Age | Commit message (Collapse) | Author |
|
* kvm-arm64/pmuv3-asahi:
: Support PMUv3 for KVM guests on Apple silicon
:
: Take advantage of some IMPLEMENTATION DEFINED traps available on Apple
: parts to trap-and-emulate the PMUv3 registers on behalf of a KVM guest.
: Constrain the vPMU to a cycle counter and single event counter, as the
: Apple PMU has events that cannot be counted on every counter.
:
: There is a small new interface between the ARM PMU driver and KVM, where
: the PMU driver owns the PMUv3 -> hardware event mappings.
arm64: Enable IMP DEF PMUv3 traps on Apple M*
KVM: arm64: Provide 1 event counter on IMPDEF hardware
drivers/perf: apple_m1: Provide helper for mapping PMUv3 events
KVM: arm64: Remap PMUv3 events onto hardware
KVM: arm64: Advertise PMUv3 if IMPDEF traps are present
KVM: arm64: Compute synthetic sysreg ESR for Apple PMUv3 traps
KVM: arm64: Move PMUVer filtering into KVM code
KVM: arm64: Use guard() to cleanup usage of arm_pmus_lock
KVM: arm64: Drop kvm_arm_pmu_available static key
KVM: arm64: Use a cpucap to determine if system supports FEAT_PMUv3
KVM: arm64: Always support SW_INCR PMU event
KVM: arm64: Compute PMCEID from arm_pmu's event bitmaps
drivers/perf: apple_m1: Support host/guest event filtering
drivers/perf: apple_m1: Refactor event select/filter configuration
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
* kvm-arm64/pv-cpuid:
: Paravirtualized implementation ID, courtesy of Shameer Kolothum
:
: Big-little has historically been a pain in the ass to virtualize. The
: implementation ID (MIDR, REVIDR, AIDR) of a vCPU can change at the whim
: of vCPU scheduling. This can be particularly annoying when the guest
: needs to know the underlying implementation to mitigate errata.
:
: "Hyperscalers" face a similar scheduling problem, where VMs may freely
: migrate between hosts in a pool of heterogenous hardware. And yes, our
: server-class friends are equally riddled with errata too.
:
: In absence of an architected solution to this wart on the ecosystem,
: introduce support for paravirtualizing the implementation exposed
: to a VM, allowing the VMM to describe the pool of implementations that a
: VM may be exposed to due to scheduling/migration.
:
: Userspace is expected to intercept and handle these hypercalls using the
: SMCCC filter UAPI, should it choose to do so.
smccc: kvm_guest: Fix kernel builds for 32 bit arm
KVM: selftests: Add test for KVM_REG_ARM_VENDOR_HYP_BMAP_2
smccc/kvm_guest: Enable errata based on implementation CPUs
arm64: Make _midr_in_range_list() an exported function
KVM: arm64: Introduce KVM_REG_ARM_VENDOR_HYP_BMAP_2
KVM: arm64: Specify hypercall ABI for retrieving target implementations
arm64: Modify _midr_range() functions to read MIDR/REVIDR internally
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
* kvm-arm64/nv-idregs:
: Changes to exposure of NV features, courtesy of Marc Zyngier
:
: Apply NV-specific feature restrictions at reset rather than at the point
: of KVM_RUN. This makes the true feature set visible to userspace, a
: necessary step towards save/restore support or NV VMs.
:
: Add an additional vCPU feature flag for selecting the E2H0 flavor of NV,
: such that the VHE-ness of the VM can be applied to the feature set.
KVM: arm64: selftests: Test that TGRAN*_2 fields are writable
KVM: arm64: Allow userspace to write ID_AA64MMFR0_EL1.TGRAN*_2
KVM: arm64: Advertise FEAT_ECV when possible
KVM: arm64: Make ID_AA64MMFR4_EL1.NV_frac writable
KVM: arm64: Allow userspace to limit NV support to nVHE
KVM: arm64: Move NV-specific capping to idreg sanitisation
KVM: arm64: Enforce NV limits on a per-idregs basis
KVM: arm64: Make ID_REG_LIMIT_FIELD_ENUM() more widely available
KVM: arm64: Consolidate idreg callbacks
KVM: arm64: Advertise NV2 in the boot messages
KVM: arm64: Mark HCR.EL2.{NV*,AT} RES0 when ID_AA64MMFR4_EL1.NV_frac is 0
KVM: arm64: Mark HCR.EL2.E2H RES0 when ID_AA64MMFR1_EL1.VH is zero
KVM: arm64: Hide ID_AA64MMFR2_EL1.NV from guest and userspace
arm64: cpufeature: Handle NV_frac as a synonym of NV2
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
__die() invokes later show_regs() -> show_regs_print_info() which prints
the current preemption model.
Remove it from the initial line.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20250314160810.2373416-5-bigeasy@linutronix.de
|
|
ioremap_prot() currently accepts pgprot_val parameter as an unsigned long,
thus implicitly assuming that pgprot_val and pgprot_t could never be
bigger than unsigned long. But this assumption soon will not be true on
arm64 when using D128 pgtables. In 128 bit page table configuration,
unsigned long is 64 bit, but pgprot_t is 128 bit.
Passing platform abstracted pgprot_t argument is better as compared to
size based data types. Let's change the parameter to directly pass
pgprot_t like another similar helper generic_ioremap_prot().
Without this change in place, D128 configuration does not work on arm64 as
the top 64 bits gets silently stripped when passing the protection value
to this function.
Link: https://lkml.kernel.org/r/20250218101954.415331-1-anshuman.khandual@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Co-developed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com> [arm64]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
When comparing to the ARM list [1], it appears that several ARM cores
were missing from the lists in spectre_bhb_loop_affected(). Add them.
NOTE: for some of these cores it may not matter since other ways of
clearing the BHB may be used (like the CLRBHB instruction or ECBHB),
but it still seems good to have all the info from ARM's whitepaper
included.
[1] https://developer.arm.com/Arm%20Security%20Center/Spectre-BHB
Fixes: 558c303c9734 ("arm64: Mitigate spectre style branch history side channels")
Cc: stable@vger.kernel.org
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Reviewed-by: James Morse <james.morse@arm.com>
Link: https://lore.kernel.org/r/20250107120555.v4.5.I4a9a527e03f663040721c5401c41de587d015c82@changeid
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Qualcomm has confirmed that, much like Cortex A53 and A55, KRYO
2XX/3XX/4XX silver cores are unaffected by Spectre BHB. Add them to
the safe list.
Fixes: 558c303c9734 ("arm64: Mitigate spectre style branch history side channels")
Cc: stable@vger.kernel.org
Cc: Scott Bauer <sbauer@quicinc.com>
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Acked-by: Trilok Soni <quic_tsoni@quicinc.com>
Link: https://lore.kernel.org/r/20250107120555.v4.3.Iab8dbfb5c9b1e143e7a29f410bce5f9525a0ba32@changeid
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
The code for detecting CPUs that are vulnerable to Spectre BHB was
based on a hardcoded list of CPU IDs that were known to be affected.
Unfortunately, the list mostly only contained the IDs of standard ARM
cores. The IDs for many cores that are minor variants of the standard
ARM cores (like many Qualcomm Kyro CPUs) weren't listed. This led the
code to assume that those variants were not affected.
Flip the code on its head and instead assume that a core is vulnerable
if it doesn't have CSV2_3 but is unrecognized as being safe. This
involves creating a "Spectre BHB safe" list.
As of right now, the only CPU IDs added to the "Spectre BHB safe" list
are ARM Cortex A35, A53, A55, A510, and A520. This list was created by
looking for cores that weren't listed in ARM's list [1] as per review
feedback on v2 of this patch [2]. Additionally Brahma A53 is added as
per mailing list feedback [3].
NOTE: this patch will not actually _mitigate_ anyone, it will simply
cause them to report themselves as vulnerable. If any cores in the
system are reported as vulnerable but not mitigated then the whole
system will be reported as vulnerable though the system will attempt
to mitigate with the information it has about the known cores.
[1] https://developer.arm.com/Arm%20Security%20Center/Spectre-BHB
[2] https://lore.kernel.org/r/20241219175128.GA25477@willie-the-truck
[3] https://lore.kernel.org/r/18dbd7d1-a46c-4112-a425-320c99f67a8d@broadcom.com
Fixes: 558c303c9734 ("arm64: Mitigate spectre style branch history side channels")
Cc: stable@vger.kernel.org
Reviewed-by: Julius Werner <jwerner@chromium.org>
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Link: https://lore.kernel.org/r/20250107120555.v4.2.I2040fa004dafe196243f67ebcc647cbedbb516e6@changeid
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Qualcomm Kryo 400-series Gold cores have a derivative of an ARM Cortex
A76 in them. Since A76 needs Spectre mitigation via looping then the
Kyro 400-series Gold cores also need Spectre mitigation via looping.
Qualcomm has confirmed that the proper "k" value for Kryo 400-series
Gold cores is 24.
Fixes: 558c303c9734 ("arm64: Mitigate spectre style branch history side channels")
Cc: stable@vger.kernel.org
Cc: Scott Bauer <sbauer@quicinc.com>
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Acked-by: Trilok Soni <quic_tsoni@quicinc.com>
Link: https://lore.kernel.org/r/20250107120555.v4.1.Ie4ef54abe02e7eb0eee50f830575719bf23bda48@changeid
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
For ACPI we'll build the topology from PPTT and we cannot directly
get the SMT number of each core. Instead using a temporary xarray
to record the heterogeneous information (from ACPI_PPTT_ACPI_IDENTICAL)
and SMT information of the first core in its heterogeneous CPU cluster
when building the topology. Then we can know the largest SMT number
in the system. If a homogeneous system's using ACPI 6.2 or later,
all the CPUs should be under the root node of PPTT. There'll be
only one entry in the xarray and all the CPUs in the system will
be assumed identical.
The framework's SMT control provides two interface to the users [1]
through /sys/devices/system/cpu/smt/control
(Documentation/ABI/testing/sysfs-devices-system-cpu):
1) enable SMT by writing "on" and disable by "off"
2) enable SMT by writing max_thread_number or disable by writing 1
Both method support to completely disable/enable the SMT cores so both
work correctly for symmetric SMT platform and asymmetric platform with
non-SMT and one type SMT cores like:
core A: 1 thread
core B: X (X!=1) threads
Note that for a theoretically possible multiple SMT-X (X>1) core
platform the SMT control is also supported as expected but only
by writing the "on/off" method.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Hanjun Guo <guohanjun@huawei.com>
Reviewed-by: Pierre Gondois <pierre.gondois@arm.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Yicong Yang <yangyicong@hisilicon.com>
Reviewed-by: Sudeep Holla <sudeep.holla@arm.com>
Link: https://lore.kernel.org/r/20250311075143.61078-4-yangyicong@huawei.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Address bytes shifted with a single 64 bit page table entry (any page table
level) has been always hard coded as 3 (aka 2^3 = 8). Although intuitive it
is not very readable or easy to reason about. Besides it is going to change
with D128, where each 128 bit page table entry will shift address bytes by
4 (aka 2^4 = 16) instead.
Let's just formalise this address bytes shift value into a new macro called
PTDESC_ORDER establishing a logical abstraction, thus improving readability
as well. While here re-organize EARLY_LEVEL macro along with its dependents
for better clarity. This does not cause any functional change. Also replace
all (PAGE_SHIFT - PTDESC_ORDER) instances with PTDESC_TABLE_SHIFT.
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Cc: kasan-dev@googlegroups.com
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/20250311045710.550625-1-anshuman.khandual@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
The page table population code in map_range() uses a recursive algorithm
to create the early mappings of the kernel, the DTB and the ID mapped
text and data pages, and this fails to take into account that the way
these page tables may be constructed is not precisely the same at each
level. In particular, block mappings are not permitted at each level,
and the code as it exists today might inadvertently create such a
forbidden block mapping if it were used to map a region of the
appropriate size and alignment.
This never happens in practice, given the limited size of the assets
being mapped by the early boot code. Nonetheless, it would be better if
this code would behave correctly in all circumstances.
So only permit block mappings at level 2, and page mappings at level 3,
for any page size, and use table mappings exclusively at all other
levels. This change should have no impact in practice, but it makes the
code more robust.
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Reported-by: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Link: https://lore.kernel.org/r/20250311073043.96795-2-ardb+git@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Apple M1 and M2 CPUs support IMPDEF traps of the PMUv3 sysregs, allowing
a hypervisor to virtualize an architectural PMU for a VM. Flip the
appropriate bit in HACR_EL2 on supporting hardware.
Tested-by: Janne Grunau <j@jannau.net>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250305203040.428448-1-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
With the PMUv3 cpucap, kvm_arm_pmu_available is no longer used in the
hot path of guest entry/exit. On top of that, guest support for PMUv3
may not correlate with host support for the feature, e.g. on IMPDEF
hardware.
Throw out the static key and just inspect the list of PMUs to determine
if PMUv3 is supported for KVM guests.
Tested-by: Janne Grunau <j@jannau.net>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250305202641.428114-7-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
KVM is about to learn some new tricks to virtualize PMUv3 on IMPDEF
hardware. As part of that, we now need to differentiate host support
from guest support for PMUv3.
Add a cpucap to determine if an architectural PMUv3 is present to guard
host usage of PMUv3 controls.
Tested-by: Janne Grunau <j@jannau.net>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250305202641.428114-6-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
It is customary to list R, W, X permissions in that order. In fact
this is already the case for PIE constants (PIE_RWX). Rename POE_RXW
accordingly, as well as POE_XW (currently unused).
While at it also swap the W/X lines in
compute_s1_overlay_permissions() to follow the R, W, X order.
Signed-off-by: Kevin Brodsky <kevin.brodsky@arm.com>
Link: https://lore.kernel.org/r/20250219164029.2309119-3-kevin.brodsky@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
We currently have one helper to set a PIRx_ELx's permission field to
a given value, PIRx_ELx_PERM(), and another helper to extract a
permission field from POR_ELx, POR_ELx_IDX(). The naming is pretty
confusing - it isn't clear at all that "_PERM" corresponds to a
setter and "_IDX" to a getter.
This patch aims at improving the situation by using the same
suffixes as FIELD_PREP()/FIELD_GET(), which we have already adopted
for SYS_FIELD_{PREP,GET}():
* PIRx_ELx_PERM_PREP(), POR_ELx_PERM_PREP() create a register value
where the permission field for a given index is set to a given value.
* POR_ELx_PERM_GET() extracts the permission field from a given
register value for a given index.
These helpers are not implemented using FIELD_PREP()/FIELD_GET()
because the mask may not be constant, and they need to be usable in
assembly. They are all defined in asm/sysreg.h, as one would expect
for basic sysreg-related helpers.
Finally the new POR_ELx_PERM_* macros are used for existing
calculations in signal.c and mmu.c.
Signed-off-by: Kevin Brodsky <kevin.brodsky@arm.com>
Link: https://lore.kernel.org/r/20250219164029.2309119-2-kevin.brodsky@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
__module_text_address() can be invoked within a RCU section, there is no
requirement to have preemption disabled.
Replace the preempt_disable() section around __module_text_address()
with RCU.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Will Deacon <will@kernel.org>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-trace-kernel@vger.kernel.org
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20250108090457.512198-18-bigeasy@linutronix.de
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
|
|
When KVM is in protected mode, host calls to PSCI are proxied via EL2,
and cold entries from CPU_ON, CPU_SUSPEND, and SYSTEM_SUSPEND bounce
through __kvm_hyp_init_cpu() at EL2 before entering the host kernel's
entry point at EL1. While __kvm_hyp_init_cpu() initializes SPSR_EL2 for
the exception return to EL1, it does not initialize SCTLR_EL1.
Due to this, it's possible to enter EL1 with SCTLR_EL1 in an UNKNOWN
state. In practice this has been seen to result in kernel crashes after
CPU_ON as a result of SCTLR_EL1.M being 1 in violation of the initial
core configuration specified by PSCI.
Fix this by initializing SCTLR_EL1 for cold entry to the host kernel.
As it's necessary to write to SCTLR_EL12 in VHE mode, this
initialization is moved into __kvm_host_psci_cpu_entry() where we can
use write_sysreg_el1().
The remnants of the '__init_el2_nvhe_prepare_eret' macro are folded into
its only caller, as this is clearer than having the macro.
Fixes: cdf367192766ad11 ("KVM: arm64: Intercept host's CPU_ON SMCs")
Reported-by: Leo Yan <leo.yan@arm.com>
Signed-off-by: Ahmed Genidi <ahmed.genidi@arm.com>
[ Mark: clarify commit message, handle E2H, move to C, remove macro ]
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Ahmed Genidi <ahmed.genidi@arm.com>
Cc: Ben Horgan <ben.horgan@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Leo Yan <leo.yan@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Oliver Upton <oliver.upton@linux.dev>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Leo Yan <leo.yan@arm.com>
Link: https://lore.kernel.org/r/20250227180526.1204723-3-mark.rutland@arm.com
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
On CPUs without FEAT_E2H0, HCR_EL2.E2H is RES1, but may reset to an
UNKNOWN value out of reset and consequently may not read as 1 unless it
has been explicitly initialized.
We handled this for the head.S boot code in commits:
3944382fa6f22b54 ("arm64: Treat HCR_EL2.E2H as RES1 when ID_AA64MMFR4_EL1.E2H0 is negative")
b3320142f3db9b3f ("arm64: Fix early handling of FEAT_E2H0 not being implemented")
Unfortunately, we forgot to apply a similar fix to the KVM PSCI entry
points used when relaying CPU_ON, CPU_SUSPEND, and SYSTEM SUSPEND. When
KVM is entered via these entry points, the value of HCR_EL2.E2H may be
consumed before it has been initialized (e.g. by the 'init_el2_state'
macro).
Initialize HCR_EL2.E2H early in these paths such that it can be consumed
reliably. The existing code in head.S is factored out into a new
'init_el2_hcr' macro, and this is used in the __kvm_hyp_init_cpu()
function common to all the relevant PSCI entry points.
For clarity, I've tweaked the assembly used to check whether
ID_AA64MMFR4_EL1.E2H0 is negative. The bitfield is extracted as a signed
value, and this is checked with a signed-greater-or-equal (GE) comparison.
As the hyp code will reconfigure HCR_EL2 later in ___kvm_hyp_init(), all
bits other than E2H are initialized to zero in __kvm_hyp_init_cpu().
Fixes: 3944382fa6f22b54 ("arm64: Treat HCR_EL2.E2H as RES1 when ID_AA64MMFR4_EL1.E2H0 is negative")
Fixes: b3320142f3db9b3f ("arm64: Fix early handling of FEAT_E2H0 not being implemented")
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Ahmed Genidi <ahmed.genidi@arm.com>
Cc: Ben Horgan <ben.horgan@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Leo Yan <leo.yan@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Oliver Upton <oliver.upton@linux.dev>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20250227180526.1204723-2-mark.rutland@arm.com
[maz: fixed LT->GE thinko]
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
Retrieve any migration target implementation CPUs using the hypercall
and enable associated errata.
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Reviewed-by: Sebastian Ott <sebott@redhat.com>
Signed-off-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20250221140229.12588-6-shameerali.kolothum.thodi@huawei.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
Subsequent patch will add target implementation CPU support and that
will require _midr_in_range_list() to access new data. To avoid
exporting the data make _midr_in_range_list() a normal function and
export it.
No functional changes intended.
Signed-off-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20250221140229.12588-5-shameerali.kolothum.thodi@huawei.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
These changes lay the groundwork for adding support for guest kernels,
allowing them to leverage target CPU implementations provided by the
VMM.
No functional changes intended.
Suggested-by: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Sebastian Ott <sebott@redhat.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20250221140229.12588-2-shameerali.kolothum.thodi@huawei.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
With ARMv9.5, an implementation supporting Nested Virtualization
is allowed to only support NV2, and to avoid supporting the old
(and useless) ARMv8.3 variant.
This is indicated by ID_AA64MMFR2_EL1.NV being 0 (as if NV wasn't
implemented) and ID_AA64MMFR4_EL1.NV_frac being 1 (indicating that
NV2 is actually supported).
Given that KVM only deals with NV2 and refuses to use the old NV,
detecting NV2 or NV_frac is what we need to enable it.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Joey Gouly <joey.gouly@arm.com>
Link: https://lore.kernel.org/r/20250220134907.554085-2-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
While searching for a reference CPU within a given policy,
arch_freq_get_on_cpu relies on cpumask_next_wrap to iterate over
all available CPUs and to ensure each is verified only once.
Recent changes to cpumask_next_wrap will handle the latter no more,
so switching to for_each_cpu_wrap, which preserves expected behavior
while ensuring compatibility with the updates.
Not to mention that when iterating over each CPU, using a dedicated
iterator is preferable to an open-coded loop.
Fixes: 16d1e27475f6 ("arm64: Provide an AMU-based version of arch_freq_get_on_cpu")
Signed-off-by: Beata Michalska <beata.michalska@arm.com>
Link: https://lore.kernel.org/r/20250220091015.2319901-1-beata.michalska@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Dumping processes with large allocated and mostly not-faulted areas is
very slow.
Borrowing a test case from Tavian Barnes:
int main(void) {
char *mem = mmap(NULL, 1ULL << 40, PROT_READ | PROT_WRITE,
MAP_ANONYMOUS | MAP_NORESERVE | MAP_PRIVATE, -1, 0);
printf("%p %m\n", mem);
if (mem != MAP_FAILED) {
mem[0] = 1;
}
abort();
}
That's 1TB of almost completely not-populated area.
On my test box it takes 13-14 seconds to dump.
The profile shows:
- 99.89% 0.00% a.out
entry_SYSCALL_64_after_hwframe
do_syscall_64
syscall_exit_to_user_mode
arch_do_signal_or_restart
- get_signal
- 99.89% do_coredump
- 99.88% elf_core_dump
- dump_user_range
- 98.12% get_dump_page
- 64.19% __get_user_pages
- 40.92% gup_vma_lookup
- find_vma
- mt_find
4.21% __rcu_read_lock
1.33% __rcu_read_unlock
- 3.14% check_vma_flags
0.68% vma_is_secretmem
0.61% __cond_resched
0.60% vma_pgtable_walk_end
0.59% vma_pgtable_walk_begin
0.58% no_page_table
- 15.13% down_read_killable
0.69% __cond_resched
13.84% up_read
0.58% __cond_resched
Almost 29% of the time is spent relocking the mmap semaphore between
calls to get_dump_page() which find nothing.
Whacking that results in times of 10 seconds (down from 13-14).
While here make the thing killable.
The real problem is the page-sized iteration and the real fix would
patch it up instead. It is left as an exercise for the mm-familiar
reader.
Signed-off-by: Mateusz Guzik <mjguzik@gmail.com>
Link: https://lore.kernel.org/r/20250119103205.2172432-1-mjguzik@gmail.com
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
The generic storage implementation provides the same features as the
custom one. However it can be shared between architectures, making
maintenance easier.
This switch also moves the random state data out of the time data page.
The currently used hardcoded __VDSO_RND_DATA_OFFSET does not take into
account changes to the time data page layout.
Co-developed-by: Nam Cao <namcao@linutronix.de>
Signed-off-by: Nam Cao <namcao@linutronix.de>
Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20250204-vdso-store-rng-v3-8-13a4669dfc8c@linutronix.de
|
|
As the Makefile is included into other Makefiles it can not be used to
define objects to be built from the current source directory.
However the generic datastore will introduce such a local source file.
Rename the included Makefile so it is clear how it is to be used and to
make room for a regular Makefile in lib/vdso/.
Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20250204-vdso-store-rng-v3-4-13a4669dfc8c@linutronix.de
|
|
Now that the frequency scale factor has been activated for retrieving
current frequency on a given CPU, trigger its update upon entering
idle. This will, to an extent, allow querying last known frequency
in a non-invasive way. It will also improve the frequency scale factor
accuracy when a CPU entering idle did not receive a tick for a while.
As a consequence, for idle cores, the reported frequency will be the
last one observed before entering the idle state.
Suggested-by: Vanshidhar Konda <vanshikonda@os.amperecomputing.com>
Signed-off-by: Beata Michalska <beata.michalska@arm.com>
Reviewed-by: Prasanna Kumar T S M <ptsm@linux.microsoft.com>
Reviewed-by: Sumit Gupta <sumitg@nvidia.com>
Link: https://lore.kernel.org/r/20250131162439.3843071-5-beata.michalska@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
With the Frequency Invariance Engine (FIE) being already wired up with
sched tick and making use of relevant (core counter and constant
counter) AMU counters, getting the average frequency for a given CPU,
can be achieved by utilizing the frequency scale factor which reflects
an average CPU frequency for the last tick period length.
The solution is partially based on APERF/MPERF implementation of
arch_freq_get_on_cpu.
Suggested-by: Ionela Voinescu <ionela.voinescu@arm.com>
Signed-off-by: Beata Michalska <beata.michalska@arm.com>
Reviewed-by: Prasanna Kumar T S M <ptsm@linux.microsoft.com>
Reviewed-by: Sumit Gupta <sumitg@nvidia.com>
Link: https://lore.kernel.org/r/20250131162439.3843071-4-beata.michalska@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Pull kvm fixes from Paolo Bonzini:
"ARM:
- Large set of fixes for vector handling, especially in the
interactions between host and guest state.
This fixes a number of bugs affecting actual deployments, and
greatly simplifies the FP/SIMD/SVE handling. Thanks to Mark Rutland
for dealing with this thankless task.
- Fix an ugly race between vcpu and vgic creation/init, resulting in
unexpected behaviours
- Fix use of kernel VAs at EL2 when emulating timers with nVHE
- Small set of pKVM improvements and cleanups
x86:
- Fix broken SNP support with KVM module built-in, ensuring the PSP
module is initialized before KVM even when the module
infrastructure cannot be used to order initcalls
- Reject Hyper-V SEND_IPI hypercalls if the local APIC isn't being
emulated by KVM to fix a NULL pointer dereference
- Enter guest mode (L2) from KVM's perspective before initializing
the vCPU's nested NPT MMU so that the MMU is properly tagged for
L2, not L1
- Load the guest's DR6 outside of the innermost .vcpu_run() loop, as
the guest's value may be stale if a VM-Exit is handled in the
fastpath"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (25 commits)
x86/sev: Fix broken SNP support with KVM module built-in
KVM: SVM: Ensure PSP module is initialized if KVM module is built-in
crypto: ccp: Add external API interface for PSP module initialization
KVM: arm64: vgic: Hoist SGI/PPI alloc from vgic_init() to kvm_create_vgic()
KVM: arm64: timer: Drop warning on failed interrupt signalling
KVM: arm64: Fix alignment of kvm_hyp_memcache allocations
KVM: arm64: Convert timer offset VA when accessed in HYP code
KVM: arm64: Simplify warning in kvm_arch_vcpu_load_fp()
KVM: arm64: Eagerly switch ZCR_EL{1,2}
KVM: arm64: Mark some header functions as inline
KVM: arm64: Refactor exit handlers
KVM: arm64: Refactor CPTR trap deactivation
KVM: arm64: Remove VHE host restore of CPACR_EL1.SMEN
KVM: arm64: Remove VHE host restore of CPACR_EL1.ZEN
KVM: arm64: Remove host FPSIMD saving for non-protected KVM
KVM: arm64: Unconditionally save+flush host FPSIMD/SVE/SME state
KVM: x86: Load DR6 with guest value only before entering .vcpu_run() loop
KVM: nSVM: Enter guest mode before initializing nested NPT MMU
KVM: selftests: Add CPUID tests for Hyper-V features that need in-kernel APIC
KVM: selftests: Manage CPUID array in Hyper-V CPUID test's core helper
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 fixes for 6.14, take #2
- Large set of fixes for vector handling, specially in the interactions
between host and guest state. This fixes a number of bugs affecting
actual deployments, and greatly simplifies the FP/SIMD/SVE handling.
Thanks to Mark Rutland for dealing with this thankless task.
- Fix an ugly race between vcpu and vgic creation/init, resulting in
unexpected behaviours.
- Fix use of kernel VAs at EL2 when emulating timers with nVHE.
- Small set of pKVM improvements and cleanups.
|
|
There are several problems with the way hyp code lazily saves the host's
FPSIMD/SVE state, including:
* Host SVE being discarded unexpectedly due to inconsistent
configuration of TIF_SVE and CPACR_ELx.ZEN. This has been seen to
result in QEMU crashes where SVE is used by memmove(), as reported by
Eric Auger:
https://issues.redhat.com/browse/RHEL-68997
* Host SVE state is discarded *after* modification by ptrace, which was an
unintentional ptrace ABI change introduced with lazy discarding of SVE state.
* The host FPMR value can be discarded when running a non-protected VM,
where FPMR support is not exposed to a VM, and that VM uses
FPSIMD/SVE. In these cases the hyp code does not save the host's FPMR
before unbinding the host's FPSIMD/SVE/SME state, leaving a stale
value in memory.
Avoid these by eagerly saving and "flushing" the host's FPSIMD/SVE/SME
state when loading a vCPU such that KVM does not need to save any of the
host's FPSIMD/SVE/SME state. For clarity, fpsimd_kvm_prepare() is
removed and the necessary call to fpsimd_save_and_flush_cpu_state() is
placed in kvm_arch_vcpu_load_fp(). As 'fpsimd_state' and 'fpmr_ptr'
should not be used, they are set to NULL; all uses of these will be
removed in subsequent patches.
Historical problems go back at least as far as v5.17, e.g. erroneous
assumptions about TIF_SVE being clear in commit:
8383741ab2e773a9 ("KVM: arm64: Get rid of host SVE tracking/saving")
... and so this eager save+flush probably needs to be backported to ALL
stable trees.
Fixes: 93ae6b01bafee8fa ("KVM: arm64: Discard any SVE state when entering KVM guests")
Fixes: 8c845e2731041f0f ("arm64/sve: Leave SVE enabled on syscall if we don't context switch")
Fixes: ef3be86021c3bdf3 ("KVM: arm64: Add save/restore support for FPMR")
Reported-by: Eric Auger <eauger@redhat.com>
Reported-by: Wilco Dijkstra <wilco.dijkstra@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Tested-by: Mark Brown <broonie@kernel.org>
Tested-by: Eric Auger <eric.auger@redhat.com>
Acked-by: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Florian Weimer <fweimer@redhat.com>
Cc: Fuad Tabba <tabba@google.com>
Cc: Jeremy Linton <jeremy.linton@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Oliver Upton <oliver.upton@linux.dev>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20250210195226.1215254-2-mark.rutland@arm.com
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
Commit 819935464cb2 ("arm64/hwcap: Describe 2024 dpISA extensions to
userspace") added definitions for HWCAP_FPRCVT, HWCAP_F8MM8 and
HWCAP_F8MM4 but did not include the crucial registration in
arm64_elf_hwcaps. Add it.
Fixes: 819935464cb2 ("arm64/hwcap: Describe 2024 dpISA extensions to userspace")
Reported-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20250212-arm64-fix-2024-dpisa-v2-1-67a1c11d6001@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
For the time being, the amu_fie_cpus cpumask is being exclusively used
by the AMU-related internals of FIE support and is guaranteed to be
valid on every access currently made. Still the mask is not being
invalidated on one of the error handling code paths, which leaves
a soft spot with theoretical risk of UAF for CPUMASK_OFFSTACK cases.
To make things sound, delay allocating said cpumask
(for CPUMASK_OFFSTACK) avoiding otherwise nasty sanitising case failing
to register the cpufreq policy notifications.
Signed-off-by: Beata Michalska <beata.michalska@arm.com>
Reviewed-by: Prasanna Kumar T S M <ptsm@linux.microsoft.com>
Reviewed-by: Sumit Gupta <sumitg@nvidia.com>
Reviewed-by: Sudeep Holla <sudeep.holla@arm.com>
Link: https://lore.kernel.org/r/20250131155842.3839098-1-beata.michalska@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
The loop that detects/populates cache information already has a bounds
check on the array size but does not account for cache levels with
separate data/instructions cache. Fix this by incrementing the index
for any populated leaf (instead of any populated level).
Fixes: 5d425c186537 ("arm64: kernel: add support for cpu cache information")
Signed-off-by: Radu Rendec <rrendec@redhat.com>
Link: https://lore.kernel.org/r/20250206174420.2178724-1-rrendec@redhat.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
A recent LLVM commit [1] started generating an .ARM.attributes section
similar to the one that exists for 32-bit, which results in orphan
section warnings (or errors if CONFIG_WERROR is enabled) from the linker
because it is not handled in the arm64 linker scripts.
ld.lld: error: arch/arm64/kernel/vdso/vgettimeofday.o:(.ARM.attributes) is being placed in '.ARM.attributes'
ld.lld: error: arch/arm64/kernel/vdso/vgetrandom.o:(.ARM.attributes) is being placed in '.ARM.attributes'
ld.lld: error: vmlinux.a(lib/vsprintf.o):(.ARM.attributes) is being placed in '.ARM.attributes'
ld.lld: error: vmlinux.a(lib/win_minmax.o):(.ARM.attributes) is being placed in '.ARM.attributes'
ld.lld: error: vmlinux.a(lib/xarray.o):(.ARM.attributes) is being placed in '.ARM.attributes'
Discard the new sections in the necessary linker scripts to resolve the
warnings, as the kernel and vDSO do not need to retain it, similar to
the .note.gnu.property section.
Cc: stable@vger.kernel.org
Fixes: b3e5d80d0c48 ("arm64/build: Warn on orphan section placement")
Link: https://github.com/llvm/llvm-project/commit/ee99c4d4845db66c4daa2373352133f4b237c942 [1]
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Link: https://lore.kernel.org/r/20250206-arm64-handle-arm-attributes-in-linker-script-v3-1-d53d169913eb@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Due to SME currently being disabled when removing the SF8MMx support it
wasn't noticed that there were some stray references in the hwcap table,
delete them.
Fixes: 819935464cb2 ("arm64/hwcap: Describe 2024 dpISA extensions to userspace")
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20250203-arm64-remove-sf8mmx-v1-1-6f1da3dbff82@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/sysctl/sysctl
Pull sysctl table constification from Joel Granados:
"All ctl_table declared outside of functions and that remain unmodified
after initialization are const qualified.
This prevents unintended modifications to proc_handler function
pointers by placing them in the .rodata section.
This is a continuation of the tree-wide effort started a few releases
ago with the constification of the ctl_table struct arguments in the
sysctl API done in 78eb4ea25cd5 ("sysctl: treewide: constify the
ctl_table argument of proc_handlers")"
* tag 'constfy-sysctl-6.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/sysctl/sysctl:
treewide: const qualify ctl_tables where applicable
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull KVM/arm64 updates from Will Deacon:
"New features:
- Support for non-protected guest in protected mode, achieving near
feature parity with the non-protected mode
- Support for the EL2 timers as part of the ongoing NV support
- Allow control of hardware tracing for nVHE/hVHE
Improvements, fixes and cleanups:
- Massive cleanup of the debug infrastructure, making it a bit less
awkward and definitely easier to maintain. This should pave the way
for further optimisations
- Complete rewrite of pKVM's fixed-feature infrastructure, aligning
it with the rest of KVM and making the code easier to follow
- Large simplification of pKVM's memory protection infrastructure
- Better handling of RES0/RES1 fields for memory-backed system
registers
- Add a workaround for Qualcomm's Snapdragon X CPUs, which suffer
from a pretty nasty timer bug
- Small collection of cleanups and low-impact fixes"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (87 commits)
arm64/sysreg: Get rid of TRFCR_ELx SysregFields
KVM: arm64: nv: Fix doc header layout for timers
KVM: arm64: nv: Apply RESx settings to sysreg reset values
KVM: arm64: nv: Always evaluate HCR_EL2 using sanitising accessors
KVM: arm64: Fix selftests after sysreg field name update
coresight: Pass guest TRFCR value to KVM
KVM: arm64: Support trace filtering for guests
KVM: arm64: coresight: Give TRBE enabled state to KVM
coresight: trbe: Remove redundant disable call
arm64/sysreg/tools: Move TRFCR definitions to sysreg
tools: arm64: Update sysreg.h header files
KVM: arm64: Drop pkvm_mem_transition for host/hyp donations
KVM: arm64: Drop pkvm_mem_transition for host/hyp sharing
KVM: arm64: Drop pkvm_mem_transition for FF-A
KVM: arm64: Explicitly handle BRBE traps as UNDEFINED
KVM: arm64: vgic: Use str_enabled_disabled() in vgic_v3_probe()
arm64: kvm: Introduce nvhe stack size constants
KVM: arm64: Fix nVHE stacktrace VA bits mask
KVM: arm64: Fix FEAT_MTE in pKVM
Documentation: Update the behaviour of "kvm-arm.mode"
...
|
|
Add the const qualifier to all the ctl_tables in the tree except for
watchdog_hardlockup_sysctl, memory_allocation_profiling_sysctls,
loadpin_sysctl_table and the ones calling register_net_sysctl (./net,
drivers/inifiniband dirs). These are special cases as they use a
registration function with a non-const qualified ctl_table argument or
modify the arrays before passing them on to the registration function.
Constifying ctl_table structs will prevent the modification of
proc_handler function pointers as the arrays would reside in .rodata.
This is made possible after commit 78eb4ea25cd5 ("sysctl: treewide:
constify the ctl_table argument of proc_handlers") constified all the
proc_handlers.
Created this by running an spatch followed by a sed command:
Spatch:
virtual patch
@
depends on !(file in "net")
disable optional_qualifier
@
identifier table_name != {
watchdog_hardlockup_sysctl,
iwcm_ctl_table,
ucma_ctl_table,
memory_allocation_profiling_sysctls,
loadpin_sysctl_table
};
@@
+ const
struct ctl_table table_name [] = { ... };
sed:
sed --in-place \
-e "s/struct ctl_table .table = &uts_kern/const struct ctl_table *table = \&uts_kern/" \
kernel/utsname_sysctl.c
Reviewed-by: Song Liu <song@kernel.org>
Acked-by: Steven Rostedt (Google) <rostedt@goodmis.org> # for kernel/trace/
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> # SCSI
Reviewed-by: Darrick J. Wong <djwong@kernel.org> # xfs
Acked-by: Jani Nikula <jani.nikula@intel.com>
Acked-by: Corey Minyard <cminyard@mvista.com>
Acked-by: Wei Liu <wei.liu@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Bill O'Donnell <bodonnel@redhat.com>
Acked-by: Baoquan He <bhe@redhat.com>
Acked-by: Ashutosh Dixit <ashutosh.dixit@intel.com>
Acked-by: Anna Schumaker <anna.schumaker@oracle.com>
Signed-off-by: Joel Granados <joel.granados@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"The various patchsets are summarized below. Plus of course many
indivudual patches which are described in their changelogs.
- "Allocate and free frozen pages" from Matthew Wilcox reorganizes
the page allocator so we end up with the ability to allocate and
free zero-refcount pages. So that callers (ie, slab) can avoid a
refcount inc & dec
- "Support large folios for tmpfs" from Baolin Wang teaches tmpfs to
use large folios other than PMD-sized ones
- "Fix mm/rodata_test" from Petr Tesarik performs some maintenance
and fixes for this small built-in kernel selftest
- "mas_anode_descend() related cleanup" from Wei Yang tidies up part
of the mapletree code
- "mm: fix format issues and param types" from Keren Sun implements a
few minor code cleanups
- "simplify split calculation" from Wei Yang provides a few fixes and
a test for the mapletree code
- "mm/vma: make more mmap logic userland testable" from Lorenzo
Stoakes continues the work of moving vma-related code into the
(relatively) new mm/vma.c
- "mm/page_alloc: gfp flags cleanups for alloc_contig_*()" from David
Hildenbrand cleans up and rationalizes handling of gfp flags in the
page allocator
- "readahead: Reintroduce fix for improper RA window sizing" from Jan
Kara is a second attempt at fixing a readahead window sizing issue.
It should reduce the amount of unnecessary reading
- "synchronously scan and reclaim empty user PTE pages" from Qi Zheng
addresses an issue where "huge" amounts of pte pagetables are
accumulated:
https://lore.kernel.org/lkml/cover.1718267194.git.zhengqi.arch@bytedance.com/
Qi's series addresses this windup by synchronously freeing PTE
memory within the context of madvise(MADV_DONTNEED)
- "selftest/mm: Remove warnings found by adding compiler flags" from
Muhammad Usama Anjum fixes some build warnings in the selftests
code when optional compiler warnings are enabled
- "mm: don't use __GFP_HARDWALL when migrating remote pages" from
David Hildenbrand tightens the allocator's observance of
__GFP_HARDWALL
- "pkeys kselftests improvements" from Kevin Brodsky implements
various fixes and cleanups in the MM selftests code, mainly
pertaining to the pkeys tests
- "mm/damon: add sample modules" from SeongJae Park enhances DAMON to
estimate application working set size
- "memcg/hugetlb: Rework memcg hugetlb charging" from Joshua Hahn
provides some cleanups to memcg's hugetlb charging logic
- "mm/swap_cgroup: remove global swap cgroup lock" from Kairui Song
removes the global swap cgroup lock. A speedup of 10% for a
tmpfs-based kernel build was demonstrated
- "zram: split page type read/write handling" from Sergey Senozhatsky
has several fixes and cleaups for zram in the area of
zram_write_page(). A watchdog softlockup warning was eliminated
- "move pagetable_*_dtor() to __tlb_remove_table()" from Kevin
Brodsky cleans up the pagetable destructor implementations. A rare
use-after-free race is fixed
- "mm/debug: introduce and use VM_WARN_ON_VMG()" from Lorenzo Stoakes
simplifies and cleans up the debugging code in the VMA merging
logic
- "Account page tables at all levels" from Kevin Brodsky cleans up
and regularizes the pagetable ctor/dtor handling. This results in
improvements in accounting accuracy
- "mm/damon: replace most damon_callback usages in sysfs with new
core functions" from SeongJae Park cleans up and generalizes
DAMON's sysfs file interface logic
- "mm/damon: enable page level properties based monitoring" from
SeongJae Park increases the amount of information which is
presented in response to DAMOS actions
- "mm/damon: remove DAMON debugfs interface" from SeongJae Park
removes DAMON's long-deprecated debugfs interfaces. Thus the
migration to sysfs is completed
- "mm/hugetlb: Refactor hugetlb allocation resv accounting" from
Peter Xu cleans up and generalizes the hugetlb reservation
accounting
- "mm: alloc_pages_bulk: small API refactor" from Luiz Capitulino
removes a never-used feature of the alloc_pages_bulk() interface
- "mm/damon: extend DAMOS filters for inclusion" from SeongJae Park
extends DAMOS filters to support not only exclusion (rejecting),
but also inclusion (allowing) behavior
- "Add zpdesc memory descriptor for zswap.zpool" from Alex Shi
introduces a new memory descriptor for zswap.zpool that currently
overlaps with struct page for now. This is part of the effort to
reduce the size of struct page and to enable dynamic allocation of
memory descriptors
- "mm, swap: rework of swap allocator locks" from Kairui Song redoes
and simplifies the swap allocator locking. A speedup of 400% was
demonstrated for one workload. As was a 35% reduction for kernel
build time with swap-on-zram
- "mm: update mips to use do_mmap(), make mmap_region() internal"
from Lorenzo Stoakes reworks MIPS's use of mmap_region() so that
mmap_region() can be made MM-internal
- "mm/mglru: performance optimizations" from Yu Zhao fixes a few
MGLRU regressions and otherwise improves MGLRU performance
- "Docs/mm/damon: add tuning guide and misc updates" from SeongJae
Park updates DAMON documentation
- "Cleanup for memfd_create()" from Isaac Manjarres does that thing
- "mm: hugetlb+THP folio and migration cleanups" from David
Hildenbrand provides various cleanups in the areas of hugetlb
folios, THP folios and migration
- "Uncached buffered IO" from Jens Axboe implements the new
RWF_DONTCACHE flag which provides synchronous dropbehind for
pagecache reading and writing. To permite userspace to address
issues with massive buildup of useless pagecache when
reading/writing fast devices
- "selftests/mm: virtual_address_range: Reduce memory" from Thomas
Weißschuh fixes and optimizes some of the MM selftests"
* tag 'mm-stable-2025-01-26-14-59' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (321 commits)
mm/compaction: fix UBSAN shift-out-of-bounds warning
s390/mm: add missing ctor/dtor on page table upgrade
kasan: sw_tags: use str_on_off() helper in kasan_init_sw_tags()
tools: add VM_WARN_ON_VMG definition
mm/damon/core: use str_high_low() helper in damos_wmark_wait_us()
seqlock: add missing parameter documentation for raw_seqcount_try_begin()
mm/page-writeback: consolidate wb_thresh bumping logic into __wb_calc_thresh
mm/page_alloc: remove the incorrect and misleading comment
zram: remove zcomp_stream_put() from write_incompressible_page()
mm: separate move/undo parts from migrate_pages_batch()
mm/kfence: use str_write_read() helper in get_access_type()
selftests/mm/mkdirty: fix memory leak in test_uffdio_copy()
kasan: hw_tags: Use str_on_off() helper in kasan_init_hw_tags()
selftests/mm: virtual_address_range: avoid reading from VM_IO mappings
selftests/mm: vm_util: split up /proc/self/smaps parsing
selftests/mm: virtual_address_range: unmap chunks after validation
selftests/mm: virtual_address_range: mmap() without PROT_WRITE
selftests/memfd/memfd_test: fix possible NULL pointer dereference
mm: add FGP_DONTCACHE folio creation flag
mm: call filemap_fdatawrite_range_kick() after IOCB_DONTCACHE issue
...
|
|
Before SLUB initialization, various subsystems used memblock_alloc to
allocate memory. In most cases, when memory allocation fails, an
immediate panic is required. To simplify this behavior and reduce
repetitive checks, introduce `memblock_alloc_or_panic`. This function
ensures that memory allocation failures result in a panic automatically,
improving code readability and consistency across subsystems that require
this behavior.
[guoweikang.kernel@gmail.com: arch/s390: save_area_alloc default failure behavior changed to panic]
Link: https://lkml.kernel.org/r/20250109033136.2845676-1-guoweikang.kernel@gmail.com
Link: https://lore.kernel.org/lkml/Z2fknmnNtiZbCc7x@kernel.org/
Link: https://lkml.kernel.org/r/20250102072528.650926-1-guoweikang.kernel@gmail.com
Signed-off-by: Guo Weikang <guoweikang.kernel@gmail.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k]
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com> [s390]
Acked-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/frederic/linux-dynticks
Pull kthread updates from Frederic Weisbecker:
"Kthreads affinity follow either of 4 existing different patterns:
1) Per-CPU kthreads must stay affine to a single CPU and never
execute relevant code on any other CPU. This is currently handled
by smpboot code which takes care of CPU-hotplug operations.
Affinity here is a correctness constraint.
2) Some kthreads _have_ to be affine to a specific set of CPUs and
can't run anywhere else. The affinity is set through
kthread_bind_mask() and the subsystem takes care by itself to
handle CPU-hotplug operations. Affinity here is assumed to be a
correctness constraint.
3) Per-node kthreads _prefer_ to be affine to a specific NUMA node.
This is not a correctness constraint but merely a preference in
terms of memory locality. kswapd and kcompactd both fall into this
category. The affinity is set manually like for any other task and
CPU-hotplug is supposed to be handled by the relevant subsystem so
that the task is properly reaffined whenever a given CPU from the
node comes up. Also care should be taken so that the node affinity
doesn't cross isolated (nohz_full) cpumask boundaries.
4) Similar to the previous point except kthreads have a _preferred_
affinity different than a node. Both RCU boost kthreads and RCU
exp kworkers fall into this category as they refer to "RCU nodes"
from a distinctly distributed tree.
Currently the preferred affinity patterns (3 and 4) have at least 4
identified users, with more or less success when it comes to handle
CPU-hotplug operations and CPU isolation. Each of which do it in its
own ad-hoc way.
This is an infrastructure proposal to handle this with the following
API changes:
- kthread_create_on_node() automatically affines the created kthread
to its target node unless it has been set as per-cpu or bound with
kthread_bind[_mask]() before the first wake-up.
- kthread_affine_preferred() is a new function that can be called
right after kthread_create_on_node() to specify a preferred
affinity different than the specified node.
When the preferred affinity can't be applied because the possible
targets are offline or isolated (nohz_full), the kthread is affine to
the housekeeping CPUs (which means to all online CPUs most of the time
or only the non-nohz_full CPUs when nohz_full= is set).
kswapd, kcompactd, RCU boost kthreads and RCU exp kworkers have been
converted, along with a few old drivers.
Summary of the changes:
- Consolidate a bunch of ad-hoc implementations of
kthread_run_on_cpu()
- Introduce task_cpu_fallback_mask() that defines the default last
resort affinity of a task to become nohz_full aware
- Add some correctness check to ensure kthread_bind() is always
called before the first kthread wake up.
- Default affine kthread to its preferred node.
- Convert kswapd / kcompactd and remove their halfway working ad-hoc
affinity implementation
- Implement kthreads preferred affinity
- Unify kthread worker and kthread API's style
- Convert RCU kthreads to the new API and remove the ad-hoc affinity
implementation"
* tag 'kthread-for-6.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic/linux-dynticks:
kthread: modify kernel-doc function name to match code
rcu: Use kthread preferred affinity for RCU exp kworkers
treewide: Introduce kthread_run_worker[_on_cpu]()
kthread: Unify kthread_create_on_cpu() and kthread_create_worker_on_cpu() automatic format
rcu: Use kthread preferred affinity for RCU boost
kthread: Implement preferred affinity
mm: Create/affine kswapd to its preferred node
mm: Create/affine kcompactd to its preferred node
kthread: Default affine kthread to its preferred NUMA node
kthread: Make sure kthread hasn't started while binding it
sched,arm64: Handle CPU isolation on last resort fallback rq selection
arm64: Exclude nohz_full CPUs from 32bits el0 support
lib: test_objpool: Use kthread_run_on_cpu()
kallsyms: Use kthread_run_on_cpu()
soc/qman: test: Use kthread_run_on_cpu()
arm/bL_switcher: Use kthread_run_on_cpu()
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull ftrace updates from Steven Rostedt:
- Have fprobes built on top of function graph infrastructure
The fprobe logic is an optimized kprobe that uses ftrace to attach to
functions when a probe is needed at the start or end of the function.
The fprobe and kretprobe logic implements a similar method as the
function graph tracer to trace the end of the function. That is to
hijack the return address and jump to a trampoline to do the trace
when the function exits. To do this, a shadow stack needs to be
created to store the original return address. Fprobes and function
graph do this slightly differently. Fprobes (and kretprobes) has
slots per callsite that are reserved to save the return address. This
is fine when just a few points are traced. But users of fprobes, such
as BPF programs, are starting to add many more locations, and this
method does not scale.
The function graph tracer was created to trace all functions in the
kernel. In order to do this, when function graph tracing is started,
every task gets its own shadow stack to hold the return address that
is going to be traced. The function graph tracer has been updated to
allow multiple users to use its infrastructure. Now have fprobes be
one of those users. This will also allow for the fprobe and kretprobe
methods to trace the return address to become obsolete. With new
technologies like CFI that need to know about these methods of
hijacking the return address, going toward a solution that has only
one method of doing this will make the kernel less complex.
- Cleanup with guard() and free() helpers
There were several places in the code that had a lot of "goto out" in
the error paths to either unlock a lock or free some memory that was
allocated. But this is error prone. Convert the code over to use the
guard() and free() helpers that let the compiler unlock locks or free
memory when the function exits.
- Remove disabling of interrupts in the function graph tracer
When function graph tracer was first introduced, it could race with
interrupts and NMIs. To prevent that race, it would disable
interrupts and not trace NMIs. But the code has changed to allow NMIs
and also interrupts. This change was done a long time ago, but the
disabling of interrupts was never removed. Remove the disabling of
interrupts in the function graph tracer is it is not needed. This
greatly improves its performance.
- Allow the :mod: command to enable tracing module functions on the
kernel command line.
The function tracer already has a way to enable functions to be
traced in modules by writing ":mod:<module>" into set_ftrace_filter.
That will enable either all the functions for the module if it is
loaded, or if it is not, it will cache that command, and when the
module is loaded that matches <module>, its functions will be
enabled. This also allows init functions to be traced. But currently
events do not have that feature.
Because enabling function tracing can be done very early at boot up
(before scheduling is enabled), the commands that can be done when
function tracing is started is limited. Having the ":mod:" command to
trace module functions as they are loaded is very useful. Update the
kernel command line function filtering to allow it.
* tag 'ftrace-v6.14' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: (26 commits)
ftrace: Implement :mod: cache filtering on kernel command line
tracing: Adopt __free() and guard() for trace_fprobe.c
bpf: Use ftrace_get_symaddr() for kprobe_multi probes
ftrace: Add ftrace_get_symaddr to convert fentry_ip to symaddr
Documentation: probes: Update fprobe on function-graph tracer
selftests/ftrace: Add a test case for repeating register/unregister fprobe
selftests: ftrace: Remove obsolate maxactive syntax check
tracing/fprobe: Remove nr_maxactive from fprobe
fprobe: Add fprobe_header encoding feature
fprobe: Rewrite fprobe on function-graph tracer
s390/tracing: Enable HAVE_FTRACE_GRAPH_FUNC
ftrace: Add CONFIG_HAVE_FTRACE_GRAPH_FUNC
bpf: Enable kprobe_multi feature if CONFIG_FPROBE is enabled
tracing/fprobe: Enable fprobe events with CONFIG_DYNAMIC_FTRACE_WITH_ARGS
tracing: Add ftrace_fill_perf_regs() for perf event
tracing: Add ftrace_partial_regs() for converting ftrace_regs to pt_regs
fprobe: Use ftrace_regs in fprobe exit handler
fprobe: Use ftrace_regs in fprobe entry handler
fgraph: Pass ftrace_regs to retfunc
fgraph: Replace fgraph_ret_regs with ftrace_regs
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull interrupt subsystem updates from Thomas Gleixner:
- Consolidate the machine_kexec_mask_interrupts() by providing a
generic implementation and replacing the copy & pasta orgy in the
relevant architectures.
- Prevent unconditional operations on interrupt chips during kexec
shutdown, which can trigger warnings in certain cases when the
underlying interrupt has been shut down before.
- Make the enforcement of interrupt handling in interrupt context
unconditionally available, so that it actually works for non x86
related interrupt chips. The earlier enablement for ARM GIC chips set
the required chip flag, but did not notice that the check was hidden
behind a config switch which is not selected by ARM[64].
- Decrapify the handling of deferred interrupt affinity setting.
Some interrupt chips require that affinity changes are made from the
context of handling an interrupt to avoid certain race conditions.
For x86 this was the default, but with interrupt remapping this
requirement was lifted and a flag was introduced which tells the core
code that affinity changes can be done in any context. Unrestricted
affinity changes are the default for the majority of interrupt chips.
RISCV has the requirement to add the deferred mode to one of it's
interrupt controllers, but with the original implementation this
would require to add the any context flag to all other RISC-V
interrupt chips. That's backwards, so reverse the logic and require
that chips, which need the deferred mode have to be marked
accordingly. That avoids chasing the 'sane' chips and marking them.
- Add multi-node support to the Loongarch AVEC interrupt controller
driver.
- The usual tiny cleanups, fixes and improvements all over the place.
* tag 'irq-core-2025-01-21' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
genirq/generic_chip: Export irq_gc_mask_disable_and_ack_set()
genirq/timings: Add kernel-doc for a function parameter
genirq: Remove IRQ_MOVE_PCNTXT and related code
x86/apic: Convert to IRQCHIP_MOVE_DEFERRED
genirq: Provide IRQCHIP_MOVE_DEFERRED
hexagon: Remove GENERIC_PENDING_IRQ leftover
ARC: Remove GENERIC_PENDING_IRQ
genirq: Remove handle_enforce_irqctx() wrapper
genirq: Make handle_enforce_irqctx() unconditionally available
irqchip/loongarch-avec: Add multi-nodes topology support
irqchip/ts4800: Replace seq_printf() by seq_puts()
irqchip/ti-sci-inta : Add module build support
irqchip/ti-sci-intr: Add module build support
irqchip/irq-brcmstb-l2: Replace brcmstb_l2_mask_and_ack() by generic function
irqchip: keystone: Use syscon_regmap_lookup_by_phandle_args
genirq/kexec: Prevent redundant IRQ masking by checking state before shutdown
kexec: Consolidate machine_kexec_mask_interrupts() implementation
genirq: Reuse irq_thread_fn() for forced thread case
genirq: Move irq_thread_fn() further up in the code
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"We've got a little less than normal thanks to the holidays in
December, but there's the usual summary below. The highlight is
probably the 52-bit physical addressing (LPA2) clean-up from Ard.
Confidential Computing:
- Register a platform device when running in CCA realm mode to enable
automatic loading of dependent modules
CPU Features:
- Update a bunch of system register definitions to pick up new field
encodings from the architectural documentation
- Add hwcaps and selftests for the new (2024) dpISA extensions
Documentation:
- Update EL3 (firmware) requirements for booting Linux on modern
arm64 designs
- Remove stale information about the kernel virtual memory map
Miscellaneous:
- Minor cleanups and typo fixes
Memory management:
- Fix vmemmap_check_pmd() to look at the PMD type bits
- LPA2 (52-bit physical addressing) cleanups and minor fixes
- Adjust physical address space depending upon whether or not LPA2 is
enabled
Perf and PMUs:
- Add port filtering support for NVIDIA's NVLINK-C2C Coresight PMU
- Extend AXI filtering support for the DDR PMU on NXP IMX SoCs
- Fix Designware PCIe PMU event numbering
- Add generic branch events for the Apple M1 CPU PMU
- Add support for Marvell Odyssey DDR and LLC-TAD PMUs
- Cleanups to the Hisilicon DDRC and Uncore PMU code
- Advertise discard mode for the SPE PMU
- Add the perf users mailing list to our MAINTAINERS entry"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (64 commits)
Documentation: arm64: Remove stale and redundant virtual memory diagrams
perf docs: arm_spe: Document new discard mode
perf: arm_spe: Add format option for discard mode
MAINTAINERS: Add perf list for drivers/perf/
arm64: Remove duplicate included header
drivers/perf: apple_m1: Map generic branch events
arm64: rsi: Add automatic arm-cca-guest module loading
kselftest/arm64: Add 2024 dpISA extensions to hwcap test
KVM: arm64: Allow control of dpISA extensions in ID_AA64ISAR3_EL1
arm64/hwcap: Describe 2024 dpISA extensions to userspace
arm64/sysreg: Update ID_AA64SMFR0_EL1 to DDI0601 2024-12
arm64: Filter out SVE hwcaps when FEAT_SVE isn't implemented
drivers/perf: hisi: Set correct IRQ affinity for PMUs with no association
arm64/sme: Move storage of reg_smidr to __cpuinfo_store_cpu()
arm64: mm: Test for pmd_sect() in vmemmap_check_pmd()
arm64/mm: Replace open encodings with PXD_TABLE_BIT
arm64/mm: Rename pte_mkpresent() as pte_mkvalid()
arm64/sysreg: Update ID_AA64ISAR2_EL1 to DDI0601 2024-09
arm64/sysreg: Update ID_AA64ZFR0_EL1 to DDI0601 2024-09
arm64/sysreg: Update ID_AA64FPFR0_EL1 to DDI0601 2024-09
...
|
|
* for-next/mm:
arm64: mm: Test for pmd_sect() in vmemmap_check_pmd()
arm64/mm: Replace open encodings with PXD_TABLE_BIT
arm64/mm: Rename pte_mkpresent() as pte_mkvalid()
arm64: Kconfig: force ARM64_PAN=y when enabling TTBR0 sw PAN
arm64/kvm: Avoid invalid physical addresses to signal owner updates
arm64/kvm: Configure HYP TCR.PS/DS based on host stage1
arm64/mm: Override PARange for !LPA2 and use it consistently
arm64/mm: Reduce PA space to 48 bits when LPA2 is not enabled
|
|
* for-next/cpufeature:
kselftest/arm64: Add 2024 dpISA extensions to hwcap test
KVM: arm64: Allow control of dpISA extensions in ID_AA64ISAR3_EL1
arm64/hwcap: Describe 2024 dpISA extensions to userspace
arm64/sysreg: Update ID_AA64SMFR0_EL1 to DDI0601 2024-12
arm64: Filter out SVE hwcaps when FEAT_SVE isn't implemented
arm64/sme: Move storage of reg_smidr to __cpuinfo_store_cpu()
arm64/sysreg: Update ID_AA64ISAR2_EL1 to DDI0601 2024-09
arm64/sysreg: Update ID_AA64ZFR0_EL1 to DDI0601 2024-09
arm64/sysreg: Update ID_AA64FPFR0_EL1 to DDI0601 2024-09
arm64/sysreg: Update ID_AA64ISAR3_EL1 to DDI0601 2024-09
arm64/sysreg: Update ID_AA64PFR2_EL1 to DDI0601 2024-09
arm64/sysreg: Get rid of CPACR_ELx SysregFields
arm64/sysreg: Convert *_EL12 accessors to Mapping
arm64/sysreg: Get rid of the TCR2_EL1x SysregFields
arm64/sysreg: Allow a 'Mapping' descriptor for system registers
arm64/cpufeature: Refactor conditional logic in init_cpu_ftr_reg()
arm64: cpufeature: Add HAFT to cpucap_is_possible()
|
|
* kvm-arm64/nv-timers:
: .
: Nested Virt support for the EL2 timers. From the initial cover letter:
:
: "Here's another batch of NV-related patches, this time bringing in most
: of the timer support for EL2 as well as nested guests.
:
: The code is pretty convoluted for a bunch of reasons:
:
: - FEAT_NV2 breaks the timer semantics by redirecting HW controls to
: memory, meaning that a guest could setup a timer and never see it
: firing until the next exit
:
: - We go try hard to reflect the timer state in memory, but that's not
: great.
:
: - With FEAT_ECV, we can finally correctly emulate the virtual timer,
: but this emulation is pretty costly
:
: - As a way to make things suck less, we handle timer reads as early as
: possible, and only defer writes to the normal trap handling
:
: - Finally, some implementations are badly broken, and require some
: hand-holding, irrespective of NV support. So we try and reuse the NV
: infrastructure to make them usable. This could be further optimised,
: but I'm running out of patience for this sort of HW.
:
: [...]"
: .
KVM: arm64: nv: Fix doc header layout for timers
KVM: arm64: nv: Document EL2 timer API
KVM: arm64: Work around x1e's CNTVOFF_EL2 bogosity
KVM: arm64: nv: Sanitise CNTHCTL_EL2
KVM: arm64: nv: Propagate CNTHCTL_EL2.EL1NV{P,V}CT bits
KVM: arm64: nv: Add trap routing for CNTHCTL_EL2.EL1{NVPCT,NVVCT,TVT,TVCT}
KVM: arm64: Handle counter access early in non-HYP context
KVM: arm64: nv: Accelerate EL0 counter accesses from hypervisor context
KVM: arm64: nv: Accelerate EL0 timer read accesses when FEAT_ECV in use
KVM: arm64: nv: Use FEAT_ECV to trap access to EL0 timers
KVM: arm64: nv: Publish emulated timer interrupt state in the in-memory state
KVM: arm64: nv: Sync nested timer state with FEAT_NV2
KVM: arm64: nv: Add handling of EL2-specific timer registers
Signed-off-by: Marc Zyngier <maz@kernel.org>
|