Age | Commit message (Collapse) | Author |
|
Jann Horn reported that SO_PEERCRED and SO_PEERGROUPS implementations
are racy, as af_unix can concurrently change sk_peer_pid and sk_peer_cred.
In order to fix this issue, this patch adds a new spinlock that needs
to be used whenever these fields are read or written.
Jann also pointed out that l2cap_sock_get_peer_pid_cb() is currently
reading sk->sk_peer_pid which makes no sense, as this field
is only possibly set by AF_UNIX sockets.
We will have to clean this in a separate patch.
This could be done by reverting b48596d1dc25 "Bluetooth: L2CAP: Add get_peer_pid callback"
or implementing what was truly expected.
Fixes: 109f6e39fa07 ("af_unix: Allow SO_PEERCRED to work across namespaces.")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Jann Horn <jannh@google.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
Cc: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
When STMMAC is paired with Energy-Efficient Ethernet(EEE) capable PHY,
and the PHY is advertising EEE by default, we need to enable EEE on the
xPCS side too, instead of having user to manually trigger the enabling
config via ethtool.
Fixed this by adding xpcs_config_eee() call in stmmac_eee_init().
Fixes: 7617af3d1a5e ("net: pcs: Introducing support for DWC xpcs Energy Efficient Ethernet")
Cc: Michael Sit Wei Hong <michael.wei.hong.sit@intel.com>
Signed-off-by: Wong Vee Khee <vee.khee.wong@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
struct dev_addr_list is used for device addresses, unicast addresses
and multicast addresses. The first of those needs special handling
of the main address - netdev->dev_addr points directly the data
of the entry and drivers write to it freely, so we can't maintain
it in the rbtree (for now, at least, to be fixed in net-next).
Current work around sprinkles special handling of the first
address on the list throughout the code but it missed the case
where address is being added. First address will not be visible
during subsequent adds.
Syzbot found a warning where unicast addresses are modified
without holding the rtnl lock, tl;dr is that team generates
the same modification multiple times, not necessarily when
right locks are held.
In the repro we have:
macvlan -> team -> veth
macvlan adds a unicast address to the team. Team then pushes
that address down to its memebers (veths). Next something unrelated
makes team sync member addrs again, and because of the bug
the addr entries get duplicated in the veths. macvlan gets
removed, removes its addr from team which removes only one
of the duplicated addresses from veths. This removal is done
under rtnl. Next syzbot uses iptables to add a multicast addr
to team (which does not hold rtnl lock). Team syncs veth addrs,
but because veths' unicast list still has the duplicate it will
also get sync, even though this update is intended for mc addresses.
Again, uc address updates need rtnl lock, boom.
Reported-by: syzbot+7a2ab2cdc14d134de553@syzkaller.appspotmail.com
Fixes: 406f42fa0d3c ("net-next: When a bond have a massive amount of VLANs with IPv6 addresses, performance of changing link state, attaching a VRF, changing an IPv6 address, etc. go down dramtically.")
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Patch that refactored fl_walk() to use idr_for_each_entry_continue_ul()
also removed rcu protection of individual filters which causes following
use-after-free when filter is deleted concurrently. Fix fl_walk() to obtain
rcu read lock while iterating and taking the filter reference and temporary
release the lock while calling arg->fn() callback that can sleep.
KASAN trace:
[ 352.773640] ==================================================================
[ 352.775041] BUG: KASAN: use-after-free in fl_walk+0x159/0x240 [cls_flower]
[ 352.776304] Read of size 4 at addr ffff8881c8251480 by task tc/2987
[ 352.777862] CPU: 3 PID: 2987 Comm: tc Not tainted 5.15.0-rc2+ #2
[ 352.778980] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
[ 352.781022] Call Trace:
[ 352.781573] dump_stack_lvl+0x46/0x5a
[ 352.782332] print_address_description.constprop.0+0x1f/0x140
[ 352.783400] ? fl_walk+0x159/0x240 [cls_flower]
[ 352.784292] ? fl_walk+0x159/0x240 [cls_flower]
[ 352.785138] kasan_report.cold+0x83/0xdf
[ 352.785851] ? fl_walk+0x159/0x240 [cls_flower]
[ 352.786587] kasan_check_range+0x145/0x1a0
[ 352.787337] fl_walk+0x159/0x240 [cls_flower]
[ 352.788163] ? fl_put+0x10/0x10 [cls_flower]
[ 352.789007] ? __mutex_unlock_slowpath.constprop.0+0x220/0x220
[ 352.790102] tcf_chain_dump+0x231/0x450
[ 352.790878] ? tcf_chain_tp_delete_empty+0x170/0x170
[ 352.791833] ? __might_sleep+0x2e/0xc0
[ 352.792594] ? tfilter_notify+0x170/0x170
[ 352.793400] ? __mutex_unlock_slowpath.constprop.0+0x220/0x220
[ 352.794477] tc_dump_tfilter+0x385/0x4b0
[ 352.795262] ? tc_new_tfilter+0x1180/0x1180
[ 352.796103] ? __mod_node_page_state+0x1f/0xc0
[ 352.796974] ? __build_skb_around+0x10e/0x130
[ 352.797826] netlink_dump+0x2c0/0x560
[ 352.798563] ? netlink_getsockopt+0x430/0x430
[ 352.799433] ? __mutex_unlock_slowpath.constprop.0+0x220/0x220
[ 352.800542] __netlink_dump_start+0x356/0x440
[ 352.801397] rtnetlink_rcv_msg+0x3ff/0x550
[ 352.802190] ? tc_new_tfilter+0x1180/0x1180
[ 352.802872] ? rtnl_calcit.isra.0+0x1f0/0x1f0
[ 352.803668] ? tc_new_tfilter+0x1180/0x1180
[ 352.804344] ? _copy_from_iter_nocache+0x800/0x800
[ 352.805202] ? kasan_set_track+0x1c/0x30
[ 352.805900] netlink_rcv_skb+0xc6/0x1f0
[ 352.806587] ? rht_deferred_worker+0x6b0/0x6b0
[ 352.807455] ? rtnl_calcit.isra.0+0x1f0/0x1f0
[ 352.808324] ? netlink_ack+0x4d0/0x4d0
[ 352.809086] ? netlink_deliver_tap+0x62/0x3d0
[ 352.809951] netlink_unicast+0x353/0x480
[ 352.810744] ? netlink_attachskb+0x430/0x430
[ 352.811586] ? __alloc_skb+0xd7/0x200
[ 352.812349] netlink_sendmsg+0x396/0x680
[ 352.813132] ? netlink_unicast+0x480/0x480
[ 352.813952] ? __import_iovec+0x192/0x210
[ 352.814759] ? netlink_unicast+0x480/0x480
[ 352.815580] sock_sendmsg+0x6c/0x80
[ 352.816299] ____sys_sendmsg+0x3a5/0x3c0
[ 352.817096] ? kernel_sendmsg+0x30/0x30
[ 352.817873] ? __ia32_sys_recvmmsg+0x150/0x150
[ 352.818753] ___sys_sendmsg+0xd8/0x140
[ 352.819518] ? sendmsg_copy_msghdr+0x110/0x110
[ 352.820402] ? ___sys_recvmsg+0xf4/0x1a0
[ 352.821110] ? __copy_msghdr_from_user+0x260/0x260
[ 352.821934] ? _raw_spin_lock+0x81/0xd0
[ 352.822680] ? __handle_mm_fault+0xef3/0x1b20
[ 352.823549] ? rb_insert_color+0x2a/0x270
[ 352.824373] ? copy_page_range+0x16b0/0x16b0
[ 352.825209] ? perf_event_update_userpage+0x2d0/0x2d0
[ 352.826190] ? __fget_light+0xd9/0xf0
[ 352.826941] __sys_sendmsg+0xb3/0x130
[ 352.827613] ? __sys_sendmsg_sock+0x20/0x20
[ 352.828377] ? do_user_addr_fault+0x2c5/0x8a0
[ 352.829184] ? fpregs_assert_state_consistent+0x52/0x60
[ 352.830001] ? exit_to_user_mode_prepare+0x32/0x160
[ 352.830845] do_syscall_64+0x35/0x80
[ 352.831445] entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 352.832331] RIP: 0033:0x7f7bee973c17
[ 352.833078] Code: 0c 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 2e 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 51 c3 48 83 ec 28 89 54 24 1c 48 89 74 24 10
[ 352.836202] RSP: 002b:00007ffcbb368e28 EFLAGS: 00000246 ORIG_RAX: 000000000000002e
[ 352.837524] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f7bee973c17
[ 352.838715] RDX: 0000000000000000 RSI: 00007ffcbb368e50 RDI: 0000000000000003
[ 352.839838] RBP: 00007ffcbb36d090 R08: 00000000cea96d79 R09: 00007f7beea34a40
[ 352.841021] R10: 00000000004059bb R11: 0000000000000246 R12: 000000000046563f
[ 352.842208] R13: 0000000000000000 R14: 0000000000000000 R15: 00007ffcbb36d088
[ 352.843784] Allocated by task 2960:
[ 352.844451] kasan_save_stack+0x1b/0x40
[ 352.845173] __kasan_kmalloc+0x7c/0x90
[ 352.845873] fl_change+0x282/0x22db [cls_flower]
[ 352.846696] tc_new_tfilter+0x6cf/0x1180
[ 352.847493] rtnetlink_rcv_msg+0x471/0x550
[ 352.848323] netlink_rcv_skb+0xc6/0x1f0
[ 352.849097] netlink_unicast+0x353/0x480
[ 352.849886] netlink_sendmsg+0x396/0x680
[ 352.850678] sock_sendmsg+0x6c/0x80
[ 352.851398] ____sys_sendmsg+0x3a5/0x3c0
[ 352.852202] ___sys_sendmsg+0xd8/0x140
[ 352.852967] __sys_sendmsg+0xb3/0x130
[ 352.853718] do_syscall_64+0x35/0x80
[ 352.854457] entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 352.855830] Freed by task 7:
[ 352.856421] kasan_save_stack+0x1b/0x40
[ 352.857139] kasan_set_track+0x1c/0x30
[ 352.857854] kasan_set_free_info+0x20/0x30
[ 352.858609] __kasan_slab_free+0xed/0x130
[ 352.859348] kfree+0xa7/0x3c0
[ 352.859951] process_one_work+0x44d/0x780
[ 352.860685] worker_thread+0x2e2/0x7e0
[ 352.861390] kthread+0x1f4/0x220
[ 352.862022] ret_from_fork+0x1f/0x30
[ 352.862955] Last potentially related work creation:
[ 352.863758] kasan_save_stack+0x1b/0x40
[ 352.864378] kasan_record_aux_stack+0xab/0xc0
[ 352.865028] insert_work+0x30/0x160
[ 352.865617] __queue_work+0x351/0x670
[ 352.866261] rcu_work_rcufn+0x30/0x40
[ 352.866917] rcu_core+0x3b2/0xdb0
[ 352.867561] __do_softirq+0xf6/0x386
[ 352.868708] Second to last potentially related work creation:
[ 352.869779] kasan_save_stack+0x1b/0x40
[ 352.870560] kasan_record_aux_stack+0xab/0xc0
[ 352.871426] call_rcu+0x5f/0x5c0
[ 352.872108] queue_rcu_work+0x44/0x50
[ 352.872855] __fl_put+0x17c/0x240 [cls_flower]
[ 352.873733] fl_delete+0xc7/0x100 [cls_flower]
[ 352.874607] tc_del_tfilter+0x510/0xb30
[ 352.886085] rtnetlink_rcv_msg+0x471/0x550
[ 352.886875] netlink_rcv_skb+0xc6/0x1f0
[ 352.887636] netlink_unicast+0x353/0x480
[ 352.888285] netlink_sendmsg+0x396/0x680
[ 352.888942] sock_sendmsg+0x6c/0x80
[ 352.889583] ____sys_sendmsg+0x3a5/0x3c0
[ 352.890311] ___sys_sendmsg+0xd8/0x140
[ 352.891019] __sys_sendmsg+0xb3/0x130
[ 352.891716] do_syscall_64+0x35/0x80
[ 352.892395] entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 352.893666] The buggy address belongs to the object at ffff8881c8251000
which belongs to the cache kmalloc-2k of size 2048
[ 352.895696] The buggy address is located 1152 bytes inside of
2048-byte region [ffff8881c8251000, ffff8881c8251800)
[ 352.897640] The buggy address belongs to the page:
[ 352.898492] page:00000000213bac35 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x1c8250
[ 352.900110] head:00000000213bac35 order:3 compound_mapcount:0 compound_pincount:0
[ 352.901541] flags: 0x2ffff800010200(slab|head|node=0|zone=2|lastcpupid=0x1ffff)
[ 352.902908] raw: 002ffff800010200 0000000000000000 dead000000000122 ffff888100042f00
[ 352.904391] raw: 0000000000000000 0000000000080008 00000001ffffffff 0000000000000000
[ 352.905861] page dumped because: kasan: bad access detected
[ 352.907323] Memory state around the buggy address:
[ 352.908218] ffff8881c8251380: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
[ 352.909471] ffff8881c8251400: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
[ 352.910735] >ffff8881c8251480: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
[ 352.912012] ^
[ 352.912642] ffff8881c8251500: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
[ 352.913919] ffff8881c8251580: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
[ 352.915185] ==================================================================
Fixes: d39d714969cd ("idr: introduce idr_for_each_entry_continue_ul()")
Signed-off-by: Vlad Buslov <vladbu@nvidia.com>
Acked-by: Cong Wang <cong.wang@bytedance.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Syzkaller reported a false positive deadlock involving
the nl socket lock and the subflow socket lock:
MPTCP: kernel_bind error, err=-98
============================================
WARNING: possible recursive locking detected
5.15.0-rc1-syzkaller #0 Not tainted
--------------------------------------------
syz-executor998/6520 is trying to acquire lock:
ffff8880795718a0 (k-sk_lock-AF_INET){+.+.}-{0:0}, at: mptcp_close+0x267/0x7b0 net/mptcp/protocol.c:2738
but task is already holding lock:
ffff8880787c8c60 (k-sk_lock-AF_INET){+.+.}-{0:0}, at: lock_sock include/net/sock.h:1612 [inline]
ffff8880787c8c60 (k-sk_lock-AF_INET){+.+.}-{0:0}, at: mptcp_close+0x23/0x7b0 net/mptcp/protocol.c:2720
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(k-sk_lock-AF_INET);
lock(k-sk_lock-AF_INET);
*** DEADLOCK ***
May be due to missing lock nesting notation
3 locks held by syz-executor998/6520:
#0: ffffffff8d176c50 (cb_lock){++++}-{3:3}, at: genl_rcv+0x15/0x40 net/netlink/genetlink.c:802
#1: ffffffff8d176d08 (genl_mutex){+.+.}-{3:3}, at: genl_lock net/netlink/genetlink.c:33 [inline]
#1: ffffffff8d176d08 (genl_mutex){+.+.}-{3:3}, at: genl_rcv_msg+0x3e0/0x580 net/netlink/genetlink.c:790
#2: ffff8880787c8c60 (k-sk_lock-AF_INET){+.+.}-{0:0}, at: lock_sock include/net/sock.h:1612 [inline]
#2: ffff8880787c8c60 (k-sk_lock-AF_INET){+.+.}-{0:0}, at: mptcp_close+0x23/0x7b0 net/mptcp/protocol.c:2720
stack backtrace:
CPU: 1 PID: 6520 Comm: syz-executor998 Not tainted 5.15.0-rc1-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Call Trace:
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106
print_deadlock_bug kernel/locking/lockdep.c:2944 [inline]
check_deadlock kernel/locking/lockdep.c:2987 [inline]
validate_chain kernel/locking/lockdep.c:3776 [inline]
__lock_acquire.cold+0x149/0x3ab kernel/locking/lockdep.c:5015
lock_acquire kernel/locking/lockdep.c:5625 [inline]
lock_acquire+0x1ab/0x510 kernel/locking/lockdep.c:5590
lock_sock_fast+0x36/0x100 net/core/sock.c:3229
mptcp_close+0x267/0x7b0 net/mptcp/protocol.c:2738
inet_release+0x12e/0x280 net/ipv4/af_inet.c:431
__sock_release net/socket.c:649 [inline]
sock_release+0x87/0x1b0 net/socket.c:677
mptcp_pm_nl_create_listen_socket+0x238/0x2c0 net/mptcp/pm_netlink.c:900
mptcp_nl_cmd_add_addr+0x359/0x930 net/mptcp/pm_netlink.c:1170
genl_family_rcv_msg_doit+0x228/0x320 net/netlink/genetlink.c:731
genl_family_rcv_msg net/netlink/genetlink.c:775 [inline]
genl_rcv_msg+0x328/0x580 net/netlink/genetlink.c:792
netlink_rcv_skb+0x153/0x420 net/netlink/af_netlink.c:2504
genl_rcv+0x24/0x40 net/netlink/genetlink.c:803
netlink_unicast_kernel net/netlink/af_netlink.c:1314 [inline]
netlink_unicast+0x533/0x7d0 net/netlink/af_netlink.c:1340
netlink_sendmsg+0x86d/0xdb0 net/netlink/af_netlink.c:1929
sock_sendmsg_nosec net/socket.c:704 [inline]
sock_sendmsg+0xcf/0x120 net/socket.c:724
sock_no_sendpage+0x101/0x150 net/core/sock.c:2980
kernel_sendpage.part.0+0x1a0/0x340 net/socket.c:3504
kernel_sendpage net/socket.c:3501 [inline]
sock_sendpage+0xe5/0x140 net/socket.c:1003
pipe_to_sendpage+0x2ad/0x380 fs/splice.c:364
splice_from_pipe_feed fs/splice.c:418 [inline]
__splice_from_pipe+0x43e/0x8a0 fs/splice.c:562
splice_from_pipe fs/splice.c:597 [inline]
generic_splice_sendpage+0xd4/0x140 fs/splice.c:746
do_splice_from fs/splice.c:767 [inline]
direct_splice_actor+0x110/0x180 fs/splice.c:936
splice_direct_to_actor+0x34b/0x8c0 fs/splice.c:891
do_splice_direct+0x1b3/0x280 fs/splice.c:979
do_sendfile+0xae9/0x1240 fs/read_write.c:1249
__do_sys_sendfile64 fs/read_write.c:1314 [inline]
__se_sys_sendfile64 fs/read_write.c:1300 [inline]
__x64_sys_sendfile64+0x1cc/0x210 fs/read_write.c:1300
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f215cb69969
Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 e1 14 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 c0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007ffc96bb3868 EFLAGS: 00000246 ORIG_RAX: 0000000000000028
RAX: ffffffffffffffda RBX: 00007f215cbad072 RCX: 00007f215cb69969
RDX: 0000000000000000 RSI: 0000000000000004 RDI: 0000000000000005
RBP: 0000000000000000 R08: 00007ffc96bb3a08 R09: 00007ffc96bb3a08
R10: 0000000100000002 R11: 0000000000000246 R12: 00007ffc96bb387c
R13: 431bde82d7b634db R14: 0000000000000000 R15: 0000000000000000
the problem originates from uncorrect lock annotation in the mptcp
code and is only visible since commit 2dcb96bacce3 ("net: core: Correct
the sock::sk_lock.owned lockdep annotations"), but is present since
the port-based endpoint support initial implementation.
This patch addresses the issue introducing a nested variant of
lock_sock_fast() and using it in the relevant code path.
Fixes: 1729cf186d8a ("mptcp: create the listening socket for new port")
Fixes: 2dcb96bacce3 ("net: core: Correct the sock::sk_lock.owned lockdep annotations")
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Reported-and-tested-by: syzbot+1dd53f7a89b299d59eaf@syzkaller.appspotmail.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This is useful for debug and also makes it consistent with
the rest of the SVM optional features.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210914154825.104886-9-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
According to the SDM, the CPU never modifies these settings.
It loads them on VM entry and updates an internal copy instead.
Also don't load them from the vmcb12 as we don't expose these
features to the nested guest yet.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210914154825.104886-5-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
All of the irqfds would to be updated when update the irq
routing, it's too expensive if there're too many irqfds.
However we can reduce the cost by avoid some unnecessary
updates. For irqs of MSI type on X86, the update can be
saved if the msi values are not change.
The vfio migration could receives benefit from this optimi-
zaiton. The test VM has 128 vcpus and 8 VF (with 65 vectors
enabled), so the VM has more than 520 irqfds. We mesure the
cost of the vfio_msix_enable (in QEMU, it would set routing
for each irqfd) for each VF, and we can see the total cost
can be significantly reduced.
Origin Apply this Patch
1st 8 4
2nd 15 5
3rd 22 6
4th 24 6
5th 36 7
6th 44 7
7th 51 8
8th 58 8
Total 258ms 51ms
We're also tring to optimize the QEMU part [1], but it's still
worth to optimize the KVM to gain more benefits.
[1] https://lists.gnu.org/archive/html/qemu-devel/2021-08/msg04215.html
Signed-off-by: Longpeng(Mike) <longpeng2@huawei.com>
Message-Id: <20210827080003.2689-1-longpeng2@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
If the original spte is writable, the target gfn should not be the
gfn of synchronized shadowpage and can continue to be writable.
When !can_unsync, speculative must be false. So when the check of
"!can_unsync" is removed, we need to move the label of "out" up.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210918005636.3675-11-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
We'd better only unsync the pagetable when there just was a really
write fault on a level-1 pagetable.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210918005636.3675-10-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Its solo caller is changed to use FNAME(prefetch_gpte) directly.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210918005636.3675-9-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
In mmu_sync_children(), it can zap the invalid list after remote tlb flushing.
Emptifying the invalid list ASAP might help reduce a remote tlb flushing
in some cases.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210918005636.3675-8-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Currently kvm_sync_page() returns true when there is any present spte.
But the return value is ignored in the callers.
Changing kvm_sync_page() to return true when remote flush is needed and
changing mmu->sync_page() not to directly flush can combine and reduce
remote flush requests.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210918005636.3675-7-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Because local_flush is useless, kvm_mmu_flush_or_zap() can be removed
and kvm_mmu_remote_flush_or_zap is used instead.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210918005636.3675-6-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
After any shadow page modification, flushing tlb only on current VCPU
is weird due to other VCPU's tlb might still be stale.
In other words, if there is any mandatory tlb-flushing after shadow page
modification, SET_SPTE_NEED_REMOTE_TLB_FLUSH or remote_flush should be
set and the tlbs of all VCPUs should be flushed. There is not point to
only flush current tlb except when the request is from vCPU's or pCPU's
activities.
If there was any bug that mandatory tlb-flushing is required and
SET_SPTE_NEED_REMOTE_TLB_FLUSH/remote_flush is failed to set, this patch
would expose the bug in a more destructive way. The related code paths
are checked and no missing SET_SPTE_NEED_REMOTE_TLB_FLUSH is found yet.
Currently, there is no optional tlb-flushing after sync page related code
is changed to flush tlb timely. So we can just remove these local flushing
code.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210918005636.3675-5-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Make a final call to direct_pte_prefetch_many() if there are "trailing"
SPTEs to prefetch, i.e. SPTEs for GFNs following the faulting GFN. The
call to direct_pte_prefetch_many() in the loop only handles the case
where there are !PRESENT SPTEs preceding a PRESENT SPTE.
E.g. if the faulting GFN is a multiple of 8 (the prefetch size) and all
SPTEs for the following GFNs are !PRESENT, the loop will terminate with
"start = sptep+1" and not prefetch any SPTEs.
Prefetching trailing SPTEs as intended can drastically reduce the number
of guest page faults, e.g. accessing the first byte of every 4kb page in
a 6gb chunk of virtual memory, in a VM with 8gb of preallocated memory,
the number of pf_fixed events observed in L0 drops from ~1.75M to <0.27M.
Note, this only affects memory that is backed by 4kb pages as KVM doesn't
prefetch when installing hugepages. Shadow paging prefetching is not
affected as it does not batch the prefetches due to the need to process
the corresponding guest PTE. The TDP MMU is not affected because it
doesn't have prefetching, yet...
Fixes: 957ed9effd80 ("KVM: MMU: prefetch ptes when intercepted guest #PF")
Cc: Sergey Senozhatsky <senozhatsky@google.com>
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210818235615.2047588-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The kvm_vm_free() statement here is currently dead code, since the loop
in front of it can only be left with the "goto done" that jumps right
after the kvm_vm_free(). Fix it by swapping the locations of the "done"
label and the kvm_vm_free().
Signed-off-by: Thomas Huth <thuth@redhat.com>
Message-Id: <20210826074928.240942-1-thuth@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
There is a spelling mistake in an error message. Fix it.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Message-Id: <20210826120752.12633-1-colin.king@canonical.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Manually look for a CPUID.0x1 entry instead of bouncing through
kvm_cpuid() when retrieving the Family-Model-Stepping information for
vCPU RESET/INIT. This fixes a potential undefined behavior bug due to
kvm_cpuid() using the uninitialized "dummy" param as the ECX _input_,
a.k.a. the index.
A more minimal fix would be to simply zero "dummy", but the extra work in
kvm_cpuid() is wasteful, and KVM should be treating the FMS retrieval as
an out-of-band access, e.g. same as how KVM computes guest.MAXPHYADDR.
Both Intel's SDM and AMD's APM describe the RDX value at RESET/INIT as
holding the CPU's FMS information, not as holding CPUID.0x1.EAX. KVM's
usage of CPUID entries to get FMS is simply a pragmatic approach to avoid
having yet another way for userspace to provide inconsistent data.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20210929222426.1855730-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
WARN if CR0, CR3, or CR4 are non-zero at RESET, which given the current
KVM implementation, really means WARN if they're not zeroed at vCPU
creation. VMX in particular has several ->set_*() flows that read other
registers to handle side effects, and because those flows are common to
RESET and INIT, KVM subtly relies on emulated/virtualized registers to be
zeroed at vCPU creation in order to do the right thing at RESET.
Use CRs as a sentinel because they are most likely to be written as side
effects, and because KVM specifically needs CR0.PG and CR0.PE to be '0'
to correctly reflect the state of the vCPU's MMU. CRs are also loaded
and stored from/to the VMCS, and so adds some level of coverage to verify
that KVM doesn't conflate zero-allocating the VMCS with properly
initializing the VMCS with VMWRITEs.
Note, '0' is somewhat arbitrary, vCPU creation can technically stuff any
value for a register so long as it's coherent with respect to the current
vCPU state. In practice, '0' works for all registers and is convenient.
Suggested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210921000303.400537-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move RESET emulation for SVM vCPUs to svm_vcpu_reset(), and drop an extra
init_vmcb() from svm_create_vcpu() in the process. Hopefully KVM will
someday expose a dedicated RESET ioctl(), and in the meantime separating
"create" from "RESET" is a nice cleanup.
Keep the call to svm_switch_vmcb() so that misuse of svm->vmcb at worst
breaks the guest, e.g. premature accesses doesn't cause a NULL pointer
dereference.
Cc: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210921000303.400537-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move vCPU RESET emulation, including initializating of select VMCS state,
to vmx_vcpu_reset(). Drop the open coded "vCPU load" sequence, as
->vcpu_reset() is invoked while the vCPU is properly loaded (which is
kind of the point of ->vcpu_reset()...). Hopefully KVM will someday
expose a dedicated RESET ioctl(), and in the meantime separating "create"
from "RESET" is a nice cleanup.
Deferring VMCS initialization is effectively a nop as it's impossible to
safely access the VMCS between the current call site and its new home, as
both the vCPU and the pCPU are put immediately after init_vmcs(), i.e.
the VMCS isn't guaranteed to be loaded.
Note, task preemption is not a problem as vmx_sched_in() _can't_ touch
the VMCS as ->sched_in() is invoked before the vCPU, and thus VMCS, is
reloaded. I.e. the preemption path also can't consume VMCS state.
Cc: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210921000303.400537-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Don't zero out user return and nested MSRs during vCPU creation, and
instead rely on vcpu_vmx being zero-allocated. Explicitly zeroing MSRs
is not wrong, and is in fact necessary if KVM ever emulates vCPU RESET
outside of vCPU creation, but zeroing only a subset of MSRs is confusing.
Poking directly into KVM's backing is also undesirable in that it doesn't
scale and is error prone. Ideally KVM would have a common RESET path for
all MSRs, e.g. by expanding kvm_set_msr(), which would obviate the need
for this out-of-bad code (to support standalone RESET).
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210921000303.400537-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move the few bits of relevant fx_init() code into kvm_arch_vcpu_create(),
dropping the superfluous check on vcpu->arch.guest_fpu that was blindly
and wrongly added by commit ed02b213098a ("KVM: SVM: Guest FPU state
save/restore not needed for SEV-ES guest").
Note, KVM currently allocates and then frees FPU state for SEV-ES guests,
rather than avoid the allocation in the first place. While that approach
is inarguably inefficient and unnecessary, it's a cleanup for the future.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210921000303.400537-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Drop code to initialize XCR0 during fx_init(), a.k.a. vCPU creation, as
XCR0 has been initialized during kvm_vcpu_reset() (for RESET) since
commit a554d207dc46 ("KVM: X86: Processor States following Reset or INIT").
Back when XCR0 support was added by commit 2acf923e38fb ("KVM: VMX:
Enable XSAVE/XRSTOR for guest"), KVM didn't differentiate between RESET
and INIT. Ignoring the fact that calling fx_init() for INIT is obviously
wrong, e.g. FPU state after INIT is not the same as after RESET, setting
XCR0 in fx_init() was correct.
Eventually fx_init() got moved to kvm_arch_vcpu_init(), a.k.a. vCPU
creation (ignore the terrible name) by commit 0ee6a5172573 ("x86/fpu,
kvm: Simplify fx_init()"). Finally, commit 95a0d01eef7a ("KVM: x86: Move
all vcpu init code into kvm_arch_vcpu_create()") killed off
kvm_arch_vcpu_init(), leaving behind the oddity of redundant setting of
guest state during vCPU creation.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210921000303.400537-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Drop code to set CR0.ET for the guest during initialization of the guest
FPU. The code was added as a misguided bug fix by commit 380102c8e431
("KVM Set the ET flag in CR0 after initializing FX") to resolve an issue
where vcpu->cr0 (now vcpu->arch.cr0) was not correctly initialized on SVM
systems. While init_vmcb() did set CR0.ET, it only did so in the VMCB,
and subtly did not update vcpu->cr0. Stuffing CR0.ET worked around the
immediate problem, but did not fix the real bug of vcpu->cr0 and the VMCB
being out of sync. That underlying bug was eventually remedied by commit
18fa000ae453 ("KVM: SVM: Reset cr0 properly on vcpu reset").
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210921000303.400537-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Do not blindly mark all registers as available+dirty at RESET/INIT, and
instead rely on writes to registers to go through the proper mutators or
to explicitly mark registers as dirty. INIT in particular does not blindly
overwrite all registers, e.g. select bits in CR0 are preserved across INIT,
thus marking registers available+dirty without first reading the register
from hardware is incorrect.
In practice this is a benign bug as KVM doesn't let the guest control CR0
bits that are preserved across INIT, and all other true registers are
explicitly written during the RESET/INIT flows. The PDPTRs and EX_INFO
"registers" are not explicitly written, but accessing those values during
RESET/INIT is nonsensical and would be a KVM bug regardless of register
caching.
Fixes: 66f7b72e1171 ("KVM: x86: Make register state after reset conform to specification")
[sean: !!! NOT FOR STABLE !!!]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210921000303.400537-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Replace impressively complex "logic" for computing the page offset from
CR3 when loading PDPTRs. Unlike other paging modes, the address held in
CR3 for PAE paging is 32-byte aligned, i.e. occupies bits 31:5, thus bits
11:5 need to be used as the offset from the gfn when reading PDPTRs.
The existing calculation originated in commit 1342d3536d6a ("[PATCH] KVM:
MMU: Load the pae pdptrs on cr3 change like the processor does"), which
read the PDPTRs from guest memory as individual 8-byte loads. At the
time, the so called "offset" was the base index of PDPTR0 as a _u64_, not
a byte offset. Naming aside, the computation was useful and arguably
simplified the overall flow.
Unfortunately, when commit 195aefde9cc2 ("KVM: Add general accessors to
read and write guest memory") added accessors with offsets at byte
granularity, the cleverness of the original code was lost and KVM was
left with convoluted code for a simple operation.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210831164224.1119728-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Open code the call to mmu->translate_gpa() when loading nested PDPTRs and
kill off the existing helper, kvm_read_guest_page_mmu(), to discourage
incorrect use. Reading guest memory straight from an L2 GPA is extremely
rare (as evidenced by the lack of users), as very few constructs in x86
specify physical addresses, even fewer are virtualized by KVM, and even
fewer yet require emulation of L2 by L0 KVM.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210831164224.1119728-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
KVM_MAX_VCPU_ID is not specifying the highest allowed vcpu-id, but the
number of allowed vcpu-ids. This has already led to confusion, so
rename KVM_MAX_VCPU_ID to KVM_MAX_VCPU_IDS to make its semantics more
clear
Suggested-by: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210913135745.13944-3-jgross@suse.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
This reverts commit 76b4f357d0e7d8f6f0013c733e6cba1773c266d3.
The commit has the wrong reasoning, as KVM_MAX_VCPU_ID is not defining the
maximum allowed vcpu-id as its name suggests, but the number of vcpu-ids.
So revert this patch again.
Suggested-by: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210913135745.13944-2-jgross@suse.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
kvm_make_vcpus_request_mask() already disables preemption so just like
kvm_make_all_cpus_request_except() it can be switched to using
pre-allocated per-cpu cpumasks. This allows for improvements for both
users of the function: in Hyper-V emulation code 'tlb_flush' can now be
dropped from 'struct kvm_vcpu_hv' and kvm_make_scan_ioapic_request_mask()
gets rid of dynamic allocation.
cpumask_available() checks in kvm_make_vcpu_request() and
kvm_kick_many_cpus() can now be dropped as they checks for an impossible
condition: kvm_init() makes sure per-cpu masks are allocated.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210903075141.403071-9-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Allocating cpumask dynamically in zalloc_cpumask_var() is not ideal.
Allocation is somewhat slow and can (in theory and when CPUMASK_OFFSTACK)
fail. kvm_make_all_cpus_request_except() already disables preemption so
we can use pre-allocated per-cpu cpumasks instead.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210903075141.403071-8-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Both remaining callers of kvm_make_vcpus_request_mask() pass 'NULL' for
'except' parameter so it can just be dropped.
No functional change intended ©.
Suggested-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210903075141.403071-6-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Iterating over set bits in 'vcpu_bitmap' should be faster than going
through all vCPUs, especially when just a few bits are set.
Drop kvm_make_vcpus_request_mask() call from kvm_make_all_cpus_request_except()
to avoid handling the special case when 'vcpu_bitmap' is NULL, move the
code to kvm_make_all_cpus_request_except() itself.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210903075141.403071-5-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
vcpu_mask==NULL
In preparation to making kvm_make_vcpus_request_mask() use for_each_set_bit()
switch kvm_hv_flush_tlb() to calling kvm_make_all_cpus_request() for 'all cpus'
case.
Note: kvm_make_all_cpus_request() (unlike kvm_make_vcpus_request_mask())
currently dynamically allocates cpumask on each call and this is suboptimal.
Both kvm_make_all_cpus_request() and kvm_make_vcpus_request_mask() are
going to be switched to using pre-allocated per-cpu masks.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210903075141.403071-4-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Use vma_pages function on vma object instead of explicit computation.
Fix the following coccicheck warning:
./virt/kvm/kvm_main.c:3526:29-35: WARNING: Consider using vma_pages
helper on vma
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Signed-off-by: Yang Li <yang.lee@linux.alibaba.com>
Message-Id: <1632900526-119643-1-git-send-email-yang.lee@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Currently, 'vmx->nested.vmxon_ptr' is not reset upon VMXOFF
emulation. This is not a problem per se as we never access
it when !vmx->nested.vmxon. But this should be done to avoid
any issue in the future.
Also, initialize the vmxon_ptr when vcpu is created.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Message-Id: <20210929175154.11396-3-yu.c.zhang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Clean up nested.c and vmx.c by using INVALID_GPA instead of "-1ull",
to denote an invalid address in nested VMX. Affected addresses are
the ones of VMXON region, current VMCS, VMCS link pointer, virtual-
APIC page, ENCLS-exiting bitmap, and IO bitmap etc.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Message-Id: <20210929175154.11396-2-yu.c.zhang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Rework the CPU selection in the migration worker to ensure the specified
number of migrations are performed when the test iteslf is affined to a
subset of CPUs. The existing logic skips iterations if the target CPU is
not in the original set of possible CPUs, which causes the test to fail
if too many iterations are skipped.
==== Test Assertion Failure ====
rseq_test.c:228: i > (NR_TASK_MIGRATIONS / 2)
pid=10127 tid=10127 errno=4 - Interrupted system call
1 0x00000000004018e5: main at rseq_test.c:227
2 0x00007fcc8fc66bf6: ?? ??:0
3 0x0000000000401959: _start at ??:?
Only performed 4 KVM_RUNs, task stalled too much?
Calculate the min/max possible CPUs as a cheap "best effort" to avoid
high runtimes when the test is affined to a small percentage of CPUs.
Alternatively, a list or xarray of the possible CPUs could be used, but
even in a horrendously inefficient setup, such optimizations are not
needed because the runtime is completely dominated by the cost of
migrating the task, and the absolute runtime is well under a minute in
even truly absurd setups, e.g. running on a subset of vCPUs in a VM that
is heavily overcommited (16 vCPUs per pCPU).
Fixes: 61e52f1630f5 ("KVM: selftests: Add a test for KVM_RUN+rseq to detect task migration bugs")
Reported-by: Dongli Zhang <dongli.zhang@oracle.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210929234112.1862848-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Check whether a CPUID entry's index is significant before checking for a
matching index to hack-a-fix an undefined behavior bug due to consuming
uninitialized data. RESET/INIT emulation uses kvm_cpuid() to retrieve
CPUID.0x1, which does _not_ have a significant index, and fails to
initialize the dummy variable that doubles as EBX/ECX/EDX output _and_
ECX, a.k.a. index, input.
Practically speaking, it's _extremely_ unlikely any compiler will yield
code that causes problems, as the compiler would need to inline the
kvm_cpuid() call to detect the uninitialized data, and intentionally hose
the kernel, e.g. insert ud2, instead of simply ignoring the result of
the index comparison.
Although the sketchy "dummy" pattern was introduced in SVM by commit
66f7b72e1171 ("KVM: x86: Make register state after reset conform to
specification"), it wasn't actually broken until commit 7ff6c0350315
("KVM: x86: Remove stateful CPUID handling") arbitrarily swapped the
order of operations such that "index" was checked before the significant
flag.
Avoid consuming uninitialized data by reverting to checking the flag
before the index purely so that the fix can be easily backported; the
offending RESET/INIT code has been refactored, moved, and consolidated
from vendor code to common x86 since the bug was introduced. A future
patch will directly address the bad RESET/INIT behavior.
The undefined behavior was detected by syzbot + KernelMemorySanitizer.
BUG: KMSAN: uninit-value in cpuid_entry2_find arch/x86/kvm/cpuid.c:68
BUG: KMSAN: uninit-value in kvm_find_cpuid_entry arch/x86/kvm/cpuid.c:1103
BUG: KMSAN: uninit-value in kvm_cpuid+0x456/0x28f0 arch/x86/kvm/cpuid.c:1183
cpuid_entry2_find arch/x86/kvm/cpuid.c:68 [inline]
kvm_find_cpuid_entry arch/x86/kvm/cpuid.c:1103 [inline]
kvm_cpuid+0x456/0x28f0 arch/x86/kvm/cpuid.c:1183
kvm_vcpu_reset+0x13fb/0x1c20 arch/x86/kvm/x86.c:10885
kvm_apic_accept_events+0x58f/0x8c0 arch/x86/kvm/lapic.c:2923
vcpu_enter_guest+0xfd2/0x6d80 arch/x86/kvm/x86.c:9534
vcpu_run+0x7f5/0x18d0 arch/x86/kvm/x86.c:9788
kvm_arch_vcpu_ioctl_run+0x245b/0x2d10 arch/x86/kvm/x86.c:10020
Local variable ----dummy@kvm_vcpu_reset created at:
kvm_vcpu_reset+0x1fb/0x1c20 arch/x86/kvm/x86.c:10812
kvm_apic_accept_events+0x58f/0x8c0 arch/x86/kvm/lapic.c:2923
Reported-by: syzbot+f3985126b746b3d59c9d@syzkaller.appspotmail.com
Reported-by: Alexander Potapenko <glider@google.com>
Fixes: 2a24be79b6b7 ("KVM: VMX: Set EDX at INIT with CPUID.0x1, Family-Model-Stepping")
Fixes: 7ff6c0350315 ("KVM: x86: Remove stateful CPUID handling")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20210929222426.1855730-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
hv_clock is preallocated to have only HVC_BOOT_ARRAY_SIZE (64) elements;
if the PTP_SYS_OFFSET_PRECISE ioctl is executed on vCPUs whose index is
64 of higher, retrieving the struct pvclock_vcpu_time_info pointer with
"src = &hv_clock[cpu].pvti" will result in an out-of-bounds access and
a wild pointer. Change it to "this_cpu_pvti()" which is guaranteed to
be valid.
Fixes: 95a3d4454bb1 ("Switch kvmclock data to a PER_CPU variable")
Signed-off-by: Zelin Deng <zelin.deng@linux.alibaba.com>
Cc: <stable@vger.kernel.org>
Message-Id: <1632892429-101194-3-git-send-email-zelin.deng@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
There're other modules might use hv_clock_per_cpu variable like ptp_kvm,
so move it into kvmclock.h and export the symbol to make it visiable to
other modules.
Signed-off-by: Zelin Deng <zelin.deng@linux.alibaba.com>
Cc: <stable@vger.kernel.org>
Message-Id: <1632892429-101194-2-git-send-email-zelin.deng@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
commit fad7cd3310db ("nbd: add the check to prevent overflow in
__nbd_ioctl()") raised an issue from the fallback helpers added in
commit f0907827a8a9 ("compiler.h: enable builtin overflow checkers and
add fallback code")
ERROR: modpost: "__divdi3" [drivers/block/nbd.ko] undefined!
As Stephen Rothwell notes:
The added check_mul_overflow() call is being passed 64 bit values.
COMPILER_HAS_GENERIC_BUILTIN_OVERFLOW is not set for this build (see
include/linux/overflow.h).
Specifically, the helpers for checking whether the results of a
multiplication overflowed (__unsigned_mul_overflow,
__signed_add_overflow) use the division operator when
!COMPILER_HAS_GENERIC_BUILTIN_OVERFLOW. This is problematic for 64b
operands on 32b hosts.
This was fixed upstream by
commit 76ae847497bc ("Documentation: raise minimum supported version of
GCC to 5.1")
which is not suitable to be backported to stable.
Further, __builtin_mul_overflow() would emit a libcall to a
compiler-rt-only symbol when compiling with clang < 14 for 32b targets.
ld.lld: error: undefined symbol: __mulodi4
In order to keep stable buildable with GCC 4.9 and clang < 14, modify
struct nbd_config to instead track the number of bits of the block size;
reconstructing the block size using runtime checked shifts that are not
problematic for those compilers and in a ways that can be backported to
stable.
In nbd_set_size, we do validate that the value of blksize must be a
power of two (POT) and is in the range of [512, PAGE_SIZE] (both
inclusive).
This does modify the debugfs interface.
Cc: stable@vger.kernel.org
Cc: Arnd Bergmann <arnd@kernel.org>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Link: https://github.com/ClangBuiltLinux/linux/issues/1438
Link: https://lore.kernel.org/all/20210909182525.372ee687@canb.auug.org.au/
Link: https://lore.kernel.org/stable/CAHk-=whiQBofgis_rkniz8GBP9wZtSZdcDEffgSLO62BUGV3gg@mail.gmail.com/
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Reported-by: Nathan Chancellor <nathan@kernel.org>
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Suggested-by: Kees Cook <keescook@chromium.org>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Suggested-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Link: https://lore.kernel.org/r/20210920232533.4092046-1-ndesaulniers@google.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Remove insecure NTLMv1 authentication.
Cc: Ronnie Sahlberg <ronniesahlberg@gmail.com>
Cc: Ralph Böhme <slow@samba.org>
Reviewed-by: Tom Talpey <tom@talpey.com>
Acked-by: Steve French <smfrench@gmail.com>
Signed-off-by: Namjae Jeon <linkinjeon@kernel.org>
Signed-off-by: Steve French <stfrench@microsoft.com>
|
|
Update Altera Pio Driver maintainer's email from <joyce.ooi@intel.com> to <mun.yew.tham@intel.com>
Signed-off-by: Mun Yew Tham <mun.yew.tham@intel.com>
Acked-by: Joyce Ooi <joyce.ooi@intel.com>
Signed-off-by: Bartosz Golaszewski <brgl@bgdev.pl>
|
|
My professional situation changes soon. Update my email address.
Signed-off-by: Bartosz Golaszewski <brgl@bgdev.pl>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Acked-by: Andy Shevchenko <andy.shevchenko@gmail.com>
|
|
Per gpio_chip interface, error shall be proparated to the caller.
Attempt to silent diagnostics by returning zero (as written in the
comment) is plain wrong, because the zero return can be interpreted by
the caller as the gpio value.
Cc: stable@vger.kernel.org
Signed-off-by: Andrey Gusakov <andrey.gusakov@cogentembedded.com>
Signed-off-by: Nikita Yushchenko <nikita.yoush@cogentembedded.com>
Signed-off-by: Bartosz Golaszewski <brgl@bgdev.pl>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound
Pull sound fixes from Takashi Iwai:
"This became a slightly large collection of changes, partly because
I've been off in the last weeks. Most of changes are small and
scattered while a bit big change is found in HD-audio Realtek codec
driver; it's a very device-specific fix that has been long wanted, so
I decided to pick up although it's in the middle RC.
Some highlights:
- A new guard ioctl for ALSA rawmidi API to avoid the misuse of the
new timestamp framing mode; it's for a regression fix
- HD-audio: a revert of the 5.15 change that might work badly, new
quirks for Lenovo Legion & co, a follow-up fix for CS8409
- ASoC: lots of SOF-related fixes, fsl component fixes, corrections
of mediatek drivers
- USB-audio: fix for the PM resume
- FireWire: oxfw and motu fixes"
* tag 'sound-5.15-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound: (25 commits)
ALSA: pcsp: Make hrtimer forwarding more robust
ALSA: rawmidi: introduce SNDRV_RAWMIDI_IOCTL_USER_PVERSION
ALSA: firewire-motu: fix truncated bytes in message tracepoints
ASoC: SOF: trace: Omit error print when waking up trace sleepers
ASoC: mediatek: mt8195: remove wrong fixup assignment on HDMITX
ASoC: SOF: loader: Re-phrase the missing firmware error to avoid duplication
ASoC: SOF: loader: release_firmware() on load failure to avoid batching
ALSA: hda/cs8409: Setup Dolphin Headset Mic as Phantom Jack
ALSA: pcxhr: "fix" PCXHR_REG_TO_PORT definition
ASoC: SOF: imx: imx8m: Bar index is only valid for IRAM and SRAM types
ASoC: SOF: imx: imx8: Bar index is only valid for IRAM and SRAM types
ASoC: SOF: Fix DSP oops stack dump output contents
ALSA: hda/realtek: Quirks to enable speaker output for Lenovo Legion 7i 15IMHG05, Yoga 7i 14ITL5/15ITL5, and 13s Gen2 laptops.
ALSA: usb-audio: Unify mixer resume and reset_resume procedure
Revert "ALSA: hda: Drop workaround for a hang at shutdown again"
ALSA: oxfw: fix transmission method for Loud models based on OXFW971
ASoC: mediatek: common: handle NULL case in suspend/resume function
ASoC: fsl_xcvr: register platform component before registering cpu dai
ASoC: fsl_spdif: register platform component before registering cpu dai
ASoC: fsl_micfil: register platform component before registering cpu dai
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Pull crypto fixes from Herbert Xu:
"This contains fixes for a resource leak in ccp as well as stack
corruption in x86/sm4"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6:
crypto: x86/sm4 - Fix frame pointer stack corruption
crypto: ccp - fix resource leaks in ccp_run_aes_gcm_cmd()
|