Age | Commit message (Collapse) | Author |
|
A new hybrid poll is implemented on the io_uring layer. Once an IO is
issued, it will not poll immediately, but rather block first and re-run
before IO complete, then poll to reap IO. While this poll method could
be a suboptimal solution when running on a single thread, it offers
performance lower than regular polling but higher than IRQ, and CPU
utilization is also lower than polling.
To use hybrid polling, the ring must be setup with both the
IORING_SETUP_IOPOLL and IORING_SETUP_HYBRID)IOPOLL flags set. Hybrid
polling has the same restrictions as IOPOLL, in that commands must
explicitly support it.
Signed-off-by: hexue <xue01.he@samsung.com>
Link: https://lore.kernel.org/r/20241101091957.564220-2-xue01.he@samsung.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Currently cloning a buffer table will fail if the destination already has
a table. But it should be possible to use it to replace existing elements.
Add a IORING_REGISTER_DST_REPLACE cloning flag, which if set, will allow
the destination to already having a buffer table. If that is the case,
then entries designated by offset + nr buffers will be replaced if they
already exist.
Note that it's allowed to use IORING_REGISTER_DST_REPLACE and not have
an existing table, in which case it'll work just like not having the
flag set and an empty table - it'll just assign the newly created table
for that case.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Right now buffer cloning is an all-or-nothing kind of thing - either the
whole table is cloned from a source to a destination ring, or nothing at
all.
However, it's not always desired to clone the whole thing. Allow for
the application to specify a source and destination offset, and a
number of buffers to clone. If the destination offset is non-zero, then
allocate sparse nodes upfront.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
The empty node was used as a placeholder for a sparse entry, but it
didn't really solve any issues. The caller still has to check for
whether it's the empty node or not, it may as well just check for a NULL
return instead.
The dummy_ubuf was used for a sparse buffer entry, but NULL will serve
the same purpose there of ensuring an -EFAULT on attempted import.
Just use NULL for a sparse node, regardless of whether or not it's a
file or buffer resource.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Puts and reset an existing node in a slot, if one exists. Returns true
if a node was there, false if not. This helps cleanup some of the code
that does a lookup just to clear an existing node.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
It's only used internally, and in one spot, just open-code ti.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
It's only used in fdinfo, nothing really gained from having this helper.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
There are lots of spots open-coding this functionality, add a generic
helper that does the node lookup in a speculation safe way.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
For files, there's nr_user_files/file_table/file_data, and buffers have
nr_user_bufs/user_bufs/buf_data. There's no reason why file_table and
file_data can't be the same thing, and ditto for the buffer side. That
gets rid of more io_ring_ctx state that's in two spots rather than just
being in one spot, as it should be. Put all the registered file data in
one locations, and ditto on the buffer front.
This also avoids having both io_rsrc_data->nodes being an allocated
array, and ->user_bufs[] or ->file_table.nodes. There's no reason to
have this information duplicated. Keep it in one spot, io_rsrc_data,
along with how many resources are available.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Add the empty node initializing to the preinit part of the io_kiocb
allocation, and reset them if they have been used.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Rather than allocate an io_rsrc_node for an empty/sparse buffer entry,
add a const entry that can be used for that. This just needs checking
for writing the tag, and the put check needs to check for that sparse
node rather than NULL for validity.
This avoids allocating rsrc nodes for sparse buffer entries.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
It's not going to be needed in the fast path going forward, so kill it
off.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Work in progress, but get rid of the per-ring serialization of resource
nodes, like registered buffers and files. Main issue here is that one
node can otherwise hold up a bunch of other nodes from getting freed,
which is especially a problem for file resource nodes and networked
workloads where some descriptors may not see activity in a long time.
As an example, instantiate an io_uring ring fd and create a sparse
registered file table. Even 2 will do. Then create a socket and register
it as fixed file 0, F0. The number of open files in the app is now 5,
with 0/1/2 being the usual stdin/out/err, 3 being the ring fd, and 4
being the socket. Register this socket (eg "the listener") in slot 0 of
the registered file table. Now add an operation on the socket that uses
slot 0. Finally, loop N times, where each loop creates a new socket,
registers said socket as a file, then unregisters the socket, and
finally closes the socket. This is roughly similar to what a basic
accept loop would look like.
At the end of this loop, it's not unreasonable to expect that there
would still be 5 open files. Each socket created and registered in the
loop is also unregistered and closed. But since the listener socket
registered first still has references to its resource node due to still
being active, each subsequent socket unregistration is stuck behind it
for reclaim. Hence 5 + N files are still open at that point, where N is
awaiting the final put held up by the listener socket.
Rewrite the io_rsrc_node handling to NOT rely on serialization. Struct
io_kiocb now gets explicit resource nodes assigned, with each holding a
reference to the parent node. A parent node is either of type FILE or
BUFFER, which are the two types of nodes that exist. A request can have
two nodes assigned, if it's using both registered files and buffers.
Since request issue and task_work completion is both under the ring
private lock, no atomics are needed to handle these references. It's a
simple unlocked inc/dec. As before, the registered buffer or file table
each hold a reference as well to the registered nodes. Final put of the
node will remove the node and free the underlying resource, eg unmap the
buffer or put the file.
Outside of removing the stall in resource reclaim described above, it
has the following advantages:
1) It's a lot simpler than the previous scheme, and easier to follow.
No need to specific quiesce handling anymore.
2) There are no resource node allocations in the fast path, all of that
happens at resource registration time.
3) The structs related to resource handling can all get simplified
quite a bit, like io_rsrc_node and io_rsrc_data. io_rsrc_put can
go away completely.
4) Handling of resource tags is much simpler, and doesn't require
persistent storage as it can simply get assigned up front at
registration time. Just copy them in one-by-one at registration time
and assign to the resource node.
The only real downside is that a request is now explicitly limited to
pinning 2 resources, one file and one buffer, where before just
assigning a resource node to a request would pin all of them. The upside
is that it's easier to follow now, as an individual resource is
explicitly referenced and assigned to the request.
With this in place, the above mentioned example will be using exactly 5
files at the end of the loop, not N.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
0-day reported:
arch/x86/entry/vdso/vma.c:199:3: warning: label followed by a declaration
is a C23 extension [-Wc23-extensions]
Add the missing brackets.
Fixes: e93d2521b27f ("x86/vdso: Split virtual clock pages into dedicated mapping")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Closes: https://lore.kernel.org/oe-kbuild-all/202411022359.fBPFTg2T-lkp@intel.com/
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/cel/linux
Pull nfsd fixes from Chuck Lever:
- Fix two async COPY bugs found during NFS bake-a-thon
- Fix an svcrdma memory leak
* tag 'nfsd-6.12-3' of git://git.kernel.org/pub/scm/linux/kernel/git/cel/linux:
rpcrdma: Always release the rpcrdma_device's xa_array
NFSD: Never decrement pending_async_copies on error
NFSD: Initialize struct nfsd4_copy earlier
|
|
Pull xfs fixes from Carlos Maiolino:
- fix a sysbot reported crash on filestreams
- Reduce cpu time spent searching for extents in a very fragmented FS
- Check for delayed allocations before setting extsize
* tag 'xfs-6.12-fixes-6' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
xfs: streamline xfs_filestream_pick_ag
xfs: fix finding a last resort AG in xfs_filestream_pick_ag
xfs: Reduce unnecessary searches when searching for the best extents
xfs: Check for delayed allocations before setting extsize
|
|
The struct arch_vdso_data is only about vdso time data. So rename it to
arch_vdso_time_data to make it obvious.
Non time-related data will be migrated out of these structs soon.
Signed-off-by: Nam Cao <namcao@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Heiko Carstens <hca@linux.ibm.com> # s390
Link: https://lore.kernel.org/all/20241010-vdso-generic-base-v1-28-b64f0842d512@linutronix.de
|
|
The systemcfg data has nothing to do anymore with the vdso.
Split it into a dedicated header file.
Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241010-vdso-generic-base-v1-27-b64f0842d512@linutronix.de
|
|
The systemcfg data only has minimal overlap with the vdso data.
Splitting the two avoids mapping the implementation-defined vdso data
into /proc/ppc64/systemcfg.
It is also a preparation for the standardization of vdso data storage.
The only field actually used by both systemcfg and vdso is
tb_ticks_per_sec and it is only changed once during time_init().
Initialize it in both structures there.
Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241010-vdso-generic-base-v1-26-b64f0842d512@linutronix.de
|
|
The systemcfg page through procfs is only a backwards-compatible
interface for very old applications.
Make it possible to be disabled.
This also creates a convenient config #define to guard any accesses to
the systemcfg page.
Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241010-vdso-generic-base-v1-25-b64f0842d512@linutronix.de
|
|
The systemcfg processorCount variable tracks currently online variables,
not possible ones, so the stored value is wrong.
The code preferably tries to use the ibm,lrdr-capacity field 4 which
"represents the maximum number of processors that the guest can have."
Switch from processorCount to the better matching num_possible_cpus().
Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241010-vdso-generic-base-v1-24-b64f0842d512@linutronix.de
|
|
When printing the information "system_active_processors", the variable
partition_potential_processors is used instead of
partition_active_processors. The wrong value is displayed.
Use partition_active_processors instead.
Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241010-vdso-generic-base-v1-23-b64f0842d512@linutronix.de
|
|
If the operation fails and userspace is unaware it will access unmapped
memory, crashing the process.
Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241010-vdso-generic-base-v1-22-b64f0842d512@linutronix.de
|
|
This offset was copy-pasted from the systemcfg structure.
It has no meaning for the 32bit VDSO.
Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241010-vdso-generic-base-v1-21-b64f0842d512@linutronix.de
|
|
The generic vdso data storage cannot handle the special pvclock and
hvclock pages. Split them into their own mapping, so the other vdso
storage can be migrated to the generic code.
Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241010-vdso-generic-base-v1-20-b64f0842d512@linutronix.de
|
|
All users have been removed.
Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241010-vdso-generic-base-v1-19-b64f0842d512@linutronix.de
|
|
The vdso_data is at the start of the vvar page.
Make use of this invariant to remove the usage of vvar.h.
This also matches the logic for the timens data.
Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241010-vdso-generic-base-v1-18-b64f0842d512@linutronix.de
|
|
vvar.h will go away, so move the last useful bit into vsyscall.h.
Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241010-vdso-generic-base-v1-17-b64f0842d512@linutronix.de
|
|
The vdso_rng_data is at a well-known offset in the vvar page.
Make use of this invariant to remove the usage of vvar.h.
Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241010-vdso-generic-base-v1-16-b64f0842d512@linutronix.de
|
|
The vdso_data is at the start of the timens page.
Make use of this invariant to remove the usage of vvar.h.
This also matches the logic for the pvclock and hvclock pages.
Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241010-vdso-generic-base-v1-15-b64f0842d512@linutronix.de
|
|
Allocate the vvar page through the standard union vdso_data_store
and remove the custom linker script logic.
Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241010-vdso-generic-base-v1-14-b64f0842d512@linutronix.de
|
|
Remove the usage of the vvar _vdso_rng_data from the kernel-space code,
as the x86 vvar machinery is about to be removed.
The definition of the structure is unnecessary, as the data lives in a
page pre-allocated by the linker anyways.
The vdso user-space access to the rng data will be switched soon.
DEFINE_VVAR_SINGLE() is now unused. It will be removed later togehter
with the rest of vvar.h.
Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241010-vdso-generic-base-v1-13-b64f0842d512@linutronix.de
|
|
The offset of the vdso_data only has historic reasons, as back then
other vvars also existed and offset 0 was already used.
(See commit 8c49d9a74bac ("x86-64: Clean up vdso/kernel shared variables"))
Over time most other vvars got removed and offset 0 is free again.
Moving vdso_data to the beginning of the vvar page aligns x86 with other
architectures and opens up the way for the removal of the custom x86
vvar machinery.
Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241010-vdso-generic-base-v1-12-b64f0842d512@linutronix.de
|
|
The implementation details of the vdso_data access will change.
Prepare for that by using the existing helper function.
Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241010-vdso-generic-base-v1-11-b64f0842d512@linutronix.de
|
|
This function does not contain any logic, delete it so the equivalent
weak definition from kernel/signal.c is used instead.
Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241010-vdso-generic-base-v1-10-b64f0842d512@linutronix.de
|
|
The generic vdso/datapage.h declares a symbol named "vdso_data".
Avoid a conflict by renaming the identically named variable in genvdso.c.
Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241010-vdso-generic-base-v1-9-b64f0842d512@linutronix.de
|
|
vdso/datapage.h provides symbols and functions to ease the access to
shared vDSO data from both the kernel and the vDSO.
Make use of it to simplify the current code and also prepare for further
changes unifying the vDSO data storage between architectures.
Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241010-vdso-generic-base-v1-8-b64f0842d512@linutronix.de
|
|
vdso/datapage.h provides a hidden declaration for _vdso_data.
When using it the compiler will automatically generate PC-relative
accesses which avoids the need for a custom assembly-based accessor.
Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241010-vdso-generic-base-v1-7-b64f0842d512@linutronix.de
|
|
The vvar mapping is the same for all processes. Use a single mapping to
simplify the logic and align it with the other architectures.
In addition this will enable the move of the vvar handling into generic code.
Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241010-vdso-generic-base-v1-6-b64f0842d512@linutronix.de
|
|
The vvar mapping is the same for all processes. Use a single mapping to
simplify the logic and align it with the other architectures.
In addition this will enable the move of the vvar handling into generic code.
Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Will Deacon <will@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/all/20241010-vdso-generic-base-v1-5-b64f0842d512@linutronix.de
|
|
This constant is always "0", providing no value and making the logic
harder to understand.
Also prepare for a consolidation of the vdso linkerscript logic by
aligning it with other architectures.
Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/all/20241010-vdso-generic-base-v1-4-b64f0842d512@linutronix.de
|
|
This constant is always "0", providing no value and making the logic
harder to understand.
Also prepare for a consolidation of the vdso linkerscript logic by
aligning it with other architectures.
Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Link: https://lore.kernel.org/all/20241010-vdso-generic-base-v1-3-b64f0842d512@linutronix.de
|
|
All callers of arch_vma_name() also get the name via vm_ops, which for
these VMAs will use the name from 'struct vma_special_mapping'.
Therefore the custom implementation is unnecessary and can be removed in
favor of the default implementation from kernel/signal.c.
Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241010-vdso-generic-base-v1-2-b64f0842d512@linutronix.de
|
|
The time-related VDSO functionality was introduced in 2021 in
commit 87f3248cdb9a ("csky: Reconstruct VDSO framework") and
commit 0d3b051adbb7 ("csky: Add VDSO with GENERIC_GETTIMEOFDAY, GENERIC_TIME_VSYSCALL, HAVE_GENERIC_VDSO").
However the corresponding aux-vector entry AT_SYSINFO_EHDR was never
wired up, making these functions impossible to test or use.
The VDSO itself is kept as it also provides rt_sigreturn which is
exposed differently to userspace.
Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241010-vdso-generic-base-v1-1-b64f0842d512@linutronix.de
|
|
If an error indicating that the device needs to be reset is reported,
disable the error reporting before device reset is complete,
enable the error reporting after the reset is complete to prevent
the same error from being reported repeatedly.
Fixes: eaebf4c3b103 ("crypto: hisilicon - Unify hardware error init/uninit into QM")
Signed-off-by: Weili Qian <qianweili@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Query the capability register status of accelerator devices
(SEC, HPRE and ZIP) through the debugfs interface, for example:
cat cap_regs. The purpose is to improve the robustness and
locability of hardware devices and drivers.
Signed-off-by: Qi Tao <taoqi10@huawei.com>
Signed-off-by: Chenghai Huang <huangchenghai2@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
encrypt_blob(), decrypt_blob() and create_signature() were some of the
functions added in 2018 by
commit 5a30771832aa ("KEYS: Provide missing asymmetric key subops for new
key type ops [ver #2]")
however, they've not been used.
Remove them.
Signed-off-by: Dr. David Alan Gilbert <linux@treblig.org>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
After commit 0edb555a65d1 ("platform: Make platform_driver::remove()
return void") .remove() is (again) the right callback to implement for
platform drivers.
Convert all platform drivers below drivers/char/hw_random to use
.remove(), with the eventual goal to drop struct
platform_driver::remove_new(). As .remove() and .remove_new() have the
same prototypes, conversion is done by just changing the structure
member name in the driver initializer.
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@baylibre.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
clocksource_delta() has two variants. One with a check for negative motion,
which is only selected by x86. This is a historic leftover as this function
was previously used in the time getter hot paths.
Since 135225a363ae timekeeping_cycles_to_ns() has unconditional protection
against this as a by-product of the protection against 64bit math overflow.
clocksource_delta() is only used in the clocksource watchdog and in
timekeeping_advance(). The extra conditional there is not hurting anyone.
Remove the config option and unconditionally prevent negative motion of the
readout.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/all/20241031120328.599430157@linutronix.de
|
|
Since 135225a363ae timekeeping_cycles_to_ns() handles large offsets which
would lead to 64bit multiplication overflows correctly. It's also protected
against negative motion of the clocksource unconditionally, which was
exclusive to x86 before.
timekeeping_advance() handles large offsets already correctly.
That means the value of CONFIG_DEBUG_TIMEKEEPING which analyzed these cases
is very close to zero. Remove all of it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/all/20241031120328.536010148@linutronix.de
|