summaryrefslogtreecommitdiff
path: root/arch/arm64/include/asm
AgeCommit message (Collapse)Author
2024-07-11Merge branch 'for-next/vcpu-hotplug' into for-next/coreCatalin Marinas
* for-next/vcpu-hotplug: (21 commits) : arm64 support for virtual CPU hotplug (ACPI) irqchip/gic-v3: Fix 'broken_rdists' unused warning when !SMP and !ACPI arm64: Kconfig: Fix dependencies to enable ACPI_HOTPLUG_CPU cpumask: Add enabled cpumask for present CPUs that can be brought online arm64: document virtual CPU hotplug's expectations arm64: Kconfig: Enable hotplug CPU on arm64 if ACPI_PROCESSOR is enabled. arm64: arch_register_cpu() variant to check if an ACPI handle is now available. arm64: psci: Ignore DENIED CPUs irqchip/gic-v3: Add support for ACPI's disabled but 'online capable' CPUs irqchip/gic-v3: Don't return errors from gic_acpi_match_gicc() arm64: acpi: Harden get_cpu_for_acpi_id() against missing CPU entry arm64: acpi: Move get_cpu_for_acpi_id() to a header ACPI: Add post_eject to struct acpi_scan_handler for cpu hotplug ACPI: scan: switch to flags for acpi_scan_check_and_detach() ACPI: processor: Register deferred CPUs from acpi_processor_get_info() ACPI: processor: Add acpi_get_processor_handle() helper ACPI: processor: Move checks and availability of acpi_processor earlier ACPI: processor: Fix memory leaks in error paths of processor_add() ACPI: processor: Return an error if acpi_processor_get_info() fails in processor_add() ACPI: processor: Drop duplicated check on _STA (enabled + present) cpu: Do not warn on arch_register_cpu() returning -EPROBE_DEFER ...
2024-07-11Merge branches 'for-next/cpufeature', 'for-next/misc', 'for-next/kselftest', ↵Catalin Marinas
'for-next/mte', 'for-next/errata', 'for-next/acpi', 'for-next/gic-v3-pmr' and 'for-next/doc', remote-tracking branch 'arm64/for-next/perf' into for-next/core * arm64/for-next/perf: perf: add missing MODULE_DESCRIPTION() macros perf: arm_pmuv3: Include asm/arm_pmuv3.h from linux/perf/arm_pmuv3.h perf: arm_v6/7_pmu: Drop non-DT probe support perf/arm: Move 32-bit PMU drivers to drivers/perf/ perf: arm_pmuv3: Drop unnecessary IS_ENABLED(CONFIG_ARM64) check perf: arm_pmuv3: Avoid assigning fixed cycle counter with threshold perf: imx_perf: add support for i.MX95 platform perf: imx_perf: fix counter start and config sequence perf: imx_perf: refactor driver for imx93 perf: imx_perf: let the driver manage the counter usage rather the user perf: imx_perf: add macro definitions for parsing config attr dt-bindings: perf: fsl-imx-ddr: Add i.MX95 compatible perf: pmuv3: Add new Cortex and Neoverse PMUs dt-bindings: arm: pmu: Add new Cortex and Neoverse cores perf/arm-cmn: Enable support for tertiary match group perf/arm-cmn: Decouple wp_config registers from filter group number * for-next/cpufeature: : Various cpufeature infrastructure patches arm64/cpufeature: Replace custom macros with fields from ID_AA64PFR0_EL1 KVM: arm64: Replace custom macros with fields from ID_AA64PFR0_EL1 arm64/cpufeatures/kvm: Add ARMv8.9 FEAT_ECBHB bits in ID_AA64MMFR1 register * for-next/misc: : Miscellaneous patches arm64: smp: Fix missing IPI statistics arm64: Cleanup __cpu_set_tcr_t0sz() arm64/mm: Stop using ESR_ELx_FSC_TYPE during fault arm64: Kconfig: fix typo in __builtin_return_adddress ARM64: reloc_test: add missing MODULE_DESCRIPTION() macro arm64: implement raw_smp_processor_id() using thread_info arm64/arch_timer: include <linux/percpu.h> * for-next/kselftest: : arm64 kselftest updates selftests: arm64: tags: remove the result script selftests: arm64: tags_test: conform test to TAP output kselftest/arm64: Fix a couple of spelling mistakes kselftest/arm64: Fix redundancy of a testcase kselftest/arm64: Include kernel mode NEON in fp-stress * for-next/mte: : MTE updates arm64: mte: Make mte_check_tfsr_*() conditional on KASAN instead of MTE * for-next/errata: : Arm CPU errata workarounds arm64: errata: Expand speculative SSBS workaround arm64: errata: Unify speculative SSBS errata logic arm64: cputype: Add Cortex-X925 definitions arm64: cputype: Add Cortex-A720 definitions arm64: cputype: Add Cortex-X3 definitions * for-next/acpi: : arm64 ACPI patches ACPI: Add acpi=nospcr to disable ACPI SPCR as default console on ARM64 ACPI / amba: Drop unnecessary check for registered amba_dummy_clk arm64: FFH: Move ACPI specific code into drivers/acpi/arm64/ arm64: cpuidle: Move ACPI specific code into drivers/acpi/arm64/ ACPI: arm64: Sort entries alphabetically * for-next/gic-v3-pmr: : arm64: irqchip/gic-v3: Use compiletime constant PMR values arm64: irqchip/gic-v3: Select priorities at boot time irqchip/gic-v3: Detect GICD_CTRL.DS and SCR_EL3.FIQ earlier irqchip/gic-v3: Make distributor priorities variables irqchip/gic-common: Remove sync_access callback wordpart.h: Add REPEAT_BYTE_U32() * for-next/doc: : arm64 documentation updates Documentation: arm64: Update memory.rst for TBI
2024-07-10arm64: rework compat syscall macrosArnd Bergmann
The generated asm/unistd_compat_32.h header file now contains macros that can be used directly in the vdso and the signal trampolines, so remove the duplicate definitions. Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2024-07-10arm64: generate 64-bit syscall.tblArnd Bergmann
Change the asm/unistd.h header for arm64 to no longer include asm-generic/unistd.h itself, but instead generate both the asm/unistd.h contents and the list of entry points using the syscall.tbl scripts that we use on most other architectures. Once his is done for the remaining architectures, the generic unistd.h header can be removed and the generated tbl file put in its place. The Makefile changes are more complex than they should be, I need a little help to improve those. Ideally this should be done in an architecture-independent way as well. Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2024-07-10arm64: convert unistd_32.h to syscall.tbl formatArnd Bergmann
This is a straight conversion from the old asm/unistd32.h into the format used by 32-bit arm and most other architectures, calling scripts to generate the asm/unistd32.h header and a new asm/syscalls32.h headers. I used a semi-automated text replacement method to do the conversion, and then used 'vimdiff' to synchronize the whitespace and the (unused) names of the non-compat syscalls with the arm version. There are two differences between the generated syscalls names and the old version: - the old asm/unistd32.h contained only a __NR_sync_file_range2 entry, while the arm32 version also defines __NR_arm_sync_file_range with the same number. I added this duplicate back in asm/unistd32.h. - __NR__sysctl was removed from the arm64 file a while ago, but all the tables still contain it. This should probably get removed everywhere but I added it here for consistency. On top of that, the arm64 version does not contain any references to the 32-bit OABI syscalls that are not supported by arm64. If we ever want to share the file between arm32 and arm64, it would not be hard to add support for both in one file. Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2024-07-09arm64: add 'runtime constant' supportLinus Torvalds
This implements the runtime constant infrastructure for arm64, allowing the dcache d_hash() function to be generated using as a constant for hash table address followed by shift by a constant of the hash index. [ Fixed up to deal with the big-endian case as per Mark Rutland ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2024-07-04arm64/cpufeature: Replace custom macros with fields from ID_AA64PFR0_EL1Anshuman Khandual
This replaces custom macros usage (i.e ID_AA64PFR0_EL1_ELx_64BIT_ONLY and ID_AA64PFR0_EL1_ELx_32BIT_64BIT) and instead directly uses register fields from ID_AA64PFR0_EL1 sysreg definition. Finally let's drop off both these custom macros as they are now redundant. Cc: Will Deacon <will@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mark Brown <broonie@kernel.org> Cc: linux-arm-kernel@lists.infradead.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20240613102710.3295108-3-anshuman.khandual@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2024-07-03mm: remove page_mapping()Matthew Wilcox (Oracle)
All callers are now converted, delete this compatibility wrapper. Also fix up some comments which referred to page_mapping. Link: https://lkml.kernel.org/r/20240423225552.4113447-7-willy@infradead.org Link: https://lkml.kernel.org/r/20240524181813.698813-1-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: Eric Biggers <ebiggers@google.com> Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03perf: arm_pmuv3: Include asm/arm_pmuv3.h from linux/perf/arm_pmuv3.hRob Herring (Arm)
The arm64 asm/arm_pmuv3.h depends on defines from linux/perf/arm_pmuv3.h. Rather than depend on include order, follow the usual pattern of "linux" headers including "asm" headers of the same name. With this change, the include of linux/kvm_host.h is problematic due to circular includes: In file included from ../arch/arm64/include/asm/arm_pmuv3.h:9, from ../include/linux/perf/arm_pmuv3.h:312, from ../include/kvm/arm_pmu.h:11, from ../arch/arm64/include/asm/kvm_host.h:38, from ../arch/arm64/mm/init.c:41: ../include/linux/kvm_host.h:383:30: error: field 'arch' has incomplete type Switching to asm/kvm_host.h solves the issue. Signed-off-by: Rob Herring (Arm) <robh@kernel.org> Link: https://lore.kernel.org/r/20240626-arm-pmu-3-9-icntr-v2-5-c9784b4f4065@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2024-06-28arm64: acpi: Harden get_cpu_for_acpi_id() against missing CPU entryJonathan Cameron
In a review discussion of the changes to support vCPU hotplug where a check was added on the GICC being enabled if was online, it was noted that there is need to map back to the cpu and use that to index into a cpumask. As such, a valid ID is needed. If an MPIDR check fails in acpi_map_gic_cpu_interface() it is possible for the entry in cpu_madt_gicc[cpu] == NULL. This function would then cause a NULL pointer dereference. Whilst a path to trigger this has not been established, harden this caller against the possibility. Reviewed-by: Gavin Shan <gshan@redhat.com> Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Link: https://lore.kernel.org/r/20240529133446.28446-13-Jonathan.Cameron@huawei.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2024-06-28arm64: acpi: Move get_cpu_for_acpi_id() to a headerJames Morse
ACPI identifies CPUs by UID. get_cpu_for_acpi_id() maps the ACPI UID to the Linux CPU number. The helper to retrieve this mapping is only available in arm64's NUMA code. Move it to live next to get_acpi_id_for_cpu(). Signed-off-by: James Morse <james.morse@arm.com> Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Reviewed-by: Gavin Shan <gshan@redhat.com> Tested-by: Miguel Luis <miguel.luis@oracle.com> Tested-by: Vishnu Pajjuri <vishnu@os.amperecomputing.com> Tested-by: Jianyong Wu <jianyong.wu@arm.com> Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> Acked-by: Hanjun Guo <guohanjun@huawei.com> Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Reviewed-by: Lorenzo Pieralisi <lpieralisi@kernel.org> Link: https://lore.kernel.org/r/20240529133446.28446-12-Jonathan.Cameron@huawei.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2024-06-28Merge tag 'arm64-fixes' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 fixes from Will Deacon: "A pair of small arm64 fixes for -rc6. One is a fix for the recently merged uffd-wp support (which was triggering a spurious warning) and the other is a fix to the clearing of the initial idmap pgd in some configurations Summary: - Fix spurious page-table warning when clearing PTE_UFFD_WP in a live pte - Fix clearing of the idmap pgd when using large addressing modes" * tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: arm64: Clear the initial ID map correctly before remapping arm64: mm: Permit PTE SW bits to change in live mappings
2024-06-27KVM: arm64: Get rid of HCRX_GUEST_FLAGSMarc Zyngier
HCRX_GUEST_FLAGS gives random KVM hackers the impression that they can stuff bits in this macro and unconditionally enable features in the guest. In general, this is wrong (we have been there with FEAT_MOPS, and again with FEAT_TCRX). Document that HCRX_EL2.SMPME is an exception rather than the rule, and get rid of HCRX_GUEST_FLAGS. Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Joey Gouly <joey.gouly@arm.com> Link: https://lore.kernel.org/r/20240625130042.259175-3-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-06-27KVM: arm64: Correctly honor the presence of FEAT_TCRXMarc Zyngier
We currently blindly enable TCR2_EL1 use in a guest, irrespective of the feature set. This is obviously wrong, and we should actually honor the guest configuration and handle the possible trap resulting from the guest being buggy. Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Joey Gouly <joey.gouly@arm.com> Link: https://lore.kernel.org/r/20240625130042.259175-2-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-06-25syscalls: fix compat_sys_io_pgetevents_time64 usageArnd Bergmann
Using sys_io_pgetevents() as the entry point for compat mode tasks works almost correctly, but misses the sign extension for the min_nr and nr arguments. This was addressed on parisc by switching to compat_sys_io_pgetevents_time64() in commit 6431e92fc827 ("parisc: io_pgetevents_time64() needs compat syscall in 32-bit compat mode"), as well as by using more sophisticated system call wrappers on x86 and s390. However, arm64, mips, powerpc, sparc and riscv still have the same bug. Change all of them over to use compat_sys_io_pgetevents_time64() like parisc already does. This was clearly the intention when the function was originally added, but it got hooked up incorrectly in the tables. Cc: stable@vger.kernel.org Fixes: 48166e6ea47d ("y2038: add 64-bit time_t syscalls to all 32-bit architectures") Acked-by: Heiko Carstens <hca@linux.ibm.com> # s390 Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2024-06-24arm64: Cleanup __cpu_set_tcr_t0sz()Seongsu Park
The T0SZ field of TCR_EL1 occupies bits 0-5 of the register and encode the virtual address space translated by TTBR0_EL1. When updating the field, for example because we are switching to/from the idmap page-table, __cpu_set_tcr_t0sz() erroneously treats its 't0sz' argument as unshifted, resulting in harmless but confusing double shifts by 0 in the code. Co-developed-by: Leem ChaeHoon <infinite.run@gmail.com> Signed-off-by: Leem ChaeHoon <infinite.run@gmail.com> Signed-off-by: Seongsu Park <sgsu.park@samsung.com> Link: https://lore.kernel.org/r/20240523122146.144483-1-sgsu.park@samsung.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2024-06-24arm64: irqchip/gic-v3: Select priorities at boot timeMark Rutland
The distributor and PMR/RPR can present different views of the interrupt priority space dependent upon the values of GICD_CTLR.DS and SCR_EL3.FIQ. Currently we treat the distributor's view of the priority space as canonical, and when the two differ we change the way we handle values in the PMR/RPR, using the `gic_nonsecure_priorities` static key to decide what to do. This approach works, but it's sub-optimal. When using pseudo-NMI we manipulate the distributor rarely, and we manipulate the PMR/RPR registers very frequently in code spread out throughout the kernel (e.g. local_irq_{save,restore}()). It would be nicer if we could use fixed values for the PMR/RPR, and dynamically choose the values programmed into the distributor. This patch changes the GICv3 driver and arm64 code accordingly. PMR values are chosen at compile time, and the GICv3 driver determines the appropriate values to program into the distributor at boot time. This removes the need for the `gic_nonsecure_priorities` static key and results in smaller and better generated code for saving/restoring the irqflags. Before this patch, local_irq_disable() compiles to: | 0000000000000000 <outlined_local_irq_disable>: | 0: d503201f nop | 4: d50343df msr daifset, #0x3 | 8: d65f03c0 ret | c: d503201f nop | 10: d2800c00 mov x0, #0x60 // #96 | 14: d5184600 msr icc_pmr_el1, x0 | 18: d65f03c0 ret | 1c: d2801400 mov x0, #0xa0 // #160 | 20: 17fffffd b 14 <outlined_local_irq_disable+0x14> After this patch, local_irq_disable() compiles to: | 0000000000000000 <outlined_local_irq_disable>: | 0: d503201f nop | 4: d50343df msr daifset, #0x3 | 8: d65f03c0 ret | c: d2801800 mov x0, #0xc0 // #192 | 10: d5184600 msr icc_pmr_el1, x0 | 14: d65f03c0 ret ... with 3 fewer instructions per call. For defconfig + CONFIG_PSEUDO_NMI=y, this results in a minor saving of ~4K of text, and will make it easier to make further improvements to the way we manipulate irqflags and DAIF bits. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Alexandru Elisei <alexandru.elisei@arm.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Reviewed-by: Marc Zyngier <maz@kernel.org> Tested-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240617111841.2529370-6-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Thomas Gleixner <tglx@linutronix.de>
2024-06-24arm64/mm: Stop using ESR_ELx_FSC_TYPE during faultAnshuman Khandual
Fault status codes at page table level 0, 1, 2 and 3 for access, permission and translation faults are architecturally organized in a way, that masking out ESR_ELx_FSC_TYPE, fetches Level 0 status code for the respective fault. Helpers like esr_fsc_is_[translation|permission|access_flag]_fault() mask out ESR_ELx_FSC_TYPE before comparing against corresponding Level 0 status code as the kernel does not yet care about the page table level, where in the fault really occurred previously. This scheme is starting to crumble after FEAT_LPA2 when level -1 got added. Fault status code for translation fault at level -1 is 0x2B which does not follow ESR_ELx_FSC_TYPE, requiring esr_fsc_is_translation_fault() changes. This changes above helpers to compare against individual fault status code values for each page table level and stop using ESR_ELx_FSC_TYPE, which is losing its value as a common mask. Cc: Will Deacon <will@kernel.org> Cc: Marc Zyngier <maz@kernel.org> Cc: linux-arm-kernel@lists.infradead.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Reviewed-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Ryan Roberts <ryan.roberts@arm.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20240618034703.3622510-1-anshuman.khandual@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2024-06-20KVM: arm64: nv: Add TCPAC/TTA to CPTR->CPACR conversion helperMarc Zyngier
We are missing the propagation of CPTR_EL2.{TCPAC,TTA} into the CPACR format. Make sure we preserve these bits. Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240620164653.1130714-13-oliver.upton@linux.dev Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-06-20KVM: arm64: nv: Load guest hyp's ZCR into EL1 stateOliver Upton
Load the guest hypervisor's ZCR_EL2 into the corresponding EL1 register when restoring SVE state, as ZCR_EL2 affects the VL in the hypervisor context. Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240620164653.1130714-5-oliver.upton@linux.dev Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-06-20KVM: arm64: nv: Handle ZCR_EL2 trapsOliver Upton
Unlike other SVE-related registers, ZCR_EL2 takes a sysreg trap to EL2 when HCR_EL2.NV = 1. KVM still needs to honor the guest hypervisor's trap configuration, which expects an SVE trap (i.e. ESR_EL2.EC = 0x19) when CPTR traps are enabled for the vCPU's current context. Otherwise, if the guest hypervisor has traps disabled, emulate the access by mapping the requested VL into ZCR_EL1. Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240620164653.1130714-4-oliver.upton@linux.dev Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-06-20KVM: arm64: nv: Forward SVE traps to guest hypervisorOliver Upton
Similar to FPSIMD traps, don't load SVE state if the guest hypervisor has SVE traps enabled and forward the trap instead. Note that ZCR_EL2 will require some special handling, as it takes a sysreg trap to EL2 when HCR_EL2.NV = 1. Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240620164653.1130714-3-oliver.upton@linux.dev Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-06-20KVM: arm64: nv: Forward FP/ASIMD traps to guest hypervisorJintack Lim
Give precedence to the guest hypervisor's trap configuration when routing an FP/ASIMD trap taken to EL2. Take advantage of the infrastructure for translating CPTR_EL2 into the VHE (i.e. EL1) format and base the trap decision solely on the VHE view of the register. The in-memory value of CPTR_EL2 will always be up to date for the guest hypervisor (more on that later), so just read it directly from memory. Bury all of this behind a macro keyed off of the CPTR bitfield in anticipation of supporting other traps (e.g. SVE). [maz: account for HCR_EL2.E2H when testing for TFP/FPEN, with all the hard work actually being done by Chase Conklin] [ oliver: translate nVHE->VHE format for testing traps; macro for reuse in other CPTR_EL2.xEN fields ] Signed-off-by: Jintack Lim <jintack.lim@linaro.org> Signed-off-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240620164653.1130714-2-oliver.upton@linux.dev Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-06-20arm64: Introduce esr_brk_comment, esr_is_cfi_brkPierre-Clément Tosi
As it is already used in two places, move esr_comment() to a header for re-use, with a clearer name. Introduce esr_is_cfi_brk() to detect kCFI BRK syndromes, currently used by early_brk64() but soon to also be used by hypervisor code. Signed-off-by: Pierre-Clément Tosi <ptosi@google.com> Acked-by: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20240610063244.2828978-7-ptosi@google.com Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-06-20KVM: arm64: Fix __pkvm_init_switch_pgd call ABIPierre-Clément Tosi
Fix the mismatch between the (incorrect) C signature, C call site, and asm implementation by aligning all three on an API passing the parameters (pgd and SP) separately, instead of as a bundled struct. Remove the now unnecessary memory accesses while the MMU is off from the asm, which simplifies the C caller (as it does not need to convert a VA struct pointer to PA) and makes the code slightly more robust by offsetting the struct fields from C and properly expressing the call to the C compiler (e.g. type checker and kCFI). Fixes: f320bc742bc2 ("KVM: arm64: Prepare the creation of s1 mappings at EL2") Signed-off-by: Pierre-Clément Tosi <ptosi@google.com> Acked-by: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20240610063244.2828978-3-ptosi@google.com Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-06-20KVM: arm64: Treat CTR_EL0 as a VM feature ID registerSebastian Ott
CTR_EL0 is currently handled as an invariant register, thus guests will be presented with the host value of that register. Add emulation for CTR_EL0 based on a per VM value. Userspace can switch off DIC and IDC bits and reduce DminLine and IminLine sizes. Naturally, ensure CTR_EL0 is trapped (HCR_EL2.TID2=1) any time that a VM's CTR_EL0 differs from hardware. Signed-off-by: Sebastian Ott <sebott@redhat.com> Reviewed-by: Shaoqin Huang <shahuang@redhat.com> Link: https://lore.kernel.org/r/20240619174036.483943-8-oliver.upton@linux.dev Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-06-20KVM: arm64: unify code to prepare trapsSebastian Ott
There are 2 functions to calculate traps via HCR_EL2: * kvm_init_sysreg() called via KVM_RUN (before the 1st run or when the pid changes) * vcpu_reset_hcr() called via KVM_ARM_VCPU_INIT To unify these 2 and to support traps that are dependent on the ID register configuration, move the code from vcpu_reset_hcr() to sys_regs.c and call it via kvm_init_sysreg(). We still have to keep the non-FWB handling stuff in vcpu_reset_hcr(). Also the initialization with HCR_GUEST_FLAGS is kept there but guarded by !vcpu_has_run_once() to ensure that previous calculated values don't get overwritten. While at it rename kvm_init_sysreg() to kvm_calculate_traps() to better reflect what it's doing. Signed-off-by: Sebastian Ott <sebott@redhat.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Link: https://lore.kernel.org/r/20240619174036.483943-7-oliver.upton@linux.dev Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-06-20KVM: arm64: nv: Use accessors for modifying ID registersOliver Upton
In the interest of abstracting away the underlying storage of feature ID registers, rework the nested code to go through the accessors instead of directly iterating the id_regs array. This means we now lose the property that ID registers unknown to the nested code get zeroed, but we really ought to be handling those explicitly going forward. Link: https://lore.kernel.org/r/20240619174036.483943-6-oliver.upton@linux.dev Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-06-20KVM: arm64: Add helper for writing ID regsOliver Upton
Replace the remaining usage of IDREG() with a new helper for setting the value of a feature ID register, with the benefit of cramming in some extra sanity checks. Reviewed-by: Sebastian Ott <sebott@redhat.com> Link: https://lore.kernel.org/r/20240619174036.483943-5-oliver.upton@linux.dev Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-06-20KVM: arm64: Use read-only helper for reading VM ID registersOliver Upton
IDREG() expands to the storage of a particular ID reg, which can be useful for handling both reads and writes. However, outside of a select few situations, the ID registers should be considered read only. Replace current readers with a new macro that expands to the value of the field rather than the field itself. Reviewed-by: Sebastian Ott <sebott@redhat.com> Link: https://lore.kernel.org/r/20240619174036.483943-4-oliver.upton@linux.dev Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-06-19arm64: word-at-a-time: improve byte count calculations for LELinus Torvalds
Do the same optimization as x86-64: do __ffs() on the intermediate value that found whether there is a zero byte, before we've actually computed the final byte mask. The logic is: has_zero(): Check if the word has a zero byte in it, which indicates the end of the loop, and prepare a value to be used for the rest of the sequence. The standard LE implementation just creates a word that has the high bit set in each byte of the word that was zero. Example: 0xaa00bbccdd00eeff -> 0x0080000000800000 prep_zero_mask(): Possibly do more prep to then clean up the initial fast result from has_zero, so that it can be combined with another zero mask with a simple logical "or" to create a final mask. This is only used on big-endian machines that use a different algorithm, and is a no-op here. create_zero_mask(): This is "step 1" of creating the count and the mask, and is meant for any common operations between the two. In the old implementation, this actually created the zero mask, that was then used for masking and for counting the number of bits in the mask. In the new implementation, this is a no-op. count_zero(): This takes the mask bits, and counts the number of bytes before the first zero byte. In the old implementation, it counted the number of bits in the final byte mask (which was the same as the C standard "find last set bit" that uses the silly "starts at one" counting) and shifted the value down by three. In the new implementation, we know the intermediate mask isn't zero, and it just does "find first set" with the sane semantics without any off-by-one issues, and again shifts by three (which also masks off the bit offset in the zero byte itself). Example: 0x0080000000800000 -> 2 zero_bytemask(): This takes the mask bits, and turns it into an actual byte mask of the bytes preceding the first zero byte. In the old implementation, this was a no-op, because the work had already been done by create_zero_mask(). In the new implementation, this does what create_zero_mask() used to do. Example: 0x0080000000800000 -> 0x000000000000ffff The difference between the old and the new implementation is that "count_zero()" ends up scheduling better because it is being done on a value that is available earlier (before the final mask). But more importantly, it can be implemented without the insane semantics of the standard bit finding helpers that have the off-by-one issue and have to special-case the zero mask situation. On arm64, the new "count_zero()" ends up just "rbit + clz" plus the shift right that then ends up being subsumed by the "add to final length". Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2024-06-19arm64: start using 'asm goto' for put_user()Linus Torvalds
This generates noticeably better code since we don't need to test the error register etc, the exception just jumps to the error handling directly. Unlike get_user(), there's no need to worry about old compilers. All supported compilers support the regular non-output 'asm goto', as pointed out by Nathan Chancellor. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2024-06-19arm64: start using 'asm goto' for get_user() when availableLinus Torvalds
This generates noticeably better code with compilers that support it, since we don't need to test the error register etc, the exception just jumps to the error handling directly. Note that this also marks SW_TTBR0_PAN incompatible with KCSAN support, since KCSAN wants to save and restore the user access state. KCSAN and SW_TTBR0_PAN were probably always incompatible, but it became obvious only when implementing the unsafe user access functions. At that point the default empty user_access_save/restore() functions weren't provided by the default fallback functions. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2024-06-19arm64: mm: Permit PTE SW bits to change in live mappingsRyan Roberts
Previously pgattr_change_is_safe() was overly-strict and complained (e.g. "[ 116.262743] __check_safe_pte_update: unsafe attribute change: 0x0560000043768fc3 -> 0x0160000043768fc3") if it saw any SW bits change in a live PTE. There is no such restriction on SW bits in the Arm ARM. Until now, no SW bits have been updated in live mappings via the set_ptes() route. PTE_DIRTY would be updated live, but this is handled by ptep_set_access_flags() which does not call pgattr_change_is_safe(). However, with the introduction of uffd-wp for arm64, there is core-mm code that does ptep_get(); pte_clear_uffd_wp(); set_ptes(); which triggers this false warning. Silence this warning by masking out the SW bits during checks. The bug isn't technically in the highlighted commit below, but that's where bisecting would likely lead as its what made the bug user-visible. Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Fixes: 5b32510af77b ("arm64/mm: Add uffd write-protect support") Link: https://lore.kernel.org/r/20240619121859.4153966-1-ryan.roberts@arm.com Signed-off-by: Will Deacon <will@kernel.org>
2024-06-19KVM: arm64: nv: Tag shadow S2 entries with guest's leaf S2 levelMarc Zyngier
Populate bits [56:55] of the leaf entry with the level provided by the guest's S2 translation. This will allow us to better scope the invalidation by remembering the mapping size. Of course, this assume that the guest will issue an invalidation with an address that falls into the same leaf. If the guest doesn't, we'll over-invalidate. Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240614144552.2773592-13-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-06-19KVM: arm64: nv: Handle FEAT_TTL hinted TLB operationsMarc Zyngier
Support guest-provided information information to size the range of required invalidation. This helps with reducing over-invalidation, provided that the guest actually provides accurate information. Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240614144552.2773592-12-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-06-19KVM: arm64: nv: Handle TLB invalidation targeting L2 stage-1Marc Zyngier
While dealing with TLB invalidation targeting the guest hypervisor's own stage-1 was easy, doing the same thing for its own guests is a bit more involved. Since such an invalidation is scoped by VMID, it needs to apply to all s2_mmu contexts that have been tagged by that VMID, irrespective of the value of VTTBR_EL2.BADDR. So for each s2_mmu context matching that VMID, we invalidate the corresponding TLBs, each context having its own "physical" VMID. Co-developed-by: Jintack Lim <jintack.lim@linaro.org> Co-developed-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Jintack Lim <jintack.lim@linaro.org> Signed-off-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240614144552.2773592-8-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-06-19KVM: arm64: nv: Handle EL2 Stage-1 TLB invalidationMarc Zyngier
Due to the way FEAT_NV2 suppresses traps when accessing EL2 system registers, we can't track when the guest changes its HCR_EL2.TGE setting. This means we always trap EL1 TLBIs, even if they don't affect any L2 guest. Given that invalidating the EL2 TLBs doesn't require any messing with the shadow stage-2 page-tables, we can simply emulate the instructions early and return directly to the guest. This is conditioned on the instruction being an EL1 one and the guest's HCR_EL2.{E2H,TGE} being {1,1} (indicating that the instruction targets the EL2 S1 TLBs), or the instruction being one of the EL2 ones (which are not ambiguous). EL1 TLBIs issued with HCR_EL2.{E2H,TGE}={1,0} are not handled here, and cause a full exit so that they can be handled in the context of a VMID. Co-developed-by: Jintack Lim <jintack.lim@linaro.org> Co-developed-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Jintack Lim <jintack.lim@linaro.org> Signed-off-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240614144552.2773592-7-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-06-19KVM: arm64: nv: Add Stage-1 EL2 invalidation primitivesMarc Zyngier
Provide the primitives required to handle TLB invalidation for Stage-1 EL2 TLBs, which by definition do not require messing with the Stage-2 page tables. Co-developed-by: Jintack Lim <jintack.lim@linaro.org> Co-developed-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Jintack Lim <jintack.lim@linaro.org> Signed-off-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240614144552.2773592-6-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-06-19KVM: arm64: nv: Unmap/flush shadow stage 2 page tablesChristoffer Dall
Unmap/flush shadow stage 2 page tables for the nested VMs as well as the stage 2 page table for the guest hypervisor. Note: A bunch of the code in mmu.c relating to MMU notifiers is currently dealt with in an extremely abrupt way, for example by clearing out an entire shadow stage-2 table. This will be handled in a more efficient way using the reverse mapping feature in a later version of the patch series. Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Jintack Lim <jintack.lim@linaro.org> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240614144552.2773592-5-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-06-19KVM: arm64: nv: Handle shadow stage 2 page faultsMarc Zyngier
If we are faulting on a shadow stage 2 translation, we first walk the guest hypervisor's stage 2 page table to see if it has a mapping. If not, we inject a stage 2 page fault to the virtual EL2. Otherwise, we create a mapping in the shadow stage 2 page table. Note that we have to deal with two IPAs when we got a shadow stage 2 page fault. One is the address we faulted on, and is in the L2 guest phys space. The other is from the guest stage-2 page table walk, and is in the L1 guest phys space. To differentiate them, we rename variables so that fault_ipa is used for the former and ipa is used for the latter. When mapping a page in a shadow stage-2, special care must be taken not to be more permissive than the guest is. Co-developed-by: Christoffer Dall <christoffer.dall@linaro.org> Co-developed-by: Jintack Lim <jintack.lim@linaro.org> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Jintack Lim <jintack.lim@linaro.org> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240614144552.2773592-4-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-06-19KVM: arm64: nv: Implement nested Stage-2 page table walk logicChristoffer Dall
Based on the pseudo-code in the ARM ARM, implement a stage 2 software page table walker. Co-developed-by: Jintack Lim <jintack.lim@linaro.org> Signed-off-by: Jintack Lim <jintack.lim@linaro.org> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240614144552.2773592-3-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-06-19KVM: arm64: nv: Support multiple nested Stage-2 mmu structuresMarc Zyngier
Add Stage-2 mmu data structures for virtual EL2 and for nested guests. We don't yet populate shadow Stage-2 page tables, but we now have a framework for getting to a shadow Stage-2 pgd. We allocate twice the number of vcpus as Stage-2 mmu structures because that's sufficient for each vcpu running two translation regimes without having to flush the Stage-2 page tables. Co-developed-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240614144552.2773592-2-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-06-12arm64: errata: Unify speculative SSBS errata logicMark Rutland
Cortex-X4 erratum 3194386 and Neoverse-V3 erratum 3312417 are identical, with duplicate Kconfig text and some unsightly ifdeffery. While we try to share code behind CONFIG_ARM64_WORKAROUND_SPECULATIVE_SSBS, having separate options results in a fair amount of boilerplate code, and this will only get worse as we expand the set of affected CPUs. To reduce this boilerplate, unify the two behind a common Kconfig option. This removes the duplicate text and Kconfig logic, and removes the need for the intermediate ARM64_WORKAROUND_SPECULATIVE_SSBS option. The set of affected CPUs is described as a list so that this can easily be extended. I've used ARM64_ERRATUM_3194386 (matching the Neoverse-V3 erratum ID) as the common option, matching the way we use ARM64_ERRATUM_1319367 to cover Cortex-A57 erratum 1319537 and Cortex-A72 erratum 1319367. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <wilL@kernel.org> Link: https://lore.kernel.org/r/20240603111812.1514101-5-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2024-06-12arm64: cputype: Add Cortex-X925 definitionsMark Rutland
Add cputype definitions for Cortex-X925. These will be used for errata detection in subsequent patches. These values can be found in Table A-285 ("MIDR_EL1 bit descriptions") in issue 0001-05 of the Cortex-X925 TRM, which can be found at: https://developer.arm.com/documentation/102807/0001/?lang=en Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20240603111812.1514101-4-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2024-06-12arm64: cputype: Add Cortex-A720 definitionsMark Rutland
Add cputype definitions for Cortex-A720. These will be used for errata detection in subsequent patches. These values can be found in Table A-186 ("MIDR_EL1 bit descriptions") in issue 0002-05 of the Cortex-A720 TRM, which can be found at: https://developer.arm.com/documentation/102530/0002/?lang=en Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20240603111812.1514101-3-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2024-06-12arm64: cputype: Add Cortex-X3 definitionsMark Rutland
Add cputype definitions for Cortex-X3. These will be used for errata detection in subsequent patches. These values can be found in Table A-263 ("MIDR_EL1 bit descriptions") in issue 07 of the Cortex-X3 TRM, which can be found at: https://developer.arm.com/documentation/101593/0102/?lang=en Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20240603111812.1514101-2-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2024-06-12arm64: mte: Make mte_check_tfsr_*() conditional on KASAN instead of MTEPeter Collingbourne
The check in mte_check_tfsr_el1() is only necessary if HW tag based KASAN is enabled. However, we were also executing the check if MTE is enabled and KASAN is enabled at build time but disabled at runtime. This turned out to cause a measurable increase in power consumption on a specific microarchitecture after enabling MTE. Moreover, on the same system, an increase in invalid syscall latency (as measured by [1]) of around 20-30% (depending on the cluster) was observed after enabling MTE; this almost entirely goes away after removing this check. Therefore, make the check conditional on whether KASAN is enabled rather than on whether MTE is enabled. [1] https://lore.kernel.org/all/CAMn1gO4MwRV8bmFJ_SeY5tsYNPn2ZP56LjAhafygjFaKuu5ouw@mail.gmail.com/ Signed-off-by: Peter Collingbourne <pcc@google.com> Link: https://linux-review.googlesource.com/id/I22d98d1483dd400a95595946552b769a5a1ad7bd Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com> Link: https://lore.kernel.org/r/20240528225131.3577704-1-pcc@google.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2024-06-12arm64: implement raw_smp_processor_id() using thread_infoPuranjay Mohan
Historically, arm64 implemented raw_smp_processor_id() as a read of current_thread_info()->cpu. This changed when arm64 moved thread_info into task struct, as at the time CONFIG_THREAD_INFO_IN_TASK made core code use thread_struct::cpu for the cpu number, and due to header dependencies prevented using this in raw_smp_processor_id(). As a workaround, we moved to using a percpu variable in commit: 57c82954e77fa12c ("arm64: make cpu number a percpu variable") Since then, thread_info::cpu was reintroduced, and core code was made to use this in commits: 001430c1910df65a ("arm64: add CPU field to struct thread_info") bcf9033e5449bdca ("sched: move CPU field back into thread_info if THREAD_INFO_IN_TASK=y") Consequently it is possible to use current_thread_info()->cpu again. This decreases the number of emitted instructions like in the following example: Dump of assembler code for function bpf_get_smp_processor_id: 0xffff8000802cd608 <+0>: nop 0xffff8000802cd60c <+4>: nop 0xffff8000802cd610 <+8>: adrp x0, 0xffff800082138000 0xffff8000802cd614 <+12>: mrs x1, tpidr_el1 0xffff8000802cd618 <+16>: add x0, x0, #0x8 0xffff8000802cd61c <+20>: ldrsw x0, [x0, x1] 0xffff8000802cd620 <+24>: ret After this patch: Dump of assembler code for function bpf_get_smp_processor_id: 0xffff8000802c9130 <+0>: nop 0xffff8000802c9134 <+4>: nop 0xffff8000802c9138 <+8>: mrs x0, sp_el0 0xffff8000802c913c <+12>: ldr w0, [x0, #24] 0xffff8000802c9140 <+16>: ret A microbenchmark[1] was built to measure the performance improvement provided by this change. It calls the following function given number of times and finds the runtime overhead: static noinline int get_cpu_id(void) { return smp_processor_id(); } Run the benchmark like: modprobe smp_processor_id nr_function_calls=1000000000 +--------------------------+------------------------+ | | Number of Calls | Time taken | +--------+-----------------+------------------------+ | Before | 1000000000 | 1602888401ns | +--------+-----------------+------------------------+ | After | 1000000000 | 1206212658ns | +--------+-----------------+------------------------+ | Difference (decrease) | 396675743ns (24.74%) | +---------------------------------------------------+ Remove the percpu variable cpu_number as it is used only in set_smp_ipi_range() as a dummy variable to be passed to ipi_handler(). Use irq_stat in place of cpu_number here like arm32. [1] https://github.com/puranjaymohan/linux/commit/77d3fdd Signed-off-by: Puranjay Mohan <puranjay@kernel.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Link: https://lore.kernel.org/r/20240503171847.68267-2-puranjay@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2024-06-12arm64/arch_timer: include <linux/percpu.h>Puranjay Mohan
arch_timer.h includes linux/smp.h since the commit: 6acc71ccac7187fc ("arm64: arch_timer: Allows a CPU-specific erratum to only affect a subset of CPUs") It was included to use DEFINE_PER_CPU(), etc. But It should have included <linux/percpu.h> rather than <linux/smp.h>. It worked because smp.h includes percpu.h. The next commit will remove percpu.h from smp.h and it will break this usage. Explicitly include percpu.h and remove smp.h Signed-off-by: Puranjay Mohan <puranjay@kernel.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com> Link: https://lore.kernel.org/r/20240503171847.68267-1-puranjay@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>