejun Heo <tj@kernel.org>
|
|
The PCI bus specification (rev 3.0, 3.2.5 "Transaction Ordering and
Posting") defines rules for PCI configuration space transactions ordering
and posting, that state that configuration writes have to be non-posted
transactions.
Current ioremap interface on ARM provides mapping functions that provide
"bufferable" writes transactions (ie ioremap uses MT_DEVICE memory type)
aka posted writes, so PCI host controller drivers have no arch interface to
remap PCI configuration space with memory attributes that comply with the
PCI specifications for configuration space.
Implement an ARM specific pci_remap_cfgspace() interface that allows to map
PCI config memory regions with MT_UNCACHED memory type (ie strongly ordered
- non-posted writes), providing a remap function that complies with PCI
specifications for config space transactions.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Russell King <linux@armlinux.org.uk>
|
|
The PCI bus specification (rev 3.0, 3.2.5 "Transaction Ordering and
Posting") defines rules for PCI configuration space transactions ordering
and posting, that state that configuration writes are non-posted
transactions.
This rule is reinforced by the ARM v8 architecture reference manual (issue
A.k, Early Write Acknowledgment) that explicitly recommends that No Early
Write Acknowledgment attribute should be used to map PCI configuration
(write) transactions.
Current ioremap interface on ARM64 implements mapping functions where the
Early Write Acknowledgment hint is enabled, so they cannot be used to map
PCI configuration space in a PCI specs compliant way.
Implement an ARM64 specific pci_remap_cfgspace() interface that allows to
map PCI config region with nGnRnE attributes, providing a remap function
that complies with PCI specifications and the ARMv8 architecture reference
manual recommendations.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
|
|
Currently SoCs pass2.x do not emulate EA headers for ACPI boot method at
all. However, for pass2.x some devices (like EDAC) advertise incorrect
base addresses in their BARs which results in driver probe failure during
resource request. Since all problematic blocks are on 2nd NUMA node under
domain 10 add necessary quirk entry to obtain BAR addresses correction
using EA header emulation.
Fixes: 44f22bd91e88 ("PCI: Add MCFG quirks for Cavium ThunderX pass2.x host controller")
Signed-off-by: Tomasz Nowicki <tn@semihalf.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Robert Richter <rrichter@cavium.com>
CC: stable@vger.kernel.org # v4.10+
|
|
With no blank lines, it's not obvious where the macro definitions end and
the uses begin. Add some blank lines and reorder the ThunderX definitions.
No functional change intended.
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
CC: stable@vger.kernel.org # v4.10+
|
|
Now that we've exported pci_remap_iospace() and added proper remove()
support, there's no reason this can't be a loadable module.
Signed-off-by: Brian Norris <briannorris@chromium.org>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Shawn Lin <shawn.lin@rock-chips.com>
|
|
These are useful for PCIe host drivers, and those drivers can be modules.
[bhelgaas: don't remove __weak; it's removed elsewhere]
Signed-off-by: Brian Norris <briannorris@chromium.org>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Shawn Lin <shawn.lin@rock-chips.com>
|
|
Currently, if we try to unbind the platform device, the remove will
succeed, but the removal won't undo most of the registration, leaving
partially-configured PCI devices in the system.
This allows, for example, a simple 'lspci' to crash the system, as it will
try to touch the freed (via devm_*) driver structures, e.g., on RK3399:
# echo f8000000.pcie > /sys/bus/platform/drivers/rockchip-pcie/unbind
# lspci
So let's implement device remove().
Signed-off-by: Brian Norris <briannorris@chromium.org>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Shawn Lin <shawn.lin@rock-chips.com>
|
|
Instead of copy & pasting and old version of the code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
The 82599 quirk contained an outdated copy of the FLR code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
Currently we opencode the FLR sequence in lots of place; export a core
helper instead. We split out the probing for FLR support as all the
non-core callers already know their hardware.
Note that in the new pci_has_flr() function the quirk check has been moved
before the capability check as there is no point in reading the capability
in this case.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
Sometimes it is not desirable to bind SR-IOV VFs to drivers. This can save
host side resource usage by VF instances that will be assigned to VMs.
Add a new PCI sysfs interface "sriov_drivers_autoprobe" to control that
from the PF. To modify it, echo 0/n/N (disable probe) or 1/y/Y (enable
probe) to:
/sys/bus/pci/devices/<DOMAIN:BUS:DEVICE.FUNCTION>/sriov_drivers_autoprobe
Note that this must be done before enabling VFs. The change will not take
effect if VFs are already enabled. Simply, one can disable VFs by setting
sriov_numvfs to 0, choose whether to probe or not, and then re-enable the
VFs by restoring sriov_numvfs.
[bhelgaas: changelog, ABI doc]
Signed-off-by: Bodong Wang <bodong@mellanox.com>
Signed-off-by: Eli Cohen <eli@mellanox.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Alex Williamson <alex.williamson@redhat.com>
|
|
Now that we eliminated the different behaviour in separately-reviewable
commits, we can switch IA64 to the generic implementation.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Tested-by: Tony Luck <tony.luck@intel.com>
|
|
For a PCI MMIO BAR, phys_mem_access_prot() should always return UC or WC.
And while a mixture of cached and uncached mappings is forbidden, we were
already mixing WC and UC, which is OK. Just do as we're asked.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Tested-by: Tony Luck <tony.luck@intel.com>
|
|
We know we are within a valid MMIO BAR by the time this function gets
called; there's no need to check.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Tested-by: Tony Luck <tony.luck@intel.com>
|
|
This will need to call into an arch-provided pci_iobar_pfn() function.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
This was setting vma->vm_flags |= VM_LOCKED. Not sure why...
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: David Howells <dhowells@redhat.com>
|
|
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Jesper Nilsson <jesper.nilsson@axis.com>
|
|
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
Starting to leave behind the legacy of the pci_mmap_page_range() interface
which takes "user-visible" BAR addresses. This takes just the resource and
offset.
For now, both APIs coexist and depending on the platform, one is
implemented as a wrapper around the other.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
In all cases we know which BAR it is. Passing it in means that arch code
(or generic code; watch this space) won't have to go looking for it again.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
We store the pointer, and then on *every* use of it we loop over the
device's resources to find out the index. That's kind of silly.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
The PCI specifications (Rev 3.0, 3.2.5 "Transaction Ordering and Posting")
mandate non-posted configuration transactions. As further highlighted in
the PCIe specifications (4.0 - Rev0.3, "Ordering Considerations for the
Enhanced Configuration Access Mechanism"), through ECAM and ECAM-derivative
configuration mechanism, the memory mapped transactions from the host CPU
into Configuration Requests on the PCI express fabric may create ordering
problems for software because writes to memory address are typically posted
transactions (unless the architecture can enforce through virtual address
mapping non-posted write transactions behaviour) but writes to
Configuration Space are not posted on the PCI express fabric.
Current DT and ACPI host bridge controllers map PCI configuration space
(ECAM and ECAM-derivative) into the virtual address space through ioremap()
calls, that are non-cacheable device accesses on most architectures, but
may provide "bufferable" or "posted" write semantics in architecture like
eg ARM/ARM64 that allow ioremap'ed regions writes to be buffered in the bus
connecting the host CPU to the PCI fabric; this behaviour, as underlined in
the PCIe specifications, may trigger transactions ordering rules and must
be prevented.
Introduce a new generic and explicit API to create a memory mapping for
ECAM and ECAM-derivative config space area that defaults to
ioremap_nocache() (which should provide a sane default behaviour) but still
allowing architectures on which ioremap_nocache() results in posted write
transactions to override the function call with an arch specific
implementation that complies with the PCI specifications for configuration
transactions.
[bhelgaas: fold in #ifdef CONFIG_PCI wrapper]
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
|
|
pci_remap_iospace() is marked as a weak symbol even though no architecture
is currently overriding it; given that its implementation internals have
already code paths that are arch specific (ie PCI_IOBASE and
ioremap_page_range() attributes) there is no need to leave the weak symbol
in the kernel since the same functionality can be achieved by customizing
per-arch the corresponding functionality.
Remove the __weak symbol from pci_remap_iospace().
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
|
|
The "pci=resource_alignment" argument aligns BARs of designated devices by
artificially increasing their size. Increasing the size increases the
alignment and prevents other resources from being assigned in the same
alignment region, e.g., in the same page, but it can break drivers that use
the BAR size to locate things, e.g., ilo_map_device() does this:
off = pci_resource_len(pdev, bar) - 0x2000;
The new pcibios_default_alignment() interface allows an arch to request
that *all* BARs in the system be aligned to a larger size. In this case,
we don't need to artificially increase the resource size because we know
every BAR of every device will be realigned, so nothing will share the same
alignment region.
Use IORESOURCE_STARTALIGN to request realignment of PCI BARs when we know
we're realigning all BARs in the system.
[bhelgaas: comment, changelog]
Signed-off-by: Yongji Xie <elohimes@gmail.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
The "pci=resource_alignment=" kernel argument designates devices for which
we want alignment greater than is required by the PCI specs. Previously we
set IORESOURCE_UNSET for every MEM resource of those devices, even if the
resource was *already* sufficiently aligned.
If a resource is already sufficiently aligned, leave it alone and don't try
to reassign it.
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
Pull the BAR size adjustment out into a new function,
pci_request_resource_alignment(), and add a comment about how and why we
increase the resource size and alignment.
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
to be page aligned
Override pcibios_default_alignment() to set default alignment to PAGE_SIZE
for all PCI devices on PowerNV platform. Thus sub-page BARs would not
share a page and could be mapped into guest when VFIO passthrough them.
Signed-off-by: Yongji Xie <elohimes@gmail.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
When VFIO passes through a PCI device to a guest, it does not allow the
guest to mmap BARs that are smaller than PAGE_SIZE unless it can reserve
the rest of the page (see vfio_pci_probe_mmaps()). This is because a page
might contain several small BARs for unrelated devices and a guest should
not be able to access all of them.
VFIO emulates guest accesses to non-mappable BARs, which is functional but
slow. On systems with large page sizes, e.g., PowerNV with 64K pages, BARs
are more likely to share a page and performance is more likely to be a
problem.
Add a weak function to set default alignment for all PCI devices. An arch
can override it to force the PCI core to place memory BARs on their own
pages.
Signed-off-by: Yongji Xie <elohimes@gmail.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
A PCI/PCI-X to PCI Express bridge, sometimes referred to as a "reverse
bridge", is a bridge with conventional PCI or PCI-X on its primary side and
a PCI Express Port on its secondary (downstream) side.
That PCIe Port is a Downstream Port and could be connected to a slot, just
like a Root Port or a Switch Downstream Port. Make pcie_downstream_port()
return true for them, so we can access the Slot registers in the PCIe
capability.
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
Laurent Pinchart reported that the Renesas R-Car H2 Lager board (r8a7790)
crashes during suspend tests. Geert Uytterhoeven managed to reproduce the
issue on an M2-W Koelsch board (r8a7791):
It occurs when the PME scan runs, once per second. During PME scan, the
PCI host bridge (rcar-pci) registers are accessed while its module clock
has already been disabled, leading to the crash.
One reproducer is to configure s2ram to use "s2idle" instead of "deep"
suspend:
# echo 0 > /sys/module/printk/parameters/console_suspend
# echo s2idle > /sys/power/mem_sleep
# echo mem > /sys/power/state
Another reproducer is to write either "platform" or "processors" to
/sys/power/pm_test. It does not (or is less likely) to happen during full
system suspend ("core" or "none") because system suspend also disables
timers, and thus the workqueue handling PME scans no longer runs. Geert
believes the issue may still happen in the small window between disabling
module clocks and disabling timers:
# echo 0 > /sys/module/printk/parameters/console_suspend
# echo platform > /sys/power/pm_test # Or "processors"
# echo mem > /sys/power/state
(Make sure CONFIG_PCI_RCAR_GEN2 and CONFIG_USB_OHCI_HCD_PCI are enabled.)
Rafael Wysocki agrees that PME scans should be suspended before the host
bridge registers become inaccessible. To that end, queue the task on a
workqueue that gets frozen before devices suspend.
Rafael notes however that as a result, some wakeup events may be missed if
they are delivered via PME from a device without working IRQ (which hence
must be polled) and occur after the workqueue has been frozen. If that
turns out to be an issue in practice, it may be possible to solve it by
calling pci_pme_list_scan() once directly from one of the host bridge's
pm_ops callbacks.
Stacktrace for posterity:
PM: Syncing filesystems ... [ 38.566237] done.
PM: Preparing system for sleep (mem)
Freezing user space processes ... [ 38.579813] (elapsed 0.001 seconds) done.
Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done.
PM: Suspending system (mem)
PM: suspend of devices complete after 152.456 msecs
PM: late suspend of devices complete after 2.809 msecs
PM: noirq suspend of devices complete after 29.863 msecs
suspend debug: Waiting for 5 second(s).
Unhandled fault: asynchronous external abort (0x1211) at 0x00000000
pgd = c0003000
[00000000] *pgd=80000040004003, *pmd=00000000
Internal error: : 1211 [#1] SMP ARM
Modules linked in:
CPU: 1 PID: 20 Comm: kworker/1:1 Not tainted
4.9.0-rc1-koelsch-00011-g68db9bc814362e7f #3383
Hardware name: Generic R8A7791 (Flattened Device Tree)
Workqueue: events pci_pme_list_scan
task: eb56e140 task.stack: eb58e000
PC is at pci_generic_config_read+0x64/0x6c
LR is at rcar_pci_cfg_base+0x64/0x84
pc : [<c041d7b4>] lr : [<c04309a0>] psr: 600d0093
sp : eb58fe98 ip : c041d750 fp : 00000008
r10: c0e2283c r9 : 00000000 r8 : 600d0013
r7 : 00000008 r6 : eb58fed6 r5 : 00000002 r4 : eb58feb4
r3 : 00000000 r2 : 00000044 r1 : 00000008 r0 : 00000000
Flags: nZCv IRQs off FIQs on Mode SVC_32 ISA ARM Segment user
Control: 30c5387d Table: 6a9f6c80 DAC: 55555555
Process kworker/1:1 (pid: 20, stack limit = 0xeb58e210)
Stack: (0xeb58fe98 to 0xeb590000)
fe80: 00000002 00000044
fea0: eb6f5800 c041d9b0 eb58feb4 00000008 00000044 00000000 eb78a000 eb78a000
fec0: 00000044 00000000 eb9aff00 c0424bf0 eb78a000 00000000 eb78a000 c0e22830
fee0: ea8a6fc0 c0424c5c eaae79c0 c0424ce0 eb55f380 c0e22838 eb9a9800 c0235fbc
ff00: eb55f380 c0e22838 eb55f380 eb9a9800 eb9a9800 eb58e000 eb9a9824 c0e02100
ff20: eb55f398 c02366c4 eb56e140 eb5631c0 00000000 eb55f380 c023641c 00000000
ff40: 00000000 00000000 00000000 c023a928 cd105598 00000000 40506a34 eb55f380
ff60: 00000000 00000000 dead4ead ffffffff ffffffff eb58ff74 eb58ff74 00000000
ff80: 00000000 dead4ead ffffffff ffffffff eb58ff90 eb58ff90 eb58ffac eb5631c0
ffa0: c023a844 00000000 00000000 c0206d68 00000000 00000000 00000000 00000000
ffc0: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
ffe0: 00000000 00000000 00000000 00000000 00000013 00000000 3a81336c 10ccd1dd
[<c041d7b4>] (pci_generic_config_read) from [<c041d9b0>]
(pci_bus_read_config_word+0x58/0x80)
[<c041d9b0>] (pci_bus_read_config_word) from [<c0424bf0>]
(pci_check_pme_status+0x34/0x78)
[<c0424bf0>] (pci_check_pme_status) from [<c0424c5c>] (pci_pme_wakeup+0x28/0x54)
[<c0424c5c>] (pci_pme_wakeup) from [<c0424ce0>] (pci_pme_list_scan+0x58/0xb4)
[<c0424ce0>] (pci_pme_list_scan) from [<c0235fbc>]
(process_one_work+0x1bc/0x308)
[<c0235fbc>] (process_one_work) from [<c02366c4>] (worker_thread+0x2a8/0x3e0)
[<c02366c4>] (worker_thread) from [<c023a928>] (kthread+0xe4/0xfc)
[<c023a928>] (kthread) from [<c0206d68>] (ret_from_fork+0x14/0x2c)
Code: ea000000 e5903000 f57ff04f e3a00000 (e5843000)
---[ end trace 667d43ba3aa9e589 ]---
Fixes: df17e62e5bff ("PCI: Add support for polling PME state on suspended legacy PCI devices")
Reported-and-tested-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
Reported-and-tested-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: stable@vger.kernel.org # 2.6.37+
Cc: Mika Westerberg <mika.westerberg@linux.intel.com>
Cc: Niklas Söderlund <niklas.soderlund+renesas@ragnatech.se>
Cc: Simon Horman <horms+renesas@verge.net.au>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
|
|
In case that one device's alignment is greater than its size, we may
get an incorrect size and alignment for its bus's memory window in
pbus_size_mem(). Fix this case.
Signed-off-by: Yongji Xie <elohimes@gmail.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
We would call pci_reassigndev_resource_alignment() before
pci_init_capabilities(). So the requested alignment would never work for
IOV BARs.
Furthermore, it's meaningless to request additional alignment for IOV BARs,
the IOV BAR alignment is only determined by the VF BAR size.
Signed-off-by: Yongji Xie <xyjxie@linux.vnet.ibm.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
|
|
A 64-bit value is not needed since a PCI ROM address consists in 32 bits.
This fixes a clang warning about "implicit conversion from 'unsigned long'
to 'u32'".
Also remove now unnecessary casts to u32 from __pci_read_base() and
pci_std_update_resource().
Signed-off-by: Matthias Kaehlcke <mka@chromium.org>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
pci_host_common_probe() is defined when CONFIG_PCI_HOST_COMMON=y;
therefore the function declaration should match that.
drivers/pci/host/pcie-tango.c:300:9: error:
implicit declaration of function 'pci_host_common_probe'
Signed-off-by: Marc Gonzalez <marc_gonzalez@sigmadesigns.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
Local variables 'l' and 'sz' are uninitialized. Normally, they would
be initialized by pci_read_config_dword() but when an error occurs,
some drivers immediately return an error code, which leaves the
argument uninitialized.
Provide a safe initial value to make the code more robust.
Signed-off-by: Marc Gonzalez <marc_gonzalez@sigmadesigns.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Keith Busch <keith.busch@intel.com>
|
|
These are small wrappers around request_threaded_irq() and free_irq(),
which dynamically allocate space for the device name so that drivers don't
need to keep static buffers for these around. Additionally it works with
device-relative vector numbers to make the usage easier, and force the
IRQF_SHARED flag on given that it has no runtime overhead and should be
supported by all PCI devices.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
|