summaryrefslogtreecommitdiff
path: root/arch/arm64/include
AgeCommit message (Collapse)Author
2023-10-20KVM: arm64: Reload stage-2 for VMID change on VHEMarc Zyngier
Naturally, a change to the VMID for an MMU implies a new value for VTTBR. Reload on VMID change in anticipation of loading stage-2 on vcpu_load() instead of every guest entry. Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20231018233212.2888027-4-oliver.upton@linux.dev Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2023-10-18clocksource/drivers/arm_arch_timer: limit XGene-1 workaroundAndre Przywara
The AppliedMicro XGene-1 CPU has an erratum where the timer condition would only consider TVAL, not CVAL. We currently apply a workaround when seeing the PartNum field of MIDR_EL1 being 0x000, under the assumption that this would match only the XGene-1 CPU model. However even the Ampere eMAG (aka XGene-3) uses that same part number, and only differs in the "Variant" and "Revision" fields: XGene-1's MIDR is 0x500f0000, our eMAG reports 0x503f0002. Experiments show the latter doesn't show the faulty behaviour. Increase the specificity of the check to only consider partnum 0x000 and variant 0x00, to exclude the Ampere eMAG. Fixes: 012f18850452 ("clocksource/drivers/arm_arch_timer: Work around broken CVAL implementations") Reported-by: Ross Burton <ross.burton@arm.com> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Acked-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Oliver Upton <oliver.upton@linux.dev> Link: https://lore.kernel.org/r/20231016153127.116101-1-andre.przywara@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-10-18arm64: Remove system_uses_lse_atomics()Gavin Shan
There are two variants of system_uses_lse_atomics(), depending on CONFIG_ARM64_LSE_ATOMICS. The function isn't called anywhere when CONFIG_ARM64_LSE_ATOMICS is disabled. It can be directly replaced by alternative_has_cap_likely(ARM64_HAS_LSE_ATOMICS) when the kernel option is enabled. No need to keep system_uses_lse_atomics() and just remove it. Signed-off-by: Gavin Shan <gshan@redhat.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20231017005036.334067-1-gshan@redhat.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-10-18arm64: Mark the 'addr' argument to set_ptes() and __set_pte_at() as unusedCatalin Marinas
This argument is not used by the arm64 implementation. Mark it as __always_unused and also remove the unnecessary 'addr' increment in set_ptes(). Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Reported-by: kernel test robot <lkp@intel.com> Closes: https://lore.kernel.org/oe-kbuild-all/202310140531.BQQwt3NQ-lkp@intel.com/ Cc: Will Deacon <will@kernel.org> Tested-by: Ryan Roberts <ryan.roberts@arm.com> Link: https://lore.kernel.org/r/ZS6EvMiJ0QF5INkv@arm.com
2023-10-16arm64/mm: Hoist synchronization out of set_ptes() loopRyan Roberts
set_ptes() sets a physically contiguous block of memory (which all belongs to the same folio) to a contiguous block of ptes. The arm64 implementation of this previously just looped, operating on each individual pte. But the __sync_icache_dcache() and mte_sync_tags() operations can both be hoisted out of the loop so that they are performed once for the contiguous set of pages (which may be less than the whole folio). This should result in minor performance gains. __sync_icache_dcache() already acts on the whole folio, and sets a flag in the folio so that it skips duplicate calls. But by hoisting the call, all the pte testing is done only once. mte_sync_tags() operates on each individual page with its own loop. But by passing the number of pages explicitly, we can rely solely on its loop and do the checks only once. This approach also makes it robust for the future, rather than assuming if a head page of a compound page is being mapped, then the whole compound page is being mapped, instead we explicitly know how many pages are being mapped. The old assumption may not continue to hold once the "anonymous large folios" feature is merged. Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Reviewed-by: Steven Price <steven.price@arm.com> Link: https://lore.kernel.org/r/20231005140730.2191134-1-ryan.roberts@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-10-16arm64: Remove cpus_have_const_cap()Mark Rutland
There are no longer any users of cpus_have_const_cap(), and therefore it can be removed. Remove cpus_have_const_cap(). At the same time, remove __cpus_have_const_cap(), as this is a trivial wrapper of alternative_has_cap_unlikely(), which can be used directly instead. The comment for __system_matches_cap() is updated to no longer refer to cpus_have_const_cap(). As we have a number of ways to check the cpucaps, the specific suggestions are removed. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Kristina Martsenko <kristina.martsenko@arm.com> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-10-16arm64: Avoid cpus_have_const_cap() for ARM64_WORKAROUND_REPEAT_TLBIMark Rutland
In arch_tlbbatch_should_defer() we use cpus_have_const_cap() to check for ARM64_WORKAROUND_REPEAT_TLBI, but this is not necessary and alternative_has_cap_*() would be preferable. For historical reasons, cpus_have_const_cap() is more complicated than it needs to be. Before cpucaps are finalized, it will perform a bitmap test of the system_cpucaps bitmap, and once cpucaps are finalized it will use an alternative branch. This used to be necessary to handle some race conditions in the window between cpucap detection and the subsequent patching of alternatives and static branches, where different branches could be out-of-sync with one another (or w.r.t. alternative sequences). Now that we use alternative branches instead of static branches, these are all patched atomically w.r.t. one another, and there are only a handful of cases that need special care in the window between cpucap detection and alternative patching. Due to the above, it would be nice to remove cpus_have_const_cap(), and migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(), or cpus_have_cap() depending on when their requirements. This will remove redundant instructions and improve code generation, and will make it easier to determine how each callsite will behave before, during, and after alternative patching. The cpus_have_const_cap() check in arch_tlbbatch_should_defer() is an optimization to avoid some redundant work when the ARM64_WORKAROUND_REPEAT_TLBI cpucap is detected and forces the immediate use of TLBI + DSB ISH. In the window between detecting the ARM64_WORKAROUND_REPEAT_TLBI cpucap and patching alternatives this is not a big concern and there's no need to optimize this window at the expsense of subsequent usage at runtime. This patch replaces the use of cpus_have_const_cap() with alternative_has_cap_unlikely(), which will avoid generating code to test the system_cpucaps bitmap and should be better for all subsequent calls at runtime. The ARM64_WORKAROUND_REPEAT_TLBI cpucap is added to cpucap_is_possible() so that code can be elided entirely when this is not possible without requiring ifdeffery or IS_ENABLED() checks at each usage. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-10-16arm64: Avoid cpus_have_const_cap() for ARM64_WORKAROUND_NVIDIA_CARMEL_CNPMark Rutland
In has_useable_cnp() we use cpus_have_const_cap() to check for ARM64_WORKAROUND_NVIDIA_CARMEL_CNP, but this is not necessary and cpus_have_cap() would be preferable. For historical reasons, cpus_have_const_cap() is more complicated than it needs to be. Before cpucaps are finalized, it will perform a bitmap test of the system_cpucaps bitmap, and once cpucaps are finalized it will use an alternative branch. This used to be necessary to handle some race conditions in the window between cpucap detection and the subsequent patching of alternatives and static branches, where different branches could be out-of-sync with one another (or w.r.t. alternative sequences). Now that we use alternative branches instead of static branches, these are all patched atomically w.r.t. one another, and there are only a handful of cases that need special care in the window between cpucap detection and alternative patching. Due to the above, it would be nice to remove cpus_have_const_cap(), and migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(), or cpus_have_cap() depending on when their requirements. This will remove redundant instructions and improve code generation, and will make it easier to determine how each callsite will behave before, during, and after alternative patching. We use has_useable_cnp() to determine whether we have the system-wide ARM64_HAS_CNP cpucap. Due to the structure of the cpufeature code, we call has_useable_cnp() in two distinct cases: 1) When finalizing system capabilities, setup_system_capabilities() will call has_useable_cnp() with SCOPE_SYSTEM to determine whether all CPUs have the feature. This is called after we've detected any local cpucaps including ARM64_WORKAROUND_NVIDIA_CARMEL_CNP, but prior to patching alternatives. If the ARM64_WORKAROUND_NVIDIA_CARMEL_CNP was detected, we will not detect ARM64_HAS_CNP. 2) After finalizing system capabilties, verify_local_cpu_capabilities() will call has_useable_cnp() with SCOPE_LOCAL_CPU to verify that CPUs have CNP if we previously detected it. Note that if ARM64_WORKAROUND_NVIDIA_CARMEL_CNP was detected, we will not have detected ARM64_HAS_CNP. For case 1 we must check the system_cpucaps bitmap as this occurs prior to patching the alternatives. For case 2 we'll only call has_useable_cnp() once per subsequent onlining of a CPU, and as this isn't a fast path it's not necessary to optimize for this case. This patch replaces the use of cpus_have_const_cap() with cpus_have_cap(), which will only generate the bitmap test and avoid generating an alternative sequence, resulting in slightly simpler annd smaller code being generated. The ARM64_WORKAROUND_NVIDIA_CARMEL_CNP cpucap is added to cpucap_is_possible() so that code can be elided entirely when this is not possible. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-10-16arm64: Avoid cpus_have_const_cap() for ARM64_WORKAROUND_CAVIUM_23154Mark Rutland
In gic_read_iar() we use cpus_have_const_cap() to check for ARM64_WORKAROUND_CAVIUM_23154 but this is not necessary and alternative_has_cap_*() would be preferable. For historical reasons, cpus_have_const_cap() is more complicated than it needs to be. Before cpucaps are finalized, it will perform a bitmap test of the system_cpucaps bitmap, and once cpucaps are finalized it will use an alternative branch. This used to be necessary to handle some race conditions in the window between cpucap detection and the subsequent patching of alternatives and static branches, where different branches could be out-of-sync with one another (or w.r.t. alternative sequences). Now that we use alternative branches instead of static branches, these are all patched atomically w.r.t. one another, and there are only a handful of cases that need special care in the window between cpucap detection and alternative patching. Due to the above, it would be nice to remove cpus_have_const_cap(), and migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(), or cpus_have_cap() depending on when their requirements. This will remove redundant instructions and improve code generation, and will make it easier to determine how each callsite will behave before, during, and after alternative patching. The ARM64_WORKAROUND_CAVIUM_23154 cpucap is detected and patched early on the boot CPU before the GICv3 driver is initialized and hence before gic_read_iar() is ever called. Thus it is not necessary to use cpus_have_const_cap(), and alternative_has_cap() is equivalent. In addition, arm64's gic_read_iar() lives in irq-gic-v3.c purely for historical reasons. It was originally added prior to 32-bit arm support in commit: 6d4e11c5e2e8cd54 ("irqchip/gicv3: Workaround for Cavium ThunderX erratum 23154") When support for 32-bit arm was added, 32-bit arm's gic_read_iar() implementation was placed in <asm/arch_gicv3.h>, but the arm64 version was kept within irq-gic-v3.c as it depended on a static key local to irq-gic-v3.c and it was easier to add ifdeffery, which is what we did in commit: 7936e914f7b0827c ("irqchip/gic-v3: Refactor the arm64 specific parts") Subsequently the static key was replaced with a cpucap in commit: a4023f682739439b ("arm64: Add hypervisor safe helper for checking constant capabilities") Since that commit there has been no need to keep arm64's gic_read_iar() in irq-gic-v3.c. This patch replaces the use of cpus_have_const_cap() with alternative_has_cap_unlikely(), which will avoid generating code to test the system_cpucaps bitmap and should be better for all subsequent calls at runtime. For consistency, move the arm64-specific gic_read_iar() implementation over to arm64's <asm/arch_gicv3.h>. The ARM64_WORKAROUND_CAVIUM_23154 cpucap is added to cpucap_is_possible() so that code can be elided entirely when this is not possible. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-10-16arm64: Avoid cpus_have_const_cap() for ARM64_WORKAROUND_2645198Mark Rutland
We use cpus_have_const_cap() to check for ARM64_WORKAROUND_2645198 but this is not necessary and alternative_has_cap() would be preferable. For historical reasons, cpus_have_const_cap() is more complicated than it needs to be. Before cpucaps are finalized, it will perform a bitmap test of the system_cpucaps bitmap, and once cpucaps are finalized it will use an alternative branch. This used to be necessary to handle some race conditions in the window between cpucap detection and the subsequent patching of alternatives and static branches, where different branches could be out-of-sync with one another (or w.r.t. alternative sequences). Now that we use alternative branches instead of static branches, these are all patched atomically w.r.t. one another, and there are only a handful of cases that need special care in the window between cpucap detection and alternative patching. Due to the above, it would be nice to remove cpus_have_const_cap(), and migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(), or cpus_have_cap() depending on when their requirements. This will remove redundant instructions and improve code generation, and will make it easier to determine how each callsite will behave before, during, and after alternative patching. The ARM64_WORKAROUND_2645198 cpucap is detected and patched before any userspace translation table exist, and the workaround is only necessary when manipulating usrspace translation tables which are in use. Thus it is not necessary to use cpus_have_const_cap(), and alternative_has_cap() is equivalent. This patch replaces the use of cpus_have_const_cap() with alternative_has_cap_unlikely(), which will avoid generating code to test the system_cpucaps bitmap and should be better for all subsequent calls at runtime. The ARM64_WORKAROUND_2645198 cpucap is added to cpucap_is_possible() so that code can be elided entirely when this is not possible, and redundant IS_ENABLED() checks are removed. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-10-16arm64: Avoid cpus_have_const_cap() for ARM64_WORKAROUND_1742098Mark Rutland
In elf_hwcap_fixup() we use cpus_have_const_cap() to check for ARM64_WORKAROUND_1742098, but this is not necessary and cpus_have_cap() would be preferable. For historical reasons, cpus_have_const_cap() is more complicated than it needs to be. Before cpucaps are finalized, it will perform a bitmap test of the system_cpucaps bitmap, and once cpucaps are finalized it will use an alternative branch. This used to be necessary to handle some race conditions in the window between cpucap detection and the subsequent patching of alternatives and static branches, where different branches could be out-of-sync with one another (or w.r.t. alternative sequences). Now that we use alternative branches instead of static branches, these are all patched atomically w.r.t. one another, and there are only a handful of cases that need special care in the window between cpucap detection and alternative patching. Due to the above, it would be nice to remove cpus_have_const_cap(), and migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(), or cpus_have_cap() depending on when their requirements. This will remove redundant instructions and improve code generation, and will make it easier to determine how each callsite will behave before, during, and after alternative patching. The ARM64_WORKAROUND_1742098 cpucap is detected and patched before elf_hwcap_fixup() can run, and hence it is not necessary to use cpus_have_const_cap(). We run cpus_have_const_cap() at most twice: once after finalizing system cpucaps, and potentially once more after detecting mismatched CPUs which support AArch32 at EL0. Due to this, it's not necessary to optimize for many calls to elf_hwcap_fixup(), and it's fine to use cpus_have_cap(). This patch replaces the use of cpus_have_const_cap() with cpus_have_cap(), which will only generate the bitmap test and avoid generating an alternative sequence, resulting in slightly simpler annd smaller code being generated. For consistenct with other cpucaps, the ARM64_WORKAROUND_1742098 cpucap is added to cpucap_is_possible() so that code can be elided when this is not possible. However, as we only define compat_elf_hwcap2 when CONFIG_COMPAT=y, some ifdeffery is still required within user_feature_fixup() to avoid build errors when CONFIG_COMPAT=n. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-10-16arm64: Avoid cpus_have_const_cap() for ARM64_WORKAROUND_843419Mark Rutland
In count_plts() and is_forbidden_offset_for_adrp() we use cpus_have_const_cap() to check for ARM64_WORKAROUND_843419, but this is not necessary and cpus_have_final_cap() would be preferable. For historical reasons, cpus_have_const_cap() is more complicated than it needs to be. Before cpucaps are finalized, it will perform a bitmap test of the system_cpucaps bitmap, and once cpucaps are finalized it will use an alternative branch. This used to be necessary to handle some race conditions in the window between cpucap detection and the subsequent patching of alternatives and static branches, where different branches could be out-of-sync with one another (or w.r.t. alternative sequences). Now that we use alternative branches instead of static branches, these are all patched atomically w.r.t. one another, and there are only a handful of cases that need special care in the window between cpucap detection and alternative patching. Due to the above, it would be nice to remove cpus_have_const_cap(), and migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(), or cpus_have_cap() depending on when their requirements. This will remove redundant instructions and improve code generation, and will make it easier to determine how each callsite will behave before, during, and after alternative patching. It's not possible to load a module in the window between detecting the ARM64_WORKAROUND_843419 cpucap and patching alternatives. The module VA range limits are initialized much later in module_init_limits() which is a subsys_initcall, and module loading cannot happen before this. Hence it's not necessary for count_plts() or is_forbidden_offset_for_adrp() to use cpus_have_const_cap(). This patch replaces the use of cpus_have_const_cap() with cpus_have_final_cap() which will avoid generating code to test the system_cpucaps bitmap and should be better for all subsequent calls at runtime. Using cpus_have_final_cap() clearly documents that we do not expect this code to run before cpucaps are finalized, and will make it easier to spot issues if code is changed in future to allow modules to be loaded earlier. The ARM64_WORKAROUND_843419 cpucap is added to cpucap_is_possible() so that code can be elided entirely when this is not possible, and redundant IS_ENABLED() checks are removed. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-10-16arm64: Avoid cpus_have_const_cap() for ARM64_UNMAP_KERNEL_AT_EL0Mark Rutland
In arm64_kernel_unmapped_at_el0() we use cpus_have_const_cap() to check for ARM64_UNMAP_KERNEL_AT_EL0, but this is only necessary so that arm64_get_bp_hardening_vector() and this_cpu_set_vectors() can run prior to alternatives being patched. Otherwise this is not necessary and alternative_has_cap_*() would be preferable. For historical reasons, cpus_have_const_cap() is more complicated than it needs to be. Before cpucaps are finalized, it will perform a bitmap test of the system_cpucaps bitmap, and once cpucaps are finalized it will use an alternative branch. This used to be necessary to handle some race conditions in the window between cpucap detection and the subsequent patching of alternatives and static branches, where different branches could be out-of-sync with one another (or w.r.t. alternative sequences). Now that we use alternative branches instead of static branches, these are all patched atomically w.r.t. one another, and there are only a handful of cases that need special care in the window between cpucap detection and alternative patching. Due to the above, it would be nice to remove cpus_have_const_cap(), and migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(), or cpus_have_cap() depending on when their requirements. This will remove redundant instructions and improve code generation, and will make it easier to determine how each callsite will behave before, during, and after alternative patching. The ARM64_UNMAP_KERNEL_AT_EL0 cpucap is a system-wide feature that is detected and patched before any translation tables are created for userspace. In the window between detecting the ARM64_UNMAP_KERNEL_AT_EL0 cpucap and patching alternatives, most users of arm64_kernel_unmapped_at_el0() do not need to know that the cpucap has been detected: * As KVM is initialized after cpucaps are finalized, no usaef of arm64_kernel_unmapped_at_el0() in the KVM code is reachable during this window. * The arm64_mm_context_get() function in arch/arm64/mm/context.c is only called after the SMMU driver is brought up after alternatives have been patched. Thus this can safely use cpus_have_final_cap() or alternative_has_cap_*(). Similarly the asids_update_limit() function is called after alternatives have been patched as an arch_initcall, and this can safely use cpus_have_final_cap() or alternative_has_cap_*(). Similarly we do not expect an ASID rollover to occur between cpucaps being detected and patching alternatives. Thus set_reserved_asid_bits() can safely use cpus_have_final_cap() or alternative_has_cap_*(). * The __tlbi_user() and __tlbi_user_level() macros are not used during this window, and only need to invalidate additional entries once userspace translation tables have been active on a CPU. Thus these can safely use alternative_has_cap_*(). * The xen_kernel_unmapped_at_usr() function is not used during this window as it is only used in a late_initcall. Thus this can safely use cpus_have_final_cap() or alternative_has_cap_*(). * The arm64_get_meltdown_state() function is not used during this window. It only used by arm64_get_meltdown_state() and KVM code, both of which are only used after cpucaps have been finalized. Thus this can safely use cpus_have_final_cap() or alternative_has_cap_*(). * The tls_thread_switch() uses arm64_kernel_unmapped_at_el0() as an optimization to avoid zeroing tpidrro_el0 when KPTI is enabled and this will be trampled by the KPTI trampoline. It doesn't matter if this continues to zero the register during the window between detecting the cpucap and patching alternatives, so this can safely use alternative_has_cap_*(). * The sdei_arch_get_entry_point() and do_sdei_event() functions aren't reachable at this time as the SDEI driver is registered later by acpi_init() -> acpi_ghes_init() -> sdei_init(), where acpi_init is a subsys_initcall. Thus these can safely use cpus_have_final_cap() or alternative_has_cap_*(). * The uses under drivers/ aren't reachable at this time as the drivers are registered later: - TRBE is registered via module_init() - SMMUv3 is registred via module_driver() - SPE is registred via module_init() * The arm64_get_bp_hardening_vector() and this_cpu_set_vectors() functions need to run on boot CPUs prior to patching alternatives. As these are only called during the onlining of a CPU, it's fine to perform a system_cpucaps bitmap test using cpus_have_cap(). This patch modifies this_cpu_set_vectors() to use cpus_have_cap(), and replaced all other use of cpus_have_const_cap() with alternative_has_cap_unlikely(), which will avoid generating code to test the system_cpucaps bitmap and should be better for all subsequent calls at runtime. The ARM64_UNMAP_KERNEL_AT_EL0 cpucap is added to cpucap_is_possible() so that code can be elided entirely when this is not possible. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: James Morse <james.morse@arm.com> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-10-16arm64: Avoid cpus_have_const_cap() for ARM64_{SVE,SME,SME2,FA64}Mark Rutland
In system_supports_{sve,sme,sme2,fa64}() we use cpus_have_const_cap() to check for the relevant cpucaps, but this is only necessary so that sve_setup() and sme_setup() can run prior to alternatives being patched, and otherwise alternative_has_cap_*() would be preferable. For historical reasons, cpus_have_const_cap() is more complicated than it needs to be. Before cpucaps are finalized, it will perform a bitmap test of the system_cpucaps bitmap, and once cpucaps are finalized it will use an alternative branch. This used to be necessary to handle some race conditions in the window between cpucap detection and the subsequent patching of alternatives and static branches, where different branches could be out-of-sync with one another (or w.r.t. alternative sequences). Now that we use alternative branches instead of static branches, these are all patched atomically w.r.t. one another, and there are only a handful of cases that need special care in the window between cpucap detection and alternative patching. Due to the above, it would be nice to remove cpus_have_const_cap(), and migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(), or cpus_have_cap() depending on when their requirements. This will remove redundant instructions and improve code generation, and will make it easier to determine how each callsite will behave before, during, and after alternative patching. All of system_supports_{sve,sme,sme2,fa64}() will return false prior to system cpucaps being detected. In the window between system cpucaps being detected and patching alternatives, we need system_supports_sve() and system_supports_sme() to run to initialize SVE and SME properties, but all other users of system_supports_{sve,sme,sme2,fa64}() don't depend on the relevant cpucap becoming true until alternatives are patched: * No KVM code runs until after alternatives are patched, and so this can safely use cpus_have_final_cap() or alternative_has_cap_*(). * The cpuid_cpu_online() callback in arch/arm64/kernel/cpuinfo.c is registered later from cpuinfo_regs_init() as a device_initcall, and so this can safely use cpus_have_final_cap() or alternative_has_cap_*(). * The entry, signal, and ptrace code isn't reachable until userspace has run, and so this can safely use cpus_have_final_cap() or alternative_has_cap_*(). * Currently perf_reg_validate() will un-reserve the PERF_REG_ARM64_VG pseudo-register before alternatives are patched, and before sve_setup() has run. If a sampling event is created early enough, this would allow perf_ext_reg_value() to sample (the as-yet uninitialized) thread_struct::vl[] prior to alternatives being patched. It would be preferable to defer this until alternatives are patched, and this can safely use alternative_has_cap_*(). * The context-switch code will run during this window as part of stop_machine() used during alternatives_patch_all(), and potentially for other work if other kernel threads are created early. No threads require the use of SVE/SME/SME2/FA64 prior to alternatives being patched, and it would be preferable for the related context-switch logic to take effect after alternatives are patched so that ths is guaranteed to see a consistent system-wide state (e.g. anything initialized by sve_setup() and sme_setup(). This can safely ues alternative_has_cap_*(). This patch replaces the use of cpus_have_const_cap() with alternative_has_cap_unlikely(), which will avoid generating code to test the system_cpucaps bitmap and should be better for all subsequent calls at runtime. The sve_setup() and sme_setup() functions are modified to use cpus_have_cap() directly so that they can observe the cpucaps being set prior to alternatives being patched. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Mark Brown <broonie@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-10-16arm64: Avoid cpus_have_const_cap() for ARM64_SPECTRE_V2Mark Rutland
In arm64_apply_bp_hardening() we use cpus_have_const_cap() to check for ARM64_SPECTRE_V2 , but this is not necessary and alternative_has_cap_*() would be preferable. For historical reasons, cpus_have_const_cap() is more complicated than it needs to be. Before cpucaps are finalized, it will perform a bitmap test of the system_cpucaps bitmap, and once cpucaps are finalized it will use an alternative branch. This used to be necessary to handle some race conditions in the window between cpucap detection and the subsequent patching of alternatives and static branches, where different branches could be out-of-sync with one another (or w.r.t. alternative sequences). Now that we use alternative branches instead of static branches, these are all patched atomically w.r.t. one another, and there are only a handful of cases that need special care in the window between cpucap detection and alternative patching. Due to the above, it would be nice to remove cpus_have_const_cap(), and migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(), or cpus_have_cap() depending on when their requirements. This will remove redundant instructions and improve code generation, and will make it easier to determine how each callsite will behave before, during, and after alternative patching. The cpus_have_const_cap() check in arm64_apply_bp_hardening() is intended to avoid the overhead of looking up and invoking a per-cpu function pointer when no branch predictor hardening is required. The arm64_apply_bp_hardening() function itself is called in two distinct flows: 1) When handling certain exceptions taken from EL0, where the PC could be a TTBR1 address and hence might have trained a branch predictor. As cpucaps are detected and alternatives are patched long before it is possible to execute userspace, it is not necessary to use cpus_have_const_cap() for these cases, and cpus_have_final_cap() or alternative_has_cap() would be preferable. 2) When switching between tasks in check_and_switch_context(). This can be called before cpucaps are detected and alternatives are patched, but this is long before the kernel mounts filesystems or accepts any input. At this stage the kernel hasn't loaded any secrets and there is no potential for hostile branch predictor training. Once cpucaps have been finalized and alternatives have been patched, switching tasks will invalidate any prior predictions. Hence it is not necessary to use cpus_have_const_cap() for this case. This patch replaces the use of cpus_have_const_cap() with alternative_has_cap_unlikely(), which will avoid generating code to test the system_cpucaps bitmap and should be better for all subsequent calls at runtime. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-10-16arm64: Avoid cpus_have_const_cap() for ARM64_MTEMark Rutland
In system_supports_mte() we use cpus_have_const_cap() to check for ARM64_MTE, but this is not necessary and cpus_have_final_boot_cap() would be preferable. For historical reasons, cpus_have_const_cap() is more complicated than it needs to be. Before cpucaps are finalized, it will perform a bitmap test of the system_cpucaps bitmap, and once cpucaps are finalized it will use an alternative branch. This used to be necessary to handle some race conditions in the window between cpucap detection and the subsequent patching of alternatives and static branches, where different branches could be out-of-sync with one another (or w.r.t. alternative sequences). Now that we use alternative branches instead of static branches, these are all patched atomically w.r.t. one another, and there are only a handful of cases that need special care in the window between cpucap detection and alternative patching. Due to the above, it would be nice to remove cpus_have_const_cap(), and migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(), or cpus_have_cap() depending on when their requirements. This will remove redundant instructions and improve code generation, and will make it easier to determine how each callsite will behave before, during, and after alternative patching. The ARM64_MTE cpucap is a boot cpu feature which is detected and patched early on the boot CPU under smp_prepare_boot_cpu(). In the window between detecting the ARM64_MTE cpucap and patching alternatives, nothing depends on the ARM64_MTE cpucap: * The kasan_hw_tags_enabled() helper depends upon the kasan_flag_enabled static key, which is initialized later in kasan_init_hw_tags() after alternatives have been applied. * No KVM code is called during this window, and KVM is not initialized until after system cpucaps have been detected and patched. KVM code can safely use cpus_have_final_cap() or alternative_has_cap_*(). * We don't context-switch prior to patching boot alternatives, and thus mte_thread_switch() is not reachable during this window. Thus, we can safely use cpus_have_final_boot_cap() or alternative_has_cap_*() in the context-switch code. * IRQ and FIQ are masked during this window, and we can only take SError and Debug exceptions. SError exceptions are fatal at this point in time, and we do not expect to take Debug exceptions, thus: - It's fine to lave TCO set for exceptions taken during this window, and mte_disable_tco_entry() doesn't need to do anything. - We don't need to detect and report asynchronous tag cehck faults during this window, and neither mte_check_tfsr_entry() nor mte_check_tfsr_exit() need to do anything. Since we want to report any SErrors taken during thiw window, these cannot safely use cpus_have_final_boot_cap() or cpus_have_final_cap(), but these can safely use alternative_has_cap_*(). * The __set_pte_at() function is not used during this window. It is possible for this to be used on kernel mappings prior to boot cpucaps being finalized, so this cannot safely use cpus_have_final_boot_cap() or cpus_have_final_cap(), but this can safely use alternative_has_cap_*(). * No userspace translation tables have been created yet, and swap has not been initialized yet. Thus swapping is not possible and none of the following are called: - arch_thp_swp_supported() - arch_prepare_to_swap() - arch_swap_invalidate_page() - arch_swap_invalidate_area() - arch_swap_restore() These can safely use system_has_final_cap() or alternative_has_cap_*(). * The elfcore functions are only reachable after userspace is brought up, which happens after system cpucaps have been detected and patched. Thus the elfcore code can safely use cpus_have_final_cap() or alternative_has_cap_*(). * Hibernation is only possible after userspace is brought up, which happens after system cpucaps have been detected and patched. Thus the hibernate code can safely use cpus_have_final_cap() or alternative_has_cap_*(). * The set_tagged_addr_ctrl() function is only reachable after userspace is brought up, which happens after system cpucaps have been detected and patched. Thus this can safely use cpus_have_final_cap() or alternative_has_cap_*(). * The copy_user_highpage() and copy_highpage() functions are not used during this window, and can safely use alternative_has_cap_*(). This patch replaces the use of cpus_have_const_cap() with alternative_has_cap_unlikely(), which avoid generating code to test the system_cpucaps bitmap and should be better for all subsequent calls at runtime. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Peter Collingbourne <pcc@google.com> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-10-16arm64: Avoid cpus_have_const_cap() for ARM64_HAS_TLB_RANGEMark Rutland
We use cpus_have_const_cap() to check for ARM64_HAS_TLB_RANGE, but this is not necessary and alternative_has_cap_*() would be preferable. For historical reasons, cpus_have_const_cap() is more complicated than it needs to be. Before cpucaps are finalized, it will perform a bitmap test of the system_cpucaps bitmap, and once cpucaps are finalized it will use an alternative branch. This used to be necessary to handle some race conditions in the window between cpucap detection and the subsequent patching of alternatives and static branches, where different branches could be out-of-sync with one another (or w.r.t. alternative sequences). Now that we use alternative branches instead of static branches, these are all patched atomically w.r.t. one another, and there are only a handful of cases that need special care in the window between cpucap detection and alternative patching. Due to the above, it would be nice to remove cpus_have_const_cap(), and migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(), or cpus_have_cap() depending on when their requirements. This will remove redundant instructions and improve code generation, and will make it easier to determine how each callsite will behave before, during, and after alternative patching. In the window between detecting the ARM64_HAS_TLB_RANGE cpucap and patching alternative branches, we do not perform any TLB invalidation, and even if we were to perform TLB invalidation here it would not be functionally necessary to optimize this by using range invalidation. Hence there's no need to use cpus_have_const_cap(), and alternative_has_cap_unlikely() is sufficient. This patch replaces the use of cpus_have_const_cap() with alternative_has_cap_unlikely(), which will avoid generating code to test the system_cpucaps bitmap and should be better for all subsequent calls at runtime. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-10-16arm64: Avoid cpus_have_const_cap() for ARM64_HAS_RNGMark Rutland
In __cpu_has_rng() we use cpus_have_const_cap() to check for ARM64_HAS_RNG, but this is not necessary and alternative_has_cap_*() would be preferable. For historical reasons, cpus_have_const_cap() is more complicated than it needs to be. Before cpucaps are finalized, it will perform a bitmap test of the system_cpucaps bitmap, and once cpucaps are finalized it will use an alternative branch. This used to be necessary to handle some race conditions in the window between cpucap detection and the subsequent patching of alternatives and static branches, where different branches could be out-of-sync with one another (or w.r.t. alternative sequences). Now that we use alternative branches instead of static branches, these are all patched atomically w.r.t. one another, and there are only a handful of cases that need special care in the window between cpucap detection and alternative patching. Due to the above, it would be nice to remove cpus_have_const_cap(), and migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(), or cpus_have_cap() depending on when their requirements. This will remove redundant instructions and improve code generation, and will make it easier to determine how each callsite will behave before, during, and after alternative patching. In the window between detecting the ARM64_HAS_RNG cpucap and patching alternative branches, nothing which calls __cpu_has_rng() can run, and hence it's not necessary to use cpus_have_const_cap(). This patch replaces the use of cpus_have_const_cap() with alternative_has_cap_unlikely(), which will avoid generating code to test the system_cpucaps bitmap and should be better for all subsequent calls at runtime. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Mark Brown <broonie@kernel.org> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-10-16arm64: Avoid cpus_have_const_cap() for ARM64_HAS_EPANMark Rutland
We use cpus_have_const_cap() to check for ARM64_HAS_EPAN but this is not necessary and alternative_has_cap() or cpus_have_cap() would be preferable. For historical reasons, cpus_have_const_cap() is more complicated than it needs to be. Before cpucaps are finalized, it will perform a bitmap test of the system_cpucaps bitmap, and once cpucaps are finalized it will use an alternative branch. This used to be necessary to handle some race conditions in the window between cpucap detection and the subsequent patching of alternatives and static branches, where different branches could be out-of-sync with one another (or w.r.t. alternative sequences). Now that we use alternative branches instead of static branches, these are all patched atomically w.r.t. one another, and there are only a handful of cases that need special care in the window between cpucap detection and alternative patching. Due to the above, it would be nice to remove cpus_have_const_cap(), and migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(), or cpus_have_cap() depending on when their requirements. This will remove redundant instructions and improve code generation, and will make it easier to determine how each callsite will behave before, during, and after alternative patching. The ARM64_HAS_EPAN cpucap is used to affect two things: 1) The permision bits used for userspace executable mappings, which are chosen by adjust_protection_map(), which is an arch_initcall. This is called after the ARM64_HAS_EPAN cpucap has been detected and alternatives have been patched, and before any userspace translation tables exist. 2) The handling of faults taken from (user or kernel) accesses to userspace executable mappings in do_page_fault(). Userspace translation tables are created after adjust_protection_map() is called, and hence after the ARM64_HAS_EPAN cpucap has been detected and alternatives have been patched. Neither of these run until after ARM64_HAS_EPAN cpucap has been detected and alternatives have been patched, and hence there's no need to use cpus_have_const_cap(). Since adjust_protection_map() is only executed once at boot time it would be best for it to use cpus_have_cap(), and since do_page_fault() is executed frequently it would be best for it to use alternatives_have_cap_unlikely(). This patch replaces the uses of cpus_have_const_cap() with cpus_have_cap() and alternative_has_cap_unlikely(), which will avoid generating redundant code, and should be better for all subsequent calls at runtime. The ARM64_HAS_EPAN cpucap is added to cpucap_is_possible() so that code can be elided entirely when this is not possible. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Vladimir Murzin <vladimir.murzin@arm.com> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-10-16arm64: Avoid cpus_have_const_cap() for ARM64_HAS_PANMark Rutland
In system_uses_hw_pan() we use cpus_have_const_cap() to check for ARM64_HAS_PAN, but this is only necessary so that the system_uses_ttbr0_pan() check in setup_cpu_features() can run prior to alternatives being patched, and otherwise this is not necessary and alternative_has_cap_*() would be preferable. For historical reasons, cpus_have_const_cap() is more complicated than it needs to be. Before cpucaps are finalized, it will perform a bitmap test of the system_cpucaps bitmap, and once cpucaps are finalized it will use an alternative branch. This used to be necessary to handle some race conditions in the window between cpucap detection and the subsequent patching of alternatives and static branches, where different branches could be out-of-sync with one another (or w.r.t. alternative sequences). Now that we use alternative branches instead of static branches, these are all patched atomically w.r.t. one another, and there are only a handful of cases that need special care in the window between cpucap detection and alternative patching. Due to the above, it would be nice to remove cpus_have_const_cap(), and migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(), or cpus_have_cap() depending on when their requirements. This will remove redundant instructions and improve code generation, and will make it easier to determine how each callsite will behave before, during, and after alternative patching. The ARM64_HAS_PAN cpucap is used by system_uses_hw_pan() and system_uses_ttbr0_pan() depending on whether CONFIG_ARM64_SW_TTBR0_PAN is selected, and: * We only use system_uses_hw_pan() directly in __sdei_handler(), which isn't reachable until after alternatives have been patched, and for this it is safe to use alternative_has_cap_*(). * We use system_uses_ttbr0_pan() in a few places: - In check_and_switch_context() and cpu_uninstall_idmap(), which will defer installing a translation table into TTBR0 when the ARM64_HAS_PAN cpucap is not detected. Prior to patching alternatives, all CPUs will be using init_mm with the reserved ttbr0 translation tables install in TTBR0, so these can safely use alternative_has_cap_*(). - In update_saved_ttbr0(), which will only save the active TTBR0 into a per-thread variable when the ARM64_HAS_PAN cpucap is not detected. Prior to patching alternatives, all CPUs will be using init_mm with the reserved ttbr0 translation tables install in TTBR0, so these can safely use alternative_has_cap_*(). - In efi_set_pgd(), which will handle check_and_switch_context() deferring the installation of TTBR0 when TTBR0 PAN is detected. The EFI runtime services are not initialized until after alternatives have been patched, and so this can safely use alternative_has_cap_*() or cpus_have_final_cap(). - In uaccess_ttbr0_disable() and uaccess_ttbr0_enable(), where we'll avoid installing/uninstalling a translation table in TTBR0 when ARM64_HAS_PAN is detected. Prior to patching alternatives we will not perform any uaccess and will not call uaccess_ttbr0_disable() or uaccess_ttbr0_enable(), and so these can safely use alternative_has_cap_*() or cpus_have_final_cap(). - In is_el1_permission_fault() where we will consider a translation fault on a TTBR0 address to be a permission fault when ARM64_HAS_PAN is not detected *and* we have set the PAN bit in the SPSR (which tells us that in the interrupted context, TTBR0 pointed at the reserved zero ttbr). In the window between detecting system cpucaps and patching alternatives we should not perform any accesses to TTBR0 addresses, and no userspace translation tables exist until after patching alternatives. Thus it is safe for this to use alternative_has_cap*(). This patch replaces the use of cpus_have_const_cap() with alternative_has_cap_unlikely(), which will avoid generating code to test the system_cpucaps bitmap and should be better for all subsequent calls at runtime. So that the check for TTBR0 PAN in setup_cpu_features() can run prior to alternatives being patched, the call to system_uses_ttbr0_pan() is replaced with an explicit check of the ARM64_HAS_PAN bit in the system_cpucaps bitmap. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-10-16arm64: Avoid cpus_have_const_cap() for ARM64_HAS_GIC_PRIO_MASKINGMark Rutland
In system_uses_irq_prio_masking() we use cpus_have_const_cap() to check for ARM64_HAS_GIC_PRIO_MASKING, but this is not necessary and alternative_has_cap_*() would be preferable. For historical reasons, cpus_have_const_cap() is more complicated than it needs to be. Before cpucaps are finalized, it will perform a bitmap test of the system_cpucaps bitmap, and once cpucaps are finalized it will use an alternative branch. This used to be necessary to handle some race conditions in the window between cpucap detection and the subsequent patching of alternatives and static branches, where different branches could be out-of-sync with one another (or w.r.t. alternative sequences). Now that we use alternative branches instead of static branches, these are all patched atomically w.r.t. one another, and there are only a handful of cases that need special care in the window between cpucap detection and alternative patching. Due to the above, it would be nice to remove cpus_have_const_cap(), and migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(), or cpus_have_cap() depending on when their requirements. This will remove redundant instructions and improve code generation, and will make it easier to determine how each callsite will behave before, during, and after alternative patching. When CONFIG_ARM64_PSEUDO_NMI=y the ARM64_HAS_GIC_PRIO_MASKING cpucap is a strict boot cpu feature which is detected and patched early on the boot cpu, which both happen in smp_prepare_boot_cpu(). In the window between the ARM64_HAS_GIC_PRIO_MASKING cpucap is detected and alternatives are patched we don't run any code that depends upon the ARM64_HAS_GIC_PRIO_MASKING cpucap: * We leave DAIF.IF set until after boot alternatives are patched, and interrupts are unmasked later in init_IRQ(), so we cannot reach IRQ/FIQ entry code and will not use irqs_priority_unmasked(). * We don't call any code which uses arm_cpuidle_save_irq_context() and arm_cpuidle_restore_irq_context() during this window. * We don't call start_thread_common() during this window. * The local_irq_*() code in <asm/irqflags.h> depends solely on an alternative branch since commit: a5f61cc636f48bdf ("arm64: irqflags: use alternative branches for pseudo-NMI logic") ... and hence will use the default (DAIF-only) masking behaviour until alternatives are patched. * Secondary CPUs are brought up later after alternatives are patched, and alternatives are patched on the boot CPU immediately prior to calling init_gic_priority_masking(), so we'll correctly initialize interrupt masking regardless. This patch replaces the use of cpus_have_const_cap() with alternative_has_cap_unlikely(), which avoid generating code to test the system_cpucaps bitmap and should be better for all subsequent calls at runtime. As this makes system_uses_irq_prio_masking() equivalent to __irqflags_uses_pmr(), the latter is removed and replaced with the former for consistency. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Mark Brown <broonie@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-10-16arm64: Avoid cpus_have_const_cap() for ARM64_HAS_CNPMark Rutland
In system_supports_cnp() we use cpus_have_const_cap() to check for ARM64_HAS_CNP, but this is only necessary so that the cpu_enable_cnp() callback can run prior to alternatives being patched, and otherwise this is not necessary and alternative_has_cap_*() would be preferable. For historical reasons, cpus_have_const_cap() is more complicated than it needs to be. Before cpucaps are finalized, it will perform a bitmap test of the system_cpucaps bitmap, and once cpucaps are finalized it will use an alternative branch. This used to be necessary to handle some race conditions in the window between cpucap detection and the subsequent patching of alternatives and static branches, where different branches could be out-of-sync with one another (or w.r.t. alternative sequences). Now that we use alternative branches instead of static branches, these are all patched atomically w.r.t. one another, and there are only a handful of cases that need special care in the window between cpucap detection and alternative patching. Due to the above, it would be nice to remove cpus_have_const_cap(), and migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(), or cpus_have_cap() depending on when their requirements. This will remove redundant instructions and improve code generation, and will make it easier to determine how each callsite will behave before, during, and after alternative patching. The cpu_enable_cnp() callback is run immediately after the ARM64_HAS_CNP cpucap is detected system-wide under setup_system_capabilities(), prior to alternatives being patched. During this window cpu_enable_cnp() uses cpu_replace_ttbr1() to set the CNP bit for the swapper_pg_dir in TTBR1. No other users of the ARM64_HAS_CNP cpucap need the up-to-date value during this window: * As KVM isn't initialized yet, kvm_get_vttbr() isn't reachable. * As cpuidle isn't initialized yet, __cpu_suspend_exit() isn't reachable. * At this point all CPUs are using the swapper_pg_dir with a reserved ASID in TTBR1, and the idmap_pg_dir in TTBR0, so neither check_and_switch_context() nor cpu_do_switch_mm() need to do anything special. This patch replaces the use of cpus_have_const_cap() with alternative_has_cap_unlikely(), which will avoid generating code to test the system_cpucaps bitmap and should be better for all subsequent calls at runtime. To allow cpu_enable_cnp() to function prior to alternatives being patched, cpu_replace_ttbr1() is split into cpu_replace_ttbr1() and cpu_enable_swapper_cnp(), with the former only used for early TTBR1 replacement, and the latter used by both cpu_enable_cnp() and __cpu_suspend_exit(). Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Vladimir Murzin <vladimir.murzin@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-10-16arm64: Avoid cpus_have_const_cap() for ARM64_HAS_CACHE_DICMark Rutland
In icache_inval_all_pou() we use cpus_have_const_cap() to check for ARM64_HAS_CACHE_DIC, but this is not necessary and alternative_has_cap_*() would be preferable. For historical reasons, cpus_have_const_cap() is more complicated than it needs to be. Before cpucaps are finalized, it will perform a bitmap test of the system_cpucaps bitmap, and once cpucaps are finalized it will use an alternative branch. This used to be necessary to handle some race conditions in the window between cpucap detection and the subsequent patching of alternatives and static branches, where different branches could be out-of-sync with one another (or w.r.t. alternative sequences). Now that we use alternative branches instead of static branches, these are all patched atomically w.r.t. one another, and there are only a handful of cases that need special care in the window between cpucap detection and alternative patching. Due to the above, it would be nice to remove cpus_have_const_cap(), and migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(), or cpus_have_cap() depending on when their requirements. This will remove redundant instructions and improve code generation, and will make it easier to determine how each callsite will behave before, during, and after alternative patching. The cpus_have_const_cap() check in icache_inval_all_pou() is an optimization to skip a redundant (but benign) IC IALLUIS + DSB ISH sequence when all CPUs in the system have DIC. In the window between detecting the ARM64_HAS_CACHE_DIC cpucap and patching alternative branches there is only a single potential call to icache_inval_all_pou() (in the alternatives patching itself), which there's no need to optimize for at the expense of other callers. This patch replaces the use of cpus_have_const_cap() with alternative_has_cap_unlikely(), which will avoid generating code to test the system_cpucaps bitmap and should be better for all subsequent calls at runtime. This also aligns better with the way we patch the assembly cache maintenance sequences in arch/arm64/mm/cache.S. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-10-16arm64: Avoid cpus_have_const_cap() for ARM64_HAS_BTIMark Rutland
In system_supports_bti() we use cpus_have_const_cap() to check for ARM64_HAS_BTI, but this is not necessary and alternative_has_cap_*() or cpus_have_final_*cap() would be preferable. For historical reasons, cpus_have_const_cap() is more complicated than it needs to be. Before cpucaps are finalized, it will perform a bitmap test of the system_cpucaps bitmap, and once cpucaps are finalized it will use an alternative branch. This used to be necessary to handle some race conditions in the window between cpucap detection and the subsequent patching of alternatives and static branches, where different branches could be out-of-sync with one another (or w.r.t. alternative sequences). Now that we use alternative branches instead of static branches, these are all patched atomically w.r.t. one another, and there are only a handful of cases that need special care in the window between cpucap detection and alternative patching. Due to the above, it would be nice to remove cpus_have_const_cap(), and migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(), or cpus_have_cap() depending on when their requirements. This will remove redundant instructions and improve code generation, and will make it easier to determine how each callsite will behave before, during, and after alternative patching. When CONFIG_ARM64_BTI_KERNEL=y, the ARM64_HAS_BTI cpucap is a strict boot cpu feature which is detected and patched early on the boot cpu. All uses guarded by CONFIG_ARM64_BTI_KERNEL happen after the boot CPU has detected ARM64_HAS_BTI and patched boot alternatives, and hence can safely use alternative_has_cap_*() or cpus_have_final_boot_cap(). Regardless of CONFIG_ARM64_BTI_KERNEL, all other uses of ARM64_HAS_BTI happen after system capabilities have been finalized and alternatives have been patched. Hence these can safely use alternative_has_cap_*) or cpus_have_final_cap(). This patch splits system_supports_bti() into system_supports_bti() and system_supports_bti_kernel(), with the former handling where the cpucap affects userspace functionality, and ther latter handling where the cpucap affects kernel functionality. The use of cpus_have_const_cap() is replaced by cpus_have_final_cap() in cpus_have_const_cap, and cpus_have_final_boot_cap() in system_supports_bti_kernel(). This will avoid generating code to test the system_cpucaps bitmap and should be better for all subsequent calls at runtime. The use of cpus_have_final_cap() and cpus_have_final_boot_cap() will make it easier to spot if code is chaanged such that these run before the ARM64_HAS_BTI cpucap is guaranteed to have been finalized. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Mark Brown <broonie@kernel.org> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-10-16arm64: Avoid cpus_have_const_cap() for ARM64_HAS_ARMv8_4_TTLMark Rutland
In __tlbi_level() we use cpus_have_const_cap() to check for ARM64_HAS_ARMv8_4_TTL, but this is not necessary and alternative_has_cap_*() would be preferable. For historical reasons, cpus_have_const_cap() is more complicated than it needs to be. Before cpucaps are finalized, it will perform a bitmap test of the system_cpucaps bitmap, and once cpucaps are finalized it will use an alternative branch. This used to be necessary to handle some race conditions in the window between cpucap detection and the subsequent patching of alternatives and static branches, where different branches could be out-of-sync with one another (or w.r.t. alternative sequences). Now that we use alternative branches instead of static branches, these are all patched atomically w.r.t. one another, and there are only a handful of cases that need special care in the window between cpucap detection and alternative patching. Due to the above, it would be nice to remove cpus_have_const_cap(), and migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(), or cpus_have_cap() depending on when their requirements. This will remove redundant instructions and improve code generation, and will make it easier to determine how each callsite will behave before, during, and after alternative patching. In the window between detecting the ARM64_HAS_ARMv8_4_TTL cpucap and patching alternative branches, we do not perform any TLB invalidation, and even if we were to perform TLB invalidation here it would not be functionally necessary to optimize this by using the TTL hint. Hence there's no need to use cpus_have_const_cap(), and alternative_has_cap_unlikely() is sufficient. This patch replaces the use of cpus_have_const_cap() with alternative_has_cap_unlikely(), which will avoid generating code to test the system_cpucaps bitmap and should be better for all subsequent calls at runtime. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-10-16arm64: Avoid cpus_have_const_cap() for ARM64_HAS_{ADDRESS,GENERIC}_AUTHMark Rutland
In system_supports_address_auth() and system_supports_generic_auth() we use cpus_have_const_cap to check for ARM64_HAS_ADDRESS_AUTH and ARM64_HAS_GENERIC_AUTH respectively, but this is not necessary and alternative_has_cap_*() would bre preferable. For historical reasons, cpus_have_const_cap() is more complicated than it needs to be. Before cpucaps are finalized, it will perform a bitmap test of the system_cpucaps bitmap, and once cpucaps are finalized it will use an alternative branch. This used to be necessary to handle some race conditions in the window between cpucap detection and the subsequent patching of alternatives and static branches, where different branches could be out-of-sync with one another (or w.r.t. alternative sequences). Now that we use alternative branches instead of static branches, these are all patched atomically w.r.t. one another, and there are only a handful of cases that need special care in the window between cpucap detection and alternative patching. Due to the above, it would be nice to remove cpus_have_const_cap(), and migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(), or cpus_have_cap() depending on when their requirements. This will remove redundant instructions and improve code generation, and will make it easier to determine how each callsite will behave before, during, and after alternative patching. The ARM64_HAS_ADDRESS_AUTH cpucap is a boot cpu feature which is detected and patched early on the boot CPU before any pointer authentication keys are enabled via their respective SCTLR_ELx.EN* bits. Nothing which uses system_supports_address_auth() is called before the boot alternatives are patched. Thus it is safe for system_supports_address_auth() to use cpus_have_final_boot_cap() to check for ARM64_HAS_ADDRESS_AUTH. The ARM64_HAS_GENERIC_AUTH cpucap is a system feature which is detected on all CPUs, then finalized and patched under setup_system_capabilities(). We use system_supports_generic_auth() in a few places: * The pac_generic_keys_get() and pac_generic_keys_set() functions are only reachable from system calls once userspace is up and running. As cpucaps are finalzied long before userspace runs, these can safely use alternative_has_cap_*() or cpus_have_final_cap(). * The ptrauth_prctl_reset_keys() function is only reachable from system calls once userspace is up and running. As cpucaps are finalized long before userspace runs, this can safely use alternative_has_cap_*() or cpus_have_final_cap(). * The ptrauth_keys_install_user() function is used during context-switch. This is called prior to alternatives being applied, and so cannot use cpus_have_final_cap(), but as this only needs to switch the APGA key for userspace tasks, it's safe to use alternative_has_cap_*(). * The ptrauth_keys_init_user() function is used to initialize userspace keys, and is only reachable after system cpucaps have been finalized and patched. Thus this can safely use alternative_has_cap_*() or cpus_have_final_cap(). * The system_has_full_ptr_auth() helper function is only used by KVM code, which is only reachable after system cpucaps have been finalized and patched. Thus this can safely use alternative_has_cap_*() or cpus_have_final_cap(). This patch modifies system_supports_address_auth() to use cpus_have_final_boot_cap() to check ARM64_HAS_ADDRESS_AUTH, and modifies system_supports_generic_auth() to use alternative_has_cap_unlikely() to check ARM64_HAS_GENERIC_AUTH. In either case this will avoid generating code to test the system_cpucaps bitmap and should be better for all subsequent calls at runtime. The use of cpus_have_final_boot_cap() will make it easier to spot if code is chaanged such that these run before the relevant cpucap is guaranteed to have been finalized. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-10-16arm64: Use a positive cpucap for FP/SIMDMark Rutland
Currently we have a negative cpucap which describes the *absence* of FP/SIMD rather than *presence* of FP/SIMD. This largely works, but is somewhat awkward relative to other cpucaps that describe the presence of a feature, and it would be nicer to have a cpucap which describes the presence of FP/SIMD: * This will allow the cpucap to be treated as a standard ARM64_CPUCAP_SYSTEM_FEATURE, which can be detected with the standard has_cpuid_feature() function and ARM64_CPUID_FIELDS() description. * This ensures that the cpucap will only transition from not-present to present, reducing the risk of unintentional and/or unsafe usage of FP/SIMD before cpucaps are finalized. * This will allow using arm64_cpu_capabilities::cpu_enable() to enable the use of FP/SIMD later, with FP/SIMD being disabled at boot time otherwise. This will ensure that any unintentional and/or unsafe usage of FP/SIMD prior to this is trapped, and will ensure that FP/SIMD is never unintentionally enabled for userspace in mismatched big.LITTLE systems. This patch replaces the negative ARM64_HAS_NO_FPSIMD cpucap with a positive ARM64_HAS_FPSIMD cpucap, making changes as described above. Note that as FP/SIMD will now be trapped when not supported system-wide, do_fpsimd_acc() must handle these traps in the same way as for SVE and SME. The commentary in fpsimd_restore_current_state() is updated to describe the new scheme. No users of system_supports_fpsimd() need to know that FP/SIMD is available prior to alternatives being patched, so this is updated to use alternative_has_cap_likely() to check for the ARM64_HAS_FPSIMD cpucap, without generating code to test the system_cpucaps bitmap. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Mark Brown <broonie@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-10-16arm64: Rename SVE/SME cpu_enable functionsMark Rutland
The arm64_cpu_capabilities::cpu_enable() callbacks for SVE, SME, SME2, and FA64 are named with an unusual "${feature}_kernel_enable" pattern rather than the much more common "cpu_enable_${feature}". Now that we only use these as cpu_enable() callbacks, it would be nice to have them match the usual scheme. This patch renames the cpu_enable() callbacks to match this scheme. At the same time, the comment above cpu_enable_sve() is removed for consistency with the other cpu_enable() callbacks. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Mark Brown <broonie@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-10-16arm64: Explicitly save/restore CPACR when probing SVE and SMEMark Rutland
When a CPUs onlined we first probe for supported features and propetites, and then we subsequently enable features that have been detected. This is a little problematic for SVE and SME, as some properties (e.g. vector lengths) cannot be probed while they are disabled. Due to this, the code probing for SVE properties has to enable SVE for EL1 prior to proving, and the code probing for SME properties has to enable SME for EL1 prior to probing. We never disable SVE or SME for EL1 after probing. It would be a little nicer to transiently enable SVE and SME during probing, leaving them both disabled unless explicitly enabled, as this would make it much easier to catch unintentional usage (e.g. when they are not present system-wide). This patch reworks the SVE and SME feature probing code to only transiently enable support at EL1, disabling after probing is complete. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Reviewed-by: Mark Brown <broonie@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-10-16arm64: kvm: Use cpus_have_final_cap() explicitlyMark Rutland
Much of the arm64 KVM code uses cpus_have_const_cap() to check for cpucaps, but this is unnecessary and it would be preferable to use cpus_have_final_cap(). For historical reasons, cpus_have_const_cap() is more complicated than it needs to be. Before cpucaps are finalized, it will perform a bitmap test of the system_cpucaps bitmap, and once cpucaps are finalized it will use an alternative branch. This used to be necessary to handle some race conditions in the window between cpucap detection and the subsequent patching of alternatives and static branches, where different branches could be out-of-sync with one another (or w.r.t. alternative sequences). Now that we use alternative branches instead of static branches, these are all patched atomically w.r.t. one another, and there are only a handful of cases that need special care in the window between cpucap detection and alternative patching. Due to the above, it would be nice to remove cpus_have_const_cap(), and migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(), or cpus_have_cap() depending on when their requirements. This will remove redundant instructions and improve code generation, and will make it easier to determine how each callsite will behave before, during, and after alternative patching. KVM is initialized after cpucaps have been finalized and alternatives have been patched. Since commit: d86de40decaa14e6 ("arm64: cpufeature: upgrade hyp caps to final") ... use of cpus_have_const_cap() in hyp code is automatically converted to use cpus_have_final_cap(): | static __always_inline bool cpus_have_const_cap(int num) | { | if (is_hyp_code()) | return cpus_have_final_cap(num); | else if (system_capabilities_finalized()) | return __cpus_have_const_cap(num); | else | return cpus_have_cap(num); | } Thus, converting hyp code to use cpus_have_final_cap() directly will not result in any functional change. Non-hyp KVM code is also not executed until cpucaps have been finalized, and it would be preferable to extent the same treatment to this code and use cpus_have_final_cap() directly. This patch converts instances of cpus_have_const_cap() in KVM-only code over to cpus_have_final_cap(). As all of this code runs after cpucaps have been finalized, there should be no functional change as a result of this patch, but the redundant instructions generated by cpus_have_const_cap() will be removed from the non-hyp KVM code. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Marc Zyngier <maz@kernel.org> Cc: Oliver Upton <oliver.upton@linux.dev> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-10-16arm64: Fixup user features at boot timeMark Rutland
For ARM64_WORKAROUND_2658417, we use a cpu_enable() callback to hide the ID_AA64ISAR1_EL1.BF16 ID register field. This is a little awkward as CPUs may attempt to apply the workaround concurrently, requiring that we protect the bulk of the callback with a raw_spinlock, and requiring some pointless work every time a CPU is subsequently hotplugged in. This patch makes this a little simpler by handling the masking once at boot time. A new user_feature_fixup() function is called at the start of setup_user_features() to mask the feature, matching the style of elf_hwcap_fixup(). The ARM64_WORKAROUND_2658417 cpucap is added to cpucap_is_possible() so that code can be elided entirely when this is not possible. Note that the ARM64_WORKAROUND_2658417 capability is matched with ERRATA_MIDR_RANGE(), which implicitly gives the capability a ARM64_CPUCAP_LOCAL_CPU_ERRATUM type, which forbids the late onlining of a CPU with the erratum if the erratum was not present at boot time. Therefore this patch doesn't change the behaviour for late onlining. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Mark Brown <broonie@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-10-16arm64: Rework setup_cpu_features()Mark Rutland
Currently setup_cpu_features() handles a mixture of one-time kernel feature setup (e.g. cpucaps) and one-time user feature setup (e.g. ELF hwcaps). Subsequent patches will rework other one-time setup and expand the logic currently in setup_cpu_features(), and in preparation for this it would be helpful to split the kernel and user setup into separate functions. This patch splits setup_user_features() out of setup_cpu_features(), with a few additional cleanups of note: * setup_cpu_features() is renamed to setup_system_features() to make it clear that it handles system-wide feature setup rather than cpu-local feature setup. * setup_system_capabilities() is folded into setup_system_features(). * Presence of TTBR0 pan is logged immediately after update_cpu_capabilities(), so that this is guaranteed to appear alongside all the other detected system cpucaps. * The 'cwg' variable is removed as its value is only consumed once and it's simpler to use cache_type_cwg() directly without assigning its return value to a variable. * The call to setup_user_features() is moved after alternatives are patched, which will allow user feature setup code to depend on alternative branches and allow for simplifications in subsequent patches. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Mark Brown <broonie@kernel.org> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-10-16arm64: Add cpus_have_final_boot_cap()Mark Rutland
The cpus_have_final_cap() function can be used to test a cpucap while also verifying that we do not consume the cpucap until system capabilities have been finalized. It would be helpful if we could do likewise for boot cpucaps. This patch adds a new cpus_have_final_boot_cap() helper which can be used to test a cpucap while also verifying that boot capabilities have been finalized. Users will be added in subsequent patches. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Mark Brown <broonie@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-10-16arm64: Add cpucap_is_possible()Mark Rutland
Many cpucaps can only be set when certain CONFIG_* options are selected, and we need to check the CONFIG_* option before the cap in order to avoid generating redundant code. Due to this, we have a growing number of helpers in <asm/cpufeature.h> of the form: | static __always_inline bool system_supports_foo(void) | { | return IS_ENABLED(CONFIG_ARM64_FOO) && | cpus_have_const_cap(ARM64_HAS_FOO); | } This is unfortunate as it forces us to use cpus_have_const_cap() unnecessarily, resulting in redundant code being generated by the compiler. In the vast majority of cases, we only require that feature checks indicate the presence of a feature after cpucaps have been finalized, and so it would be sufficient to use alternative_has_cap_*(). However some code needs to handle a feature before alternatives have been patched, and must test the system_cpucaps bitmap via cpus_have_const_cap(). In other cases we'd like to check for unintentional usage of a cpucap before alternatives are patched, and so it would be preferable to use cpus_have_final_cap(). Placing the IS_ENABLED() checks in each callsite is tedious and error-prone, and the same applies for writing wrappers for each comination of cpucap and alternative_has_cap_*() / cpus_have_cap() / cpus_have_final_cap(). It would be nicer if we could centralize the knowledge of which cpucaps are possible, and have alternative_has_cap_*(), cpus_have_cap(), and cpus_have_final_cap() handle this automatically. This patch adds a new cpucap_is_possible() function which will be responsible for checking the CONFIG_* option, and updates the low-level cpucap checks to use this. The existing CONFIG_* checks in <asm/cpufeature.h> are moved over to cpucap_is_possible(), but the (now trival) wrapper functions are retained for now. There should be no functional change as a result of this patch alone. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Mark Brown <broonie@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-10-16arm64: Factor out cpucap definitionsMark Rutland
For clarity it would be nice to factor cpucap manipulation out of <asm/cpufeature.h>, and the obvious place would be <asm/cpucap.h>, but this will clash somewhat with <generated/asm/cpucaps.h>. Rename <generated/asm/cpucaps.h> to <generated/asm/cpucap-defs.h>, matching what we do for <generated/asm/sysreg-defs.h>, and introduce a new <asm/cpucaps.h> which includes the generated header. Subsequent patches will fill out <asm/cpucaps.h>. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Mark Brown <broonie@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-10-15Merge tag 'kvmarm-fixes-6.6-2' of ↵Paolo Bonzini
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm64 fixes for 6.6, take #2 - Fix the handling of the phycal timer offset when FEAT_ECV and CNTPOFF_EL2 are implemented. - Restore the functionnality of Permission Indirection that was broken by the Fine Grained Trapping rework - Cleanup some PMU event sharing code
2023-10-13arm64: add FEAT_LSE128 HWCAPJoey Gouly
Add HWCAP for FEAT_LSE128 (128-bit Atomic instructions). Signed-off-by: Joey Gouly <joey.gouly@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20231003124544.858804-2-joey.gouly@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-10-13arm64: add FEAT_LRCPC3 HWCAPJoey Gouly
FEAT_LRCPC3 adds more instructions to support the Release Consistency model. Add a HWCAP so that userspace can make decisions about instructions it can use. Signed-off-by: Joey Gouly <joey.gouly@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20230919162757.2707023-2-joey.gouly@arm.com [catalin.marinas@arm.com: change the HWCAP number] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-10-12KVM: arm64: Add nPIR{E0}_EL1 to HFG trapsJoey Gouly
nPIR_EL1 and nPIREO_EL1 are part of the 'reverse polarity' set of bits, set them so that we disable the traps for a guest. Unfortunately, these bits are not yet described in the ARM ARM, but only live in the XML description. Also add them to the NV FGT forwarding infrastructure. Signed-off-by: Joey Gouly <joey.gouly@arm.com> Fixes: e930694e6145 ("KVM: arm64: Restructure FGT register switching") Cc: Oliver Upton <oliver.upton@linux.dev> [maz: add entries to the NV FGT array, commit message update] Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20231012123459.2820835-2-joey.gouly@arm.com
2023-10-09KVM: arm64: Expose MOPS instructions to guestsKristina Martsenko
Expose the Armv8.8 FEAT_MOPS feature to guests in the ID register and allow the MOPS instructions to be run in a guest. Only expose MOPS if the whole system supports it. Note, it is expected that guests do not use these instructions on MMIO, similarly to other instructions where ESR_EL2.ISV==0 such as LDP/STP. Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com> Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20230922112508.1774352-3-kristina.martsenko@arm.com Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2023-10-09KVM: arm64: Add handler for MOPS exceptionsKristina Martsenko
An Armv8.8 FEAT_MOPS main or epilogue instruction will take an exception if executed on a CPU with a different MOPS implementation option (A or B) than the CPU where the preceding prologue instruction ran. In this case the OS exception handler is expected to reset the registers and restart execution from the prologue instruction. A KVM guest may use the instructions at EL1 at times when the guest is not able to handle the exception, expecting that the instructions will only run on one CPU (e.g. when running UEFI boot services in the guest). As KVM may reschedule the guest between different types of CPUs at any time (on an asymmetric system), it needs to also handle the resulting exception itself in case the guest is not able to. A similar situation will also occur in the future when live migrating a guest from one type of CPU to another. Add handling for the MOPS exception to KVM. The handling can be shared with the EL0 exception handler, as the logic and register layouts are the same. The exception can be handled right after exiting a guest, which avoids the cost of returning to the host exit handler. Similarly to the EL0 exception handler, in case the main or epilogue instruction is being single stepped, it makes sense to finish the step before executing the prologue instruction, so advance the single step state machine. Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com> Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20230922112508.1774352-2-kristina.martsenko@arm.com Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2023-10-09Merge tag 'v6.6-rc5' into locking/core, to pick up fixesIngo Molnar
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2023-10-06mm: add statistics for PUD level pagetableBaolin Wang
Recently, we found that cross-die access to pagetable pages on ARM64 machines can cause performance fluctuations in our business. Currently, there are no PMU events available to track this situation on our ARM64 machines, so accurate pagetable accounting can help to analyze this issue, but now the PUD level pagetable accounting is missed. So introduce pagetable_pud_ctor/dtor() to help to get accurate PUD pagetable accounting, as well as converting the architectures which use generic PUD pagetable allocation to add corresponding PUD pagetable accounting. Moreover this patch will mark the PUD level pagetable with PG_table flag, which will help to do sanity validation in unpoison_memory(). On my testing machine, I can see more pagetables statistics after the patch with page-types tool: Before patch: flags page-count MB symbolic-flags long-symbolic-flags 0x0000000004000000 27326 106 __________________________g_________________ pgtable After patch: 0x0000000004000000 27541 107 __________________________g_________________ pgtable Link: https://lkml.kernel.org/r/876c71c03a7e69c17722a690e3225a4f7b172fb2.1695017383.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Acked-by: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-06arch: Reserve map_shadow_stack() syscall number for all architecturesSohil Mehta
commit c35559f94ebc ("x86/shstk: Introduce map_shadow_stack syscall") recently added support for map_shadow_stack() but it is limited to x86 only for now. There is a possibility that other architectures (namely, arm64 and RISC-V), that are implementing equivalent support for shadow stacks, might need to add support for it. Independent of that, reserving arch-specific syscall numbers in the syscall tables of all architectures is good practice and would help avoid future conflicts. map_shadow_stack() is marked as a conditional syscall in sys_ni.c. Adding it to the syscall tables of other architectures is harmless and would return ENOSYS when exercised. Note, map_shadow_stack() was assigned #453 during the merge process since #452 was taken by fchmodat2(). For Powerpc, map it to sys_ni_syscall() as is the norm for Powerpc syscall tables. For Alpha, map_shadow_stack() takes up #563 as Alpha still diverges from the common syscall numbering system in the other architectures. Link: https://lore.kernel.org/lkml/20230515212255.GA562920@debug.ba.rivosinc.com/ Link: https://lore.kernel.org/lkml/b402b80b-a7c6-4ef0-b977-c0f5f582b78a@sirena.org.uk/ Signed-off-by: Sohil Mehta <sohil.mehta@intel.com> Reviewed-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Acked-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2023-10-06Merge tag 'arm64-fixes' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 fixes from Will Deacon: "A typo fix for a PMU driver, a workround for a side-channel erratum on Cortex-A520 and a fix for the local timer save/restore when using ACPI with Qualcomm's custom CPUs: - Workaround for Cortex-A520 erratum #2966298 - Fix typo in Arm CMN PMU driver that breaks counter overflow handling - Fix timer handling across idle for Qualcomm custom CPUs" * tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: cpuidle, ACPI: Evaluate LPI arch_flags for broadcast timer arm64: errata: Add Cortex-A520 speculative unprivileged load workaround arm64: Add Cortex-A520 CPU part definition perf/arm-cmn: Fix the unhandled overflow status of counter 4 to 7
2023-10-05KVM: arm64: Use mtree_empty() to determine if SMCCC filter configuredOliver Upton
The smccc_filter maple tree is only populated if userspace attempted to configure it. Use the state of the maple tree to determine if the filter has been configured, eliminating the VM flag. Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20231004234947.207507-4-oliver.upton@linux.dev Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2023-10-04arm64: kdump: use generic interface to simplify crashkernel reservationBaoquan He
With the help of newly changed function parse_crashkernel() and generic reserve_crashkernel_generic(), crashkernel reservation can be simplified by steps: 1) Add a new header file <asm/crash_core.h>, and define CRASH_ALIGN, CRASH_ADDR_LOW_MAX, CRASH_ADDR_HIGH_MAX and DEFAULT_CRASH_KERNEL_LOW_SIZE in <asm/crash_core.h>; 2) Add arch_reserve_crashkernel() to call parse_crashkernel() and reserve_crashkernel_generic(); 3) Add ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION Kconfig in arch/arm64/Kconfig. The old reserve_crashkernel_low() and reserve_crashkernel() can be removed. Link: https://lkml.kernel.org/r/20230914033142.676708-8-bhe@redhat.com Signed-off-by: Baoquan He <bhe@redhat.com> Reviewed-by: Zhen Lei <thunder.leizhen@huawei.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen Jiahao <chenjiahao16@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-04KVM: arm64: Allow userspace to get the writable masks for feature ID registersJing Zhang
While the Feature ID range is well defined and pretty large, it isn't inconceivable that the architecture will eventually grow some other ranges that will need to similarly be described to userspace. Add a VM ioctl to allow userspace to get writable masks for feature ID registers in below system register space: op0 = 3, op1 = {0, 1, 3}, CRn = 0, CRm = {0 - 7}, op2 = {0 - 7} This is used to support mix-and-match userspace and kernels for writable ID registers, where userspace may want to know upfront whether it can actually tweak the contents of an idreg or not. Add a new capability (KVM_CAP_ARM_SUPPORTED_FEATURE_ID_RANGES) that returns a bitmap of the valid ranges, which can subsequently be retrieved, one at a time by setting the index of the set bit as the range identifier. Suggested-by: Marc Zyngier <maz@kernel.org> Suggested-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Jing Zhang <jingzhangos@google.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20231003230408.3405722-2-oliver.upton@linux.dev Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2023-10-04cpuidle, ACPI: Evaluate LPI arch_flags for broadcast timerOza Pawandeep
Arm® Functional Fixed Hardware Specification defines LPI states, which provide an architectural context loss flags field that can be used to describe the context that might be lost when an LPI state is entered. - Core context Lost - General purpose registers. - Floating point and SIMD registers. - System registers, include the System register based - generic timer for the core. - Debug register in the core power domain. - PMU registers in the core power domain. - Trace register in the core power domain. - Trace context loss - GICR - GICD Qualcomm's custom CPUs preserves the architectural state, including keeping the power domain for local timers active. when core is power gated, the local timers are sufficient to wake the core up without needing broadcast timer. The patch fixes the evaluation of cpuidle arch_flags, and moves only to broadcast timer if core context lost is defined in ACPI LPI. Fixes: a36a7fecfe60 ("ACPI / processor_idle: Add support for Low Power Idle(LPI) states") Reviewed-by: Sudeep Holla <sudeep.holla@arm.com> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Oza Pawandeep <quic_poza@quicinc.com> Link: https://lore.kernel.org/r/20231003173333.2865323-1-quic_poza@quicinc.com Signed-off-by: Will Deacon <will@kernel.org>
2023-10-03syscalls: Cleanup references to sys_lookup_dcookie()Sohil Mehta
commit 'be65de6b03aa ("fs: Remove dcookies support")' removed the syscall definition for lookup_dcookie. However, syscall tables still point to the old sys_lookup_dcookie() definition. Update syscall tables of all architectures to directly point to sys_ni_syscall() instead. Signed-off-by: Sohil Mehta <sohil.mehta@intel.com> Reviewed-by: Randy Dunlap <rdunlap@infradead.org> Acked-by: Namhyung Kim <namhyung@kernel.org> # for perf Acked-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de>