Age | Commit message (Collapse) | Author |
|
In order to fix a bug, arm64 needs to be told the size of the huge page
for which the huge_pte is being cleared in huge_ptep_get_and_clear().
Provide for this by adding an `unsigned long sz` parameter to the
function. This follows the same pattern as huge_pte_clear() and
set_huge_pte_at().
This commit makes the required interface modifications to the core mm as
well as all arches that implement this function (arm64, loongarch, mips,
parisc, powerpc, riscv, s390, sparc). The actual arm64 bug will be fixed
in a separate commit.
Cc: stable@vger.kernel.org
Fixes: 66b3923a1a0f ("arm64: hugetlb: add support for PTE contiguous bit")
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com> # riscv
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Acked-by: Alexander Gordeev <agordeev@linux.ibm.com> # s390
Link: https://lore.kernel.org/r/20250226120656.2400136-2-ryan.roberts@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"The various patchsets are summarized below. Plus of course many
indivudual patches which are described in their changelogs.
- "Allocate and free frozen pages" from Matthew Wilcox reorganizes
the page allocator so we end up with the ability to allocate and
free zero-refcount pages. So that callers (ie, slab) can avoid a
refcount inc & dec
- "Support large folios for tmpfs" from Baolin Wang teaches tmpfs to
use large folios other than PMD-sized ones
- "Fix mm/rodata_test" from Petr Tesarik performs some maintenance
and fixes for this small built-in kernel selftest
- "mas_anode_descend() related cleanup" from Wei Yang tidies up part
of the mapletree code
- "mm: fix format issues and param types" from Keren Sun implements a
few minor code cleanups
- "simplify split calculation" from Wei Yang provides a few fixes and
a test for the mapletree code
- "mm/vma: make more mmap logic userland testable" from Lorenzo
Stoakes continues the work of moving vma-related code into the
(relatively) new mm/vma.c
- "mm/page_alloc: gfp flags cleanups for alloc_contig_*()" from David
Hildenbrand cleans up and rationalizes handling of gfp flags in the
page allocator
- "readahead: Reintroduce fix for improper RA window sizing" from Jan
Kara is a second attempt at fixing a readahead window sizing issue.
It should reduce the amount of unnecessary reading
- "synchronously scan and reclaim empty user PTE pages" from Qi Zheng
addresses an issue where "huge" amounts of pte pagetables are
accumulated:
https://lore.kernel.org/lkml/cover.1718267194.git.zhengqi.arch@bytedance.com/
Qi's series addresses this windup by synchronously freeing PTE
memory within the context of madvise(MADV_DONTNEED)
- "selftest/mm: Remove warnings found by adding compiler flags" from
Muhammad Usama Anjum fixes some build warnings in the selftests
code when optional compiler warnings are enabled
- "mm: don't use __GFP_HARDWALL when migrating remote pages" from
David Hildenbrand tightens the allocator's observance of
__GFP_HARDWALL
- "pkeys kselftests improvements" from Kevin Brodsky implements
various fixes and cleanups in the MM selftests code, mainly
pertaining to the pkeys tests
- "mm/damon: add sample modules" from SeongJae Park enhances DAMON to
estimate application working set size
- "memcg/hugetlb: Rework memcg hugetlb charging" from Joshua Hahn
provides some cleanups to memcg's hugetlb charging logic
- "mm/swap_cgroup: remove global swap cgroup lock" from Kairui Song
removes the global swap cgroup lock. A speedup of 10% for a
tmpfs-based kernel build was demonstrated
- "zram: split page type read/write handling" from Sergey Senozhatsky
has several fixes and cleaups for zram in the area of
zram_write_page(). A watchdog softlockup warning was eliminated
- "move pagetable_*_dtor() to __tlb_remove_table()" from Kevin
Brodsky cleans up the pagetable destructor implementations. A rare
use-after-free race is fixed
- "mm/debug: introduce and use VM_WARN_ON_VMG()" from Lorenzo Stoakes
simplifies and cleans up the debugging code in the VMA merging
logic
- "Account page tables at all levels" from Kevin Brodsky cleans up
and regularizes the pagetable ctor/dtor handling. This results in
improvements in accounting accuracy
- "mm/damon: replace most damon_callback usages in sysfs with new
core functions" from SeongJae Park cleans up and generalizes
DAMON's sysfs file interface logic
- "mm/damon: enable page level properties based monitoring" from
SeongJae Park increases the amount of information which is
presented in response to DAMOS actions
- "mm/damon: remove DAMON debugfs interface" from SeongJae Park
removes DAMON's long-deprecated debugfs interfaces. Thus the
migration to sysfs is completed
- "mm/hugetlb: Refactor hugetlb allocation resv accounting" from
Peter Xu cleans up and generalizes the hugetlb reservation
accounting
- "mm: alloc_pages_bulk: small API refactor" from Luiz Capitulino
removes a never-used feature of the alloc_pages_bulk() interface
- "mm/damon: extend DAMOS filters for inclusion" from SeongJae Park
extends DAMOS filters to support not only exclusion (rejecting),
but also inclusion (allowing) behavior
- "Add zpdesc memory descriptor for zswap.zpool" from Alex Shi
introduces a new memory descriptor for zswap.zpool that currently
overlaps with struct page for now. This is part of the effort to
reduce the size of struct page and to enable dynamic allocation of
memory descriptors
- "mm, swap: rework of swap allocator locks" from Kairui Song redoes
and simplifies the swap allocator locking. A speedup of 400% was
demonstrated for one workload. As was a 35% reduction for kernel
build time with swap-on-zram
- "mm: update mips to use do_mmap(), make mmap_region() internal"
from Lorenzo Stoakes reworks MIPS's use of mmap_region() so that
mmap_region() can be made MM-internal
- "mm/mglru: performance optimizations" from Yu Zhao fixes a few
MGLRU regressions and otherwise improves MGLRU performance
- "Docs/mm/damon: add tuning guide and misc updates" from SeongJae
Park updates DAMON documentation
- "Cleanup for memfd_create()" from Isaac Manjarres does that thing
- "mm: hugetlb+THP folio and migration cleanups" from David
Hildenbrand provides various cleanups in the areas of hugetlb
folios, THP folios and migration
- "Uncached buffered IO" from Jens Axboe implements the new
RWF_DONTCACHE flag which provides synchronous dropbehind for
pagecache reading and writing. To permite userspace to address
issues with massive buildup of useless pagecache when
reading/writing fast devices
- "selftests/mm: virtual_address_range: Reduce memory" from Thomas
Weißschuh fixes and optimizes some of the MM selftests"
* tag 'mm-stable-2025-01-26-14-59' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (321 commits)
mm/compaction: fix UBSAN shift-out-of-bounds warning
s390/mm: add missing ctor/dtor on page table upgrade
kasan: sw_tags: use str_on_off() helper in kasan_init_sw_tags()
tools: add VM_WARN_ON_VMG definition
mm/damon/core: use str_high_low() helper in damos_wmark_wait_us()
seqlock: add missing parameter documentation for raw_seqcount_try_begin()
mm/page-writeback: consolidate wb_thresh bumping logic into __wb_calc_thresh
mm/page_alloc: remove the incorrect and misleading comment
zram: remove zcomp_stream_put() from write_incompressible_page()
mm: separate move/undo parts from migrate_pages_batch()
mm/kfence: use str_write_read() helper in get_access_type()
selftests/mm/mkdirty: fix memory leak in test_uffdio_copy()
kasan: hw_tags: Use str_on_off() helper in kasan_init_hw_tags()
selftests/mm: virtual_address_range: avoid reading from VM_IO mappings
selftests/mm: vm_util: split up /proc/self/smaps parsing
selftests/mm: virtual_address_range: unmap chunks after validation
selftests/mm: virtual_address_range: mmap() without PROT_WRITE
selftests/memfd/memfd_test: fix possible NULL pointer dereference
mm: add FGP_DONTCACHE folio creation flag
mm: call filemap_fdatawrite_range_kick() after IOCB_DONTCACHE issue
...
|
|
We already have a generic implementation of alloc/free up to P4D level, as
well as pgd_free(). Let's finish the work and add a generic PGD-level
alloc helper as well.
Unlike at lower levels, almost all architectures need some specific magic
at PGD level (typically initialising PGD entries), so introducing a
generic pgd_alloc() isn't worth it. Instead we introduce two new helpers,
__pgd_alloc() and __pgd_free(), and make use of them in the arch-specific
pgd_alloc() and pgd_free() wherever possible. To accommodate as many arch
as possible, __pgd_alloc() takes a page allocation order.
Because pagetable_alloc() allocates zeroed pages, explicit zeroing in
pgd_alloc() becomes redundant and we can get rid of it. Some trivial
implementations of pgd_free() also become unnecessary once __pgd_alloc()
is used; remove them.
Another small improvement is consistent accounting of PGD pages by using
GFP_PGTABLE_{USER,KERNEL} as appropriate.
Not all PGD allocations can be handled by the generic helpers. In
particular, multiple architectures allocate PGDs from a kmem_cache, and
those PGDs may not be page-sized.
Link: https://lkml.kernel.org/r/20250103184415.2744423-6-kevin.brodsky@arm.com
Signed-off-by: Kevin Brodsky <kevin.brodsky@arm.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Linus Walleij <linus.walleij@linaro.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Rapoport (Microsoft) <rppt@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The implementation of pmd_{alloc_one,free} on parisc requires a non-zero
allocation order, but is completely standard aside from that. Let's reuse
the generic implementation of pmd_alloc_one(). Explicit zeroing is not
needed as GFP_PGTABLE_KERNEL includes __GFP_ZERO. The generic pmd_free()
can handle higher allocation orders so we don't need to define our own.
These changes ensure that pagetable_pmd_[cd]tor are called, improving the
accounting of page table pages.
Link: https://lkml.kernel.org/r/20250103184415.2744423-3-kevin.brodsky@arm.com
Signed-off-by: Kevin Brodsky <kevin.brodsky@arm.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Linus Walleij <linus.walleij@linaro.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Rapoport (Microsoft) <rppt@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux
Pull parisc architecture updates from Helge Deller:
- Temporarily disable jump label support to avoid kernel crash with
32-bit kernel
- Add vdso linker script to 'targets' instead of extra-y
- Remove parisc versions of memcpy_toio and memset_io
* tag 'parisc-for-6.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux:
parisc: Temporarily disable jump label support
parisc: add vdso linker script to 'targets' instead of extra-y
parisc: Remove memcpy_toio and memset_io
|
|
Recently new functions for IO memcpy and IO memset were added in
libs/iomem_copy.c. So, remove the arch specific implementations, to fall
back to the generic ones which do exactly the same. Keep memcpy_fromio
for now, because it's slight more optimized by doing 'u16' accesses if
the buffer is aligned this way.
Signed-off-by: Julian Vetter <julian@outer-limits.org>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- The series "zram: optimal post-processing target selection" from
Sergey Senozhatsky improves zram's post-processing selection
algorithm. This leads to improved memory savings.
- Wei Yang has gone to town on the mapletree code, contributing several
series which clean up the implementation:
- "refine mas_mab_cp()"
- "Reduce the space to be cleared for maple_big_node"
- "maple_tree: simplify mas_push_node()"
- "Following cleanup after introduce mas_wr_store_type()"
- "refine storing null"
- The series "selftests/mm: hugetlb_fault_after_madv improvements" from
David Hildenbrand fixes this selftest for s390.
- The series "introduce pte_offset_map_{ro|rw}_nolock()" from Qi Zheng
implements some rationaizations and cleanups in the page mapping
code.
- The series "mm: optimize shadow entries removal" from Shakeel Butt
optimizes the file truncation code by speeding up the handling of
shadow entries.
- The series "Remove PageKsm()" from Matthew Wilcox completes the
migration of this flag over to being a folio-based flag.
- The series "Unify hugetlb into arch_get_unmapped_area functions" from
Oscar Salvador implements a bunch of consolidations and cleanups in
the hugetlb code.
- The series "Do not shatter hugezeropage on wp-fault" from Dev Jain
takes away the wp-fault time practice of turning a huge zero page
into small pages. Instead we replace the whole thing with a THP. More
consistent cleaner and potentiall saves a large number of pagefaults.
- The series "percpu: Add a test case and fix for clang" from Andy
Shevchenko enhances and fixes the kernel's built in percpu test code.
- The series "mm/mremap: Remove extra vma tree walk" from Liam Howlett
optimizes mremap() by avoiding doing things which we didn't need to
do.
- The series "Improve the tmpfs large folio read performance" from
Baolin Wang teaches tmpfs to copy data into userspace at the folio
size rather than as individual pages. A 20% speedup was observed.
- The series "mm/damon/vaddr: Fix issue in
damon_va_evenly_split_region()" fro Zheng Yejian fixes DAMON
splitting.
- The series "memcg-v1: fully deprecate charge moving" from Shakeel
Butt removes the long-deprecated memcgv2 charge moving feature.
- The series "fix error handling in mmap_region() and refactor" from
Lorenzo Stoakes cleanup up some of the mmap() error handling and
addresses some potential performance issues.
- The series "x86/module: use large ROX pages for text allocations"
from Mike Rapoport teaches x86 to use large pages for
read-only-execute module text.
- The series "page allocation tag compression" from Suren Baghdasaryan
is followon maintenance work for the new page allocation profiling
feature.
- The series "page->index removals in mm" from Matthew Wilcox remove
most references to page->index in mm/. A slow march towards shrinking
struct page.
- The series "damon/{self,kunit}tests: minor fixups for DAMON debugfs
interface tests" from Andrew Paniakin performs maintenance work for
DAMON's self testing code.
- The series "mm: zswap swap-out of large folios" from Kanchana Sridhar
improves zswap's batching of compression and decompression. It is a
step along the way towards using Intel IAA hardware acceleration for
this zswap operation.
- The series "kasan: migrate the last module test to kunit" from
Sabyrzhan Tasbolatov completes the migration of the KASAN built-in
tests over to the KUnit framework.
- The series "implement lightweight guard pages" from Lorenzo Stoakes
permits userapace to place fault-generating guard pages within a
single VMA, rather than requiring that multiple VMAs be created for
this. Improved efficiencies for userspace memory allocators are
expected.
- The series "memcg: tracepoint for flushing stats" from JP Kobryn uses
tracepoints to provide increased visibility into memcg stats flushing
activity.
- The series "zram: IDLE flag handling fixes" from Sergey Senozhatsky
fixes a zram buglet which potentially affected performance.
- The series "mm: add more kernel parameters to control mTHP" from
Maíra Canal enhances our ability to control/configuremultisize THP
from the kernel boot command line.
- The series "kasan: few improvements on kunit tests" from Sabyrzhan
Tasbolatov has a couple of fixups for the KASAN KUnit tests.
- The series "mm/list_lru: Split list_lru lock into per-cgroup scope"
from Kairui Song optimizes list_lru memory utilization when lockdep
is enabled.
* tag 'mm-stable-2024-11-18-19-27' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (215 commits)
cma: enforce non-zero pageblock_order during cma_init_reserved_mem()
mm/kfence: add a new kunit test test_use_after_free_read_nofault()
zram: fix NULL pointer in comp_algorithm_show()
memcg/hugetlb: add hugeTLB counters to memcg
vmstat: call fold_vm_zone_numa_events() before show per zone NUMA event
mm: mmap_lock: check trace_mmap_lock_$type_enabled() instead of regcount
zram: ZRAM_DEF_COMP should depend on ZRAM
MAINTAINERS/MEMORY MANAGEMENT: add document files for mm
Docs/mm/damon: recommend academic papers to read and/or cite
mm: define general function pXd_init()
kmemleak: iommu/iova: fix transient kmemleak false positive
mm/list_lru: simplify the list_lru walk callback function
mm/list_lru: split the lock to per-cgroup scope
mm/list_lru: simplify reparenting and initial allocation
mm/list_lru: code clean up for reparenting
mm/list_lru: don't export list_lru_add
mm/list_lru: don't pass unnecessary key parameters
kasan: add kunit tests for kmalloc_track_caller, kmalloc_node_track_caller
kasan: change kasan_atomics kunit test as KUNIT_CASE_SLOW
kasan: use EXPORT_SYMBOL_IF_KUNIT to export symbols
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic
Pull asm-generic updates from Arnd Bergmann:
"These are a number of unrelated cleanups, generally simplifying the
architecture specific header files:
- A series from Al Viro simplifies asm/vga.h, after it turns out that
most of it can be generalized.
- A series from Julian Vetter adds a common version of
memcpy_{to,from}io() and memset_io() and changes most architectures
to use that instead of their own implementation
- A series from Niklas Schnelle concludes his work to make PC style
inb()/outb() optional
- Nicolas Pitre contributes improvements for the generic do_div()
helper
- Christoph Hellwig adds a generic version of page_to_phys() and
phys_to_page(), replacing the slightly different architecture
specific definitions.
- Uwe Kleine-Koenig has a minor cleanup for ioctl definitions"
* tag 'asm-generic-3.13' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic: (24 commits)
empty include/asm-generic/vga.h
sparc: get rid of asm/vga.h
asm/vga.h: don't bother with scr_mem{cpy,move}v() unless we need to
vt_buffer.h: get rid of dead code in default scr_...() instances
tty: serial: export serial_8250_warn_need_ioport
lib/iomem_copy: fix kerneldoc format style
hexagon: simplify asm/io.h for !HAS_IOPORT
loongarch: Use new fallback IO memcpy/memset
csky: Use new fallback IO memcpy/memset
arm64: Use new fallback IO memcpy/memset
New implementation for IO memcpy and IO memset
watchdog: Add HAS_IOPORT dependency for SBC8360 and SBC7240
__arch_xprod64(): make __always_inline when optimizing for performance
ARM: div64: improve __arch_xprod_64()
asm-generic/div64: optimize/simplify __div64_const32()
lib/math/test_div64: add some edge cases relevant to __div64_const32()
asm-generic: add an optional pfn_valid check to page_to_phys
asm-generic: provide generic page_to_phys and phys_to_page implementations
asm-generic/io.h: Remove I/O port accessors for HAS_IOPORT=n
tty: serial: handle HAS_IOPORT dependencies
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull vdso data page handling updates from Thomas Gleixner:
"First steps of consolidating the VDSO data page handling.
The VDSO data page handling is architecture specific for historical
reasons, but there is no real technical reason to do so.
Aside of that VDSO data has become a dump ground for various
mechanisms and fail to provide a clear separation of the
functionalities.
Clean this up by:
- consolidating the VDSO page data by getting rid of architecture
specific warts especially in x86 and PowerPC.
- removing the last includes of header files which are pulling in
other headers outside of the VDSO namespace.
- seperating timekeeping and other VDSO data accordingly.
Further consolidation of the VDSO page handling is done in subsequent
changes scheduled for the next merge window.
This also lays the ground for expanding the VDSO time getters for
independent PTP clocks in a generic way without making every
architecture add support seperately"
* tag 'timers-vdso-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (42 commits)
x86/vdso: Add missing brackets in switch case
vdso: Rename struct arch_vdso_data to arch_vdso_time_data
powerpc: Split systemcfg struct definitions out from vdso
powerpc: Split systemcfg data out of vdso data page
powerpc: Add kconfig option for the systemcfg page
powerpc/pseries/lparcfg: Use num_possible_cpus() for potential processors
powerpc/pseries/lparcfg: Fix printing of system_active_processors
powerpc/procfs: Propagate error of remap_pfn_range()
powerpc/vdso: Remove offset comment from 32bit vdso_arch_data
x86/vdso: Split virtual clock pages into dedicated mapping
x86/vdso: Delete vvar.h
x86/vdso: Access vdso data without vvar.h
x86/vdso: Move the rng offset to vsyscall.h
x86/vdso: Access rng vdso data without vvar.h
x86/vdso: Access timens vdso data without vvar.h
x86/vdso: Allocate vvar page from C code
x86/vdso: Access rng data from kernel without vvar
x86/vdso: Place vdso_data at beginning of vvar page
x86/vdso: Use __arch_get_vdso_data() to access vdso data
x86/mm/mmap: Remove arch_vma_name()
...
|
|
Several architectures support text patching, but they name the header
files that declare patching functions differently.
Make all such headers consistently named text-patching.h and add an empty
header in asm-generic for architectures that do not support text patching.
Link: https://lkml.kernel.org/r/20241023162711.2579610-4-rppt@kernel.org
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> # m68k
Acked-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Tested-by: kdevops <kdevops@lists.linux.dev>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Brian Cain <bcain@quicinc.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: Guo Ren <guoren@kernel.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Song Liu <song@kernel.org>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Steven Rostedt (Google) <rostedt@goodmis.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Vineet Gupta <vgupta@kernel.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
prepare_hugepage_range() performs almost the same checks for all
architectures that define it, with the exception of mips and loongarch
that also check for overflows.
The rest checks for the addr and len to be properly aligned, so we can
move that to hugetlb_get_unmapped_area() and get rid of a fair amount of
duplicated code.
[akpm@linux-foundation.org: remove now-unused local]
Link: https://lore.kernel.org/oe-kbuild-all/202410081210.uNLbf3Jk-lkp@intel.com/
Link: https://lkml.kernel.org/r/20241007075037.267650-10-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Donet Tom <donettom@linux.ibm.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Peter Xu <peterx@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Currently MTE is permitted in two circumstances (desiring to use MTE
having been specified by the VM_MTE flag) - where MAP_ANONYMOUS is
specified, as checked by arch_calc_vm_flag_bits() and actualised by
setting the VM_MTE_ALLOWED flag, or if the file backing the mapping is
shmem, in which case we set VM_MTE_ALLOWED in shmem_mmap() when the mmap
hook is activated in mmap_region().
The function that checks that, if VM_MTE is set, VM_MTE_ALLOWED is also
set is the arm64 implementation of arch_validate_flags().
Unfortunately, we intend to refactor mmap_region() to perform this check
earlier, meaning that in the case of a shmem backing we will not have
invoked shmem_mmap() yet, causing the mapping to fail spuriously.
It is inappropriate to set this architecture-specific flag in general mm
code anyway, so a sensible resolution of this issue is to instead move the
check somewhere else.
We resolve this by setting VM_MTE_ALLOWED much earlier in do_mmap(), via
the arch_calc_vm_flag_bits() call.
This is an appropriate place to do this as we already check for the
MAP_ANONYMOUS case here, and the shmem file case is simply a variant of
the same idea - we permit RAM-backed memory.
This requires a modification to the arch_calc_vm_flag_bits() signature to
pass in a pointer to the struct file associated with the mapping, however
this is not too egregious as this is only used by two architectures anyway
- arm64 and parisc.
So this patch performs this adjustment and removes the unnecessary
assignment of VM_MTE_ALLOWED in shmem_mmap().
[akpm@linux-foundation.org: fix whitespace, per Catalin]
Link: https://lkml.kernel.org/r/ec251b20ba1964fb64cf1607d2ad80c47f3873df.1730224667.git.lorenzo.stoakes@oracle.com
Fixes: deb0f6562884 ("mm/mmap: undo ->mmap() when arch_validate_flags() fails")
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Suggested-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Jann Horn <jannh@google.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Helge Deller <deller@gmx.de>
Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Will Deacon <will@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
page_to_phys is duplicated by all architectures, and from some strange
reason placed in <asm/io.h> where it doesn't fit at all.
phys_to_page is only provided by a few architectures despite having a lot
of open coded users.
Provide generic versions in <asm-generic/memory_model.h> to make these
helpers more easily usable.
Note with this patch powerpc loses the CONFIG_DEBUG_VIRTUAL pfn_valid
check. It will be added back in a generic version later.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
The VDSO implementation includes headers from outside of the
vdso/ namespace.
Introduce vdso/page.h to make sure that the generic library
uses only the allowed namespace.
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> # m68k
Link: https://lore.kernel.org/all/20241014151340.1639555-3-vincenzo.frascino@arm.com
|
|
Declarations local to arch/*/kernel/*.c are better off *not* in a public
header - arch/parisc/kernel/unaligned.h is just fine for those
bits.
With that done parisc asm/unaligned.h is reduced to include
of asm-generic/unaligned.h and can be removed - unaligned.h is in
mandatory-y in include/asm-generic/Kbuild.
Acked-by: Helge Deller <deller@gmx.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
When userspace allocates memory with mmap() in order to be used for stack,
allow this memory region to automatically expand upwards up until the
current maximum process stack size.
The fault handler checks if the VM_GROWSUP bit is set in the vm_flags field
of a memory area before it allows it to expand.
This patch modifies the parisc specific code only.
A RFC for a generic patch to modify mmap() for all architectures was sent
to the mailing list but did not get enough Acks.
Reported-by: Camm Maguire <camm@maguirefamily.org>
Signed-off-by: Helge Deller <deller@gmx.de>
Cc: stable@vger.kernel.org # v5.10+
|
|
Convert parisc timer code to generic clockevents framework.
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
ARCH_DMA_MINALIGN was defined as 16 - this is too small - it may be
possible that two unrelated 16-byte allocations share a cache line. If
one of these allocations is written using DMA and the other is written
using cached write, the value that was written with DMA may be
corrupted.
This commit changes ARCH_DMA_MINALIGN to be 128 on PA20 and 32 on PA1.1 -
that's the largest possible cache line size.
As different parisc microarchitectures have different cache line size, we
define arch_slab_minalign(), cache_line_size() and
dma_get_cache_alignment() so that the kernel may tune slab cache
parameters dynamically, based on the detected cache line size.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux
Pull parisc updates from Helge Deller:
"The gettimeofday() and clock_gettime() syscalls are now available as
vDSO functions, and Dave added a patch which allows to use NVMe cards
in the PCI slots as fast and easy alternative to SCSI discs.
Summary:
- add gettimeofday() and clock_gettime() vDSO functions
- enable PCI_MSI_ARCH_FALLBACKS to allow PCI to PCIe bridge adaptor
with PCIe NVME card to function in parisc machines
- allow users to reduce kernel unaligned runtime warnings
- minor code cleanups"
* tag 'parisc-for-6.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux:
parisc: Add support for CONFIG_SYSCTL_ARCH_UNALIGN_NO_WARN
parisc: Use max() to calculate parisc_tlb_flush_threshold
parisc: Fix warning at drivers/pci/msi/msi.h:121
parisc: Add 64-bit gettimeofday() and clock_gettime() vDSO functions
parisc: Add 32-bit gettimeofday() and clock_gettime() vDSO functions
parisc: Clean up unistd.h file
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core updates from Greg KH:
"Here is the big set of driver core changes for 6.11-rc1.
Lots of stuff in here, with not a huge diffstat, but apis are evolving
which required lots of files to be touched. Highlights of the changes
in here are:
- platform remove callback api final fixups (Uwe took many releases
to get here, finally!)
- Rust bindings for basic firmware apis and initial driver-core
interactions.
It's not all that useful for a "write a whole driver in rust" type
of thing, but the firmware bindings do help out the phy rust
drivers, and the driver core bindings give a solid base on which
others can start their work.
There is still a long way to go here before we have a multitude of
rust drivers being added, but it's a great first step.
- driver core const api changes.
This reached across all bus types, and there are some fix-ups for
some not-common bus types that linux-next and 0-day testing shook
out.
This work is being done to help make the rust bindings more safe,
as well as the C code, moving toward the end-goal of allowing us to
put driver structures into read-only memory. We aren't there yet,
but are getting closer.
- minor devres cleanups and fixes found by code inspection
- arch_topology minor changes
- other minor driver core cleanups
All of these have been in linux-next for a very long time with no
reported problems"
* tag 'driver-core-6.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (55 commits)
ARM: sa1100: make match function take a const pointer
sysfs/cpu: Make crash_hotplug attribute world-readable
dio: Have dio_bus_match() callback take a const *
zorro: make match function take a const pointer
driver core: module: make module_[add|remove]_driver take a const *
driver core: make driver_find_device() take a const *
driver core: make driver_[create|remove]_file take a const *
firmware_loader: fix soundness issue in `request_internal`
firmware_loader: annotate doctests as `no_run`
devres: Correct code style for functions that return a pointer type
devres: Initialize an uninitialized struct member
devres: Fix memory leakage caused by driver API devm_free_percpu()
devres: Fix devm_krealloc() wasting memory
driver core: platform: Switch to use kmemdup_array()
driver core: have match() callback in struct bus_type take a const *
MAINTAINERS: add Rust device abstractions to DRIVER CORE
device: rust: improve safety comments
MAINTAINERS: add Danilo as FIRMWARE LOADER maintainer
MAINTAINERS: add Rust FW abstractions to FIRMWARE LOADER
firmware: rust: improve safety comments
...
|
|
When clone3() was introduced, it was not obvious how each architecture
deals with setting up the stack and keeping the register contents in
a fork()-like system call, so this was left for the architecture
maintainers to implement, with __ARCH_WANT_SYS_CLONE3 defined by those
that already implement it.
Five years later, we still have a few architectures left that are missing
clone3(), and the macro keeps getting in the way as it's fundamentally
different from all the other __ARCH_WANT_SYS_* macros that are meant
to provide backwards-compatibility with applications using older
syscalls that are no longer provided by default.
Address this by reversing the polarity of the macro, adding an
__ARCH_BROKEN_SYS_CLONE3 macro to all architectures that don't
already provide the syscall, and remove __ARCH_WANT_SYS_CLONE3
from all the other ones.
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
In the match() callback, the struct device_driver * should not be
changed, so change the function callback to be a const *. This is one
step of many towards making the driver core safe to have struct
device_driver in read-only memory.
Because the match() callback is in all busses, all busses are modified
to handle this properly. This does entail switching some container_of()
calls to container_of_const() to properly handle the constant *.
For some busses, like PCI and USB and HV, the const * is cast away in
the match callback as those busses do want to modify those structures at
this point in time (they have a local lock in the driver structure.)
That will have to be changed in the future if they wish to have their
struct device * in read-only-memory.
Cc: Rafael J. Wysocki <rafael@kernel.org>
Reviewed-by: Alex Elder <elder@kernel.org>
Acked-by: Sumit Garg <sumit.garg@linaro.org>
Link: https://lore.kernel.org/r/2024070136-wrongdoer-busily-01e8@gregkh
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Add vDSO implementations for gettimeofday(), clock_gettime() and
clock_gettime64() kernel syscalls.
Currently those functions are implemented as pure syscall wrappers.
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
Clean up the internal unistd.h file, so that syscallX() can be used
internally to call syscalls from userspace. This is used later by the
vDSO C-code.
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
PA-RISC systems with PA8800 and PA8900 processors have had problems
with random segmentation faults for many years. Systems with earlier
processors are much more stable.
Systems with PA8800 and PA8900 processors have a large L2 cache which
needs per page flushing for decent performance when a large range is
flushed. The combined cache in these systems is also more sensitive to
non-equivalent aliases than the caches in earlier systems.
The majority of random segmentation faults that I have looked at
appear to be memory corruption in memory allocated using mmap and
malloc.
My first attempt at fixing the random faults didn't work. On
reviewing the cache code, I realized that there were two issues
which the existing code didn't handle correctly. Both relate
to cache move-in. Another issue is that the present bit in PTEs
is racy.
1) PA-RISC caches have a mind of their own and they can speculatively
load data and instructions for a page as long as there is a entry in
the TLB for the page which allows move-in. TLBs are local to each
CPU. Thus, the TLB entry for a page must be purged before flushing
the page. This is particularly important on SMP systems.
In some of the flush routines, the flush routine would be called
and then the TLB entry would be purged. This was because the flush
routine needed the TLB entry to do the flush.
2) My initial approach to trying the fix the random faults was to
try and use flush_cache_page_if_present for all flush operations.
This actually made things worse and led to a couple of hardware
lockups. It finally dawned on me that some lines weren't being
flushed because the pte check code was racy. This resulted in
random inequivalent mappings to physical pages.
The __flush_cache_page tmpalias flush sets up its own TLB entry
and it doesn't need the existing TLB entry. As long as we can find
the pte pointer for the vm page, we can get the pfn and physical
address of the page. We can also purge the TLB entry for the page
before doing the flush. Further, __flush_cache_page uses a special
TLB entry that inhibits cache move-in.
When switching page mappings, we need to ensure that lines are
removed from the cache. It is not sufficient to just flush the
lines to memory as they may come back.
This made it clear that we needed to implement all the required
flush operations using tmpalias routines. This includes flushes
for user and kernel pages.
After modifying the code to use tmpalias flushes, it became clear
that the random segmentation faults were not fully resolved. The
frequency of faults was worse on systems with a 64 MB L2 (PA8900)
and systems with more CPUs (rp4440).
The warning that I added to flush_cache_page_if_present to detect
pages that couldn't be flushed triggered frequently on some systems.
Helge and I looked at the pages that couldn't be flushed and found
that the PTE was either cleared or for a swap page. Ignoring pages
that were swapped out seemed okay but pages with cleared PTEs seemed
problematic.
I looked at routines related to pte_clear and noticed ptep_clear_flush.
The default implementation just flushes the TLB entry. However, it was
obvious that on parisc we need to flush the cache page as well. If
we don't flush the cache page, stale lines will be left in the cache
and cause random corruption. Once a PTE is cleared, there is no way
to find the physical address associated with the PTE and flush the
associated page at a later time.
I implemented an updated change with a parisc specific version of
ptep_clear_flush. It fixed the random data corruption on Helge's rp4440
and rp3440, as well as on my c8000.
At this point, I realized that I could restore the code where we only
flush in flush_cache_page_if_present if the page has been accessed.
However, for this, we also need to flush the cache when the accessed
bit is cleared in ptep_clear_flush_young to keep things synchronized.
The default implementation only flushes the TLB entry.
Other changes in this version are:
1) Implement parisc specific version of ptep_get. It's identical to
default but needed in arch/parisc/include/asm/pgtable.h.
2) Revise parisc implementation of ptep_test_and_clear_young to use
ptep_get (READ_ONCE).
3) Drop parisc implementation of ptep_get_and_clear. We can use default.
4) Revise flush_kernel_vmap_range and invalidate_kernel_vmap_range to
use full data cache flush.
5) Move flush_cache_vmap and flush_cache_vunmap to cache.c. Handle
VM_IOREMAP case in flush_cache_vmap.
At this time, I don't know whether it is better to always flush when
the PTE present bit is set or when both the accessed and present bits
are set. The later saves flushing pages that haven't been accessed,
but we need to flush in ptep_clear_flush_young. It also needs a page
table lookup to find the PTE pointer. The lpa instruction only needs
a page table lookup when the PTE entry isn't in the TLB.
We don't atomically handle setting and clearing the _PAGE_ACCESSED bit.
If we miss an update, we may miss a flush and the cache may get corrupted.
Whether the current code is effectively atomic depends on process control.
When CONFIG_FLUSH_PAGE_ACCESSED is set to zero, the page will eventually
be flushed when the PTE is cleared or in flush_cache_page_if_present. The
_PAGE_ACCESSED bit is not used, so the problem is avoided.
The flush method can be selected using the CONFIG_FLUSH_PAGE_ACCESSED
define in cache.c. The default is 0. I didn't see a large difference
in performance.
Signed-off-by: John David Anglin <dave.anglin@bell.net>
Cc: <stable@vger.kernel.org> # v6.6+
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic
Pull asm-generic cleanups from Arnd Bergmann:
"These are a few cross-architecture cleanup patches:
- separate out fbdev support from the asm/video.h contents that may
be used by either the old fbdev drivers or the newer drm display
code (Thomas Zimmermann)
- cleanups for the generic bitops code and asm-generic/bug.h
(Thorsten Blum)
- remove the orphaned include/asm-generic/page.h header that used to
be included by long-removed mmu-less architectures (me)"
* tag 'asm-generic-6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic:
arch: Fix name collision with ACPI's video.o
bug: Improve comment
asm-generic: remove unused asm-generic/page.h
arch: Rename fbdev header and source files
arch: Remove struct fb_info from video helpers
arch: Select fbdev helpers with CONFIG_VIDEO
bitops: Change function return types from long to int
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux
Pull parisc updates from Helge Deller:
- define sigset_t in parisc uapi header to fix build of util-linux
- define HAVE_ARCH_HUGETLB_UNMAPPED_AREA to avoid compiler warning
- drop unused 'exc_reg' struct in math-emu code
* tag 'parisc-for-6.10-1' of git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux:
parisc: Define HAVE_ARCH_HUGETLB_UNMAPPED_AREA
parisc/math-emu: Remove unused struct 'exc_reg'
parisc: Define sigset_t in parisc uapi header
|
|
Define the HAVE_ARCH_HUGETLB_UNMAPPED_AREA macro like other platforms do in
their page.h files to avoid this compile warning:
arch/parisc/mm/hugetlbpage.c:25:1: warning: no previous prototype for 'hugetlb_get_unmapped_area' [-Wmissing-prototypes]
Signed-off-by: Helge Deller <deller@gmx.de>
Cc: stable@vger.kernel.org # 6.0+
Reported-by: John David Anglin <dave.anglin@bell.net>
Tested-by: John David Anglin <dave.anglin@bell.net>
|
|
The per-architecture fbdev code has no dependencies on fbdev and can
be used for any video-related subsystem. Rename the files to 'video'.
Use video-sti.c on parisc as the source file depends on CONFIG_STI_CORE.
On arc, arm, arm64, sh, and um the asm header file is an empty wrapper
around the file in asm-generic. Let Kbuild generate the file. The build
system does this automatically. Only um needs to generate video.h
explicitly, so that it overrides the host architecture's header. The
latter would otherwise interfere with the build.
Further update all includes statements, include guards, and Makefiles.
Also update a few strings and comments to refer to video instead of
fbdev.
v3:
- arc, arm, arm64, sh: generate asm header via build system (Sam,
Helge, Arnd)
- um: rename fb.h to video.h
- fix typo in commit message (Sam)
Signed-off-by: Thomas Zimmermann <tzimmermann@suse.de>
Reviewed-by: Sam Ravnborg <sam@ravnborg.org>
Cc: Vineet Gupta <vgupta@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: WANG Xuerui <kernel@xen0n.name>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Rich Felker <dalias@libc.org>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: x86@kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
The per-architecture video helpers do not depend on struct fb_info
or anything else from fbdev. Remove it from the interface and replace
fb_is_primary_device() with video_is_primary_device(). The new helper
is similar in functionality, but can operate on non-fbdev devices.
Signed-off-by: Thomas Zimmermann <tzimmermann@suse.de>
Reviewed-by: Sam Ravnborg <sam@ravnborg.org>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Helge Deller <deller@gmx.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: x86@kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
The util-linux debian package fails to build on parisc, because
sigset_t isn't defined in asm/signal.h when included from userspace.
Move the sigset_t type from internal header to the uapi header to fix the
build.
Link: https://buildd.debian.org/status/fetch.php?pkg=util-linux&arch=hppa&ver=2.40-7&stamp=1714163443&raw=0
Signed-off-by: Helge Deller <deller@gmx.de>
Cc: stable@vger.kernel.org # v6.0+
|
|
Add (and export) __cmpxchg_u16(), teach __cmpxchg() to use it.
And get rid of manual truncation down to u8, etc. in there - the
only reason for those is to avoid bogus warnings about constant
truncation from sparse, and those are easy to avoid by turning
that switch into conditional expression.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
__cmpxchg_u32() return value is unsigned int explicitly cast to
unsigned long. Both callers are returns from functions that
return unsigned long; might as well have __cmpxchg_u32()
return that unsigned int (aka u32) and let the callers convert
implicitly.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
Patch series "ARM: prctl: Reject PR_SET_MDWE where not supported".
I noticed after a recent kernel update that my ARM926 system started
segfaulting on any execve() after calling prctl(PR_SET_MDWE). After some
investigation it appears that ARMv5 is incapable of providing the
appropriate protections for MDWE, since any readable memory is also
implicitly executable.
The prctl_set_mdwe() function already had some special-case logic added
disabling it on PARISC (commit 793838138c15, "prctl: Disable
prctl(PR_SET_MDWE) on parisc"); this patch series (1) generalizes that
check to use an arch_*() function, and (2) adds a corresponding override
for ARM to disable MDWE on pre-ARMv6 CPUs.
With the series applied, prctl(PR_SET_MDWE) is rejected on ARMv5 and
subsequent execve() calls (as well as mmap(PROT_READ|PROT_WRITE)) can
succeed instead of unconditionally failing; on ARMv6 the prctl works as it
did previously.
[0] https://lore.kernel.org/all/2023112456-linked-nape-bf19@gregkh/
This patch (of 2):
There exist systems other than PARISC where MDWE may not be feasible to
support; rather than cluttering up the generic code with additional
arch-specific logic let's add a generic function for checking MDWE support
and allow each arch to override it as needed.
Link: https://lkml.kernel.org/r/20240227013546.15769-4-zev@bewilderbeest.net
Link: https://lkml.kernel.org/r/20240227013546.15769-5-zev@bewilderbeest.net
Signed-off-by: Zev Weiss <zev@bewilderbeest.net>
Acked-by: Helge Deller <deller@gmx.de> [parisc]
Cc: Borislav Petkov <bp@alien8.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Florent Revest <revest@chromium.org>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Miguel Ojeda <ojeda@kernel.org>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Ondrej Mosnacek <omosnace@redhat.com>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Russell King (Oracle) <linux@armlinux.org.uk>
Cc: Sam James <sam@gentoo.org>
Cc: Stefan Roesch <shr@devkernel.io>
Cc: Yang Shi <yang@os.amperecomputing.com>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Cc: <stable@vger.kernel.org> [6.3+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux
Pull parisc architecture updates and fixes from Helge Deller:
"Fixes for the IPv4 and IPv6 checksum functions, a fix for the 64-bit
unaligned memory exception handler and various code cleanups.
Most of the patches are tagged for stable series.
- Fix inline assembly in ipv4 and ipv6 checksum functions (Guenter
Roeck)
- Rewrite 64-bit inline assembly of emulate_ldd() (Guenter Roeck)
- Do not clobber carry/borrow bits in tophys and tovirt macros (John
David Anglin)
- Warn when kernel accesses unaligned memory"
* tag 'parisc-for-6.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux:
parisc: led: Convert to platform remove callback returning void
parisc: Strip upper 32 bit of sum in csum_ipv6_magic for 64-bit builds
parisc: Fix csum_ipv6_magic on 64-bit systems
parisc: Fix csum_ipv6_magic on 32-bit systems
parisc: Fix ip_fast_csum
parisc: Avoid clobbering the C/B bits in the PSW with tophys and tovirt macros
parisc/unaligned: Rewrite 64-bit inline assembly of emulate_ldd()
parisc: make parisc_bus_type const
parisc: avoid c23 'nullptr' idenitifier
parisc: Show kernel unaligned memory accesses
parisc: Use irq_enter_rcu() to fix warning at kernel/context_tracking.c:367
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Sumanth Korikkar has taught s390 to allocate hotplug-time page frames
from hotplugged memory rather than only from main memory. Series
"implement "memmap on memory" feature on s390".
- More folio conversions from Matthew Wilcox in the series
"Convert memcontrol charge moving to use folios"
"mm: convert mm counter to take a folio"
- Chengming Zhou has optimized zswap's rbtree locking, providing
significant reductions in system time and modest but measurable
reductions in overall runtimes. The series is "mm/zswap: optimize the
scalability of zswap rb-tree".
- Chengming Zhou has also provided the series "mm/zswap: optimize zswap
lru list" which provides measurable runtime benefits in some
swap-intensive situations.
- And Chengming Zhou further optimizes zswap in the series "mm/zswap:
optimize for dynamic zswap_pools". Measured improvements are modest.
- zswap cleanups and simplifications from Yosry Ahmed in the series
"mm: zswap: simplify zswap_swapoff()".
- In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has
contributed several DAX cleanups as well as adding a sysfs tunable to
control the memmap_on_memory setting when the dax device is
hotplugged as system memory.
- Johannes Weiner has added the large series "mm: zswap: cleanups",
which does that.
- More DAMON work from SeongJae Park in the series
"mm/damon: make DAMON debugfs interface deprecation unignorable"
"selftests/damon: add more tests for core functionalities and corner cases"
"Docs/mm/damon: misc readability improvements"
"mm/damon: let DAMOS feeds and tame/auto-tune itself"
- In the series "mm/mempolicy: weighted interleave mempolicy and sysfs
extension" Rakie Kim has developed a new mempolicy interleaving
policy wherein we allocate memory across nodes in a weighted fashion
rather than uniformly. This is beneficial in heterogeneous memory
environments appearing with CXL.
- Christophe Leroy has contributed some cleanup and consolidation work
against the ARM pagetable dumping code in the series "mm: ptdump:
Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute".
- Luis Chamberlain has added some additional xarray selftesting in the
series "test_xarray: advanced API multi-index tests".
- Muhammad Usama Anjum has reworked the selftest code to make its
human-readable output conform to the TAP ("Test Anything Protocol")
format. Amongst other things, this opens up the use of third-party
tools to parse and process out selftesting results.
- Ryan Roberts has added fork()-time PTE batching of THP ptes in the
series "mm/memory: optimize fork() with PTE-mapped THP". Mainly
targeted at arm64, this significantly speeds up fork() when the
process has a large number of pte-mapped folios.
- David Hildenbrand also gets in on the THP pte batching game in his
series "mm/memory: optimize unmap/zap with PTE-mapped THP". It
implements batching during munmap() and other pte teardown
situations. The microbenchmark improvements are nice.
- And in the series "Transparent Contiguous PTEs for User Mappings"
Ryan Roberts further utilizes arm's pte's contiguous bit ("contpte
mappings"). Kernel build times on arm64 improved nicely. Ryan's
series "Address some contpte nits" provides some followup work.
- In the series "mm/hugetlb: Restore the reservation" Breno Leitao has
fixed an obscure hugetlb race which was causing unnecessary page
faults. He has also added a reproducer under the selftest code.
- In the series "selftests/mm: Output cleanups for the compaction
test", Mark Brown did what the title claims.
- Kinsey Ho has added the series "mm/mglru: code cleanup and
refactoring".
- Even more zswap material from Nhat Pham. The series "fix and extend
zswap kselftests" does as claimed.
- In the series "Introduce cpu_dcache_is_aliasing() to fix DAX
regression" Mathieu Desnoyers has cleaned up and fixed rather a mess
in our handling of DAX on archiecctures which have virtually aliasing
data caches. The arm architecture is the main beneficiary.
- Lokesh Gidra's series "per-vma locks in userfaultfd" provides
dramatic improvements in worst-case mmap_lock hold times during
certain userfaultfd operations.
- Some page_owner enhancements and maintenance work from Oscar Salvador
in his series
"page_owner: print stacks and their outstanding allocations"
"page_owner: Fixup and cleanup"
- Uladzislau Rezki has contributed some vmalloc scalability
improvements in his series "Mitigate a vmap lock contention". It
realizes a 12x improvement for a certain microbenchmark.
- Some kexec/crash cleanup work from Baoquan He in the series "Split
crash out from kexec and clean up related config items".
- Some zsmalloc maintenance work from Chengming Zhou in the series
"mm/zsmalloc: fix and optimize objects/page migration"
"mm/zsmalloc: some cleanup for get/set_zspage_mapping()"
- Zi Yan has taught the MM to perform compaction on folios larger than
order=0. This a step along the path to implementaton of the merging
of large anonymous folios. The series is named "Enable >0 order folio
memory compaction".
- Christoph Hellwig has done quite a lot of cleanup work in the
pagecache writeback code in his series "convert write_cache_pages()
to an iterator".
- Some modest hugetlb cleanups and speedups in Vishal Moola's series
"Handle hugetlb faults under the VMA lock".
- Zi Yan has changed the page splitting code so we can split huge pages
into sizes other than order-0 to better utilize large folios. The
series is named "Split a folio to any lower order folios".
- David Hildenbrand has contributed the series "mm: remove
total_mapcount()", a cleanup.
- Matthew Wilcox has sought to improve the performance of bulk memory
freeing in his series "Rearrange batched folio freeing".
- Gang Li's series "hugetlb: parallelize hugetlb page init on boot"
provides large improvements in bootup times on large machines which
are configured to use large numbers of hugetlb pages.
- Matthew Wilcox's series "PageFlags cleanups" does that.
- Qi Zheng's series "minor fixes and supplement for ptdesc" does that
also. S390 is affected.
- Cleanups to our pagemap utility functions from Peter Xu in his series
"mm/treewide: Replace pXd_large() with pXd_leaf()".
- Nico Pache has fixed a few things with our hugepage selftests in his
series "selftests/mm: Improve Hugepage Test Handling in MM
Selftests".
- Also, of course, many singleton patches to many things. Please see
the individual changelogs for details.
* tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (435 commits)
mm/zswap: remove the memcpy if acomp is not sleepable
crypto: introduce: acomp_is_async to expose if comp drivers might sleep
memtest: use {READ,WRITE}_ONCE in memory scanning
mm: prohibit the last subpage from reusing the entire large folio
mm: recover pud_leaf() definitions in nopmd case
selftests/mm: skip the hugetlb-madvise tests on unmet hugepage requirements
selftests/mm: skip uffd hugetlb tests with insufficient hugepages
selftests/mm: dont fail testsuite due to a lack of hugepages
mm/huge_memory: skip invalid debugfs new_order input for folio split
mm/huge_memory: check new folio order when split a folio
mm, vmscan: retry kswapd's priority loop with cache_trim_mode off on failure
mm: add an explicit smp_wmb() to UFFDIO_CONTINUE
mm: fix list corruption in put_pages_list
mm: remove folio from deferred split list before uncharging it
filemap: avoid unnecessary major faults in filemap_fault()
mm,page_owner: drop unnecessary check
mm,page_owner: check for null stack_record before bumping its refcount
mm: swap: fix race between free_swap_and_cache() and swapoff()
mm/treewide: align up pXd_leaf() retval across archs
mm/treewide: drop pXd_large()
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic
Pull asm-generic updates from Arnd Bergmann:
"Just two small updates this time:
- A series I did to unify the definition of PAGE_SIZE through
Kconfig, intended to help with a vdso rework that needs the
constant but cannot include the normal kernel headers when building
the compat VDSO on arm64 and potentially others
- a patch from Yan Zhao to remove the pfn_to_virt() definitions from
a couple of architectures after finding they were both incorrect
and entirely unused"
* tag 'asm-generic-6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic:
arch: define CONFIG_PAGE_SIZE_*KB on all architectures
arch: simplify architecture specific page size configuration
arch: consolidate existing CONFIG_PAGE_SIZE_*KB definitions
mm: Remove broken pfn_to_virt() on arch csky/hexagon/openrisc
|
|
arc, arm64, parisc and powerpc all have their own Kconfig symbols
in place of the common CONFIG_PAGE_SIZE_4KB symbols. Change these
so the common symbols are the ones that are actually used, while
leaving the arhcitecture specific ones as the user visible
place for configuring it, to avoid breaking user configs.
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu> (powerpc32)
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Helge Deller <deller@gmx.de> # parisc
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
IPv6 checksum tests with unaligned addresses on 64-bit builds result
in unexpected failures.
Expected expected == csum_result, but
expected == 46591 (0xb5ff)
csum_result == 46381 (0xb52d)
with alignment offset 1
Oddly enough, the problem disappeared after adding test code into
the beginning of csum_ipv6_magic().
As it turns out, the 'sum' parameter of csum_ipv6_magic() is declared as
__wsum, which is a 32-bit variable. However, it is treated as 64-bit
variable in the 64-bit assembler code. Tests showed that the upper 32 bit
of the register used to pass the variable are _not_ cleared when entering
the function. This can result in checksum calculation errors.
Clearing the upper 32 bit of 'sum' as first operation in the assembler
code fixes the problem.
Acked-by: Helge Deller <deller@gmx.de>
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Cc: stable@vger.kernel.org
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
hppa 64-bit systems calculates the IPv6 checksum using 64-bit add
operations. The last add folds protocol and length fields into the 64-bit
result. While unlikely, this operation can overflow. The overflow can be
triggered with a code sequence such as the following.
/* try to trigger massive overflows */
memset(tmp_buf, 0xff, sizeof(struct in6_addr));
csum_result = csum_ipv6_magic((struct in6_addr *)tmp_buf,
(struct in6_addr *)tmp_buf,
0xffff, 0xff, 0xffffffff);
Fix the problem by adding any overflows from the final add operation into
the calculated checksum. Fortunately, we can do this without additional
cost by replacing the add operation used to fold the checksum into 32 bit
with "add,dc" to add in the missing carry.
Cc: Palmer Dabbelt <palmer@rivosinc.com>
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Cc: stable@vger.kernel.org
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Reviewed-by: Charlie Jenkins <charlie@rivosinc.com>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
Calculating the IPv6 checksum on 32-bit systems missed overflows when
adding the proto+len fields into the checksum. This results in the
following unit test failure.
# test_csum_ipv6_magic: ASSERTION FAILED at lib/checksum_kunit.c:506
Expected ( u64)csum_result == ( u64)expected, but
( u64)csum_result == 46722 (0xb682)
( u64)expected == 46721 (0xb681)
not ok 5 test_csum_ipv6_magic
This is probably rarely seen in the real world because proto+len are
usually small values which will rarely result in overflows when calculating
the checksum. However, the unit test code uses large values for the length
field, causing the test to fail.
Fix the problem by adding the missing carry into the final checksum.
Cc: Palmer Dabbelt <palmer@rivosinc.com>
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Cc: stable@vger.kernel.org
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Tested-by: Charlie Jenkins <charlie@rivosinc.com>
Reviewed-by: Charlie Jenkins <charlie@rivosinc.com>
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
IP checksum unit tests report the following error when run on hppa/hppa64.
# test_ip_fast_csum: ASSERTION FAILED at lib/checksum_kunit.c:463
Expected ( u64)csum_result == ( u64)expected, but
( u64)csum_result == 33754 (0x83da)
( u64)expected == 10946 (0x2ac2)
not ok 4 test_ip_fast_csum
0x83da is the expected result if the IP header length is 20 bytes. 0x2ac2
is the expected result if the IP header length is 24 bytes. The test fails
with an IP header length of 24 bytes. It appears that ip_fast_csum()
always returns the checksum for a 20-byte header, no matter how long
the header actually is.
Code analysis shows a suspicious assembler sequence in ip_fast_csum().
" addc %0, %3, %0\n"
"1: ldws,ma 4(%1), %3\n"
" addib,< 0, %2, 1b\n" <---
While my understanding of HPPA assembler is limited, it does not seem
to make much sense to subtract 0 from a register and to expect the result
to ever be negative. Subtracting 1 from the length parameter makes more
sense. On top of that, the operation should be repeated if and only if
the result is still > 0, so change the suspicious instruction to
" addib,> -1, %2, 1b\n"
The IP checksum unit test passes after this change.
Cc: Palmer Dabbelt <palmer@rivosinc.com>
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Cc: stable@vger.kernel.org
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Tested-by: Charlie Jenkins <charlie@rivosinc.com>
Reviewed-by: Charlie Jenkins <charlie@rivosinc.com>
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
Use add,l to avoid clobbering the C/B bits in the PSW.
Signed-off-by: John David Anglin <dave.anglin@bell.net>
Signed-off-by: Helge Deller <deller@gmx.de>
Cc: stable@vger.kernel.org # v5.10+
|
|
Since commit d492cc2573a0 ("driver core: device.h: make struct
bus_type a const *"), the driver core can properly handle constant
struct bus_type, move the parisc_bus_type variable to be a constant
structure as well, placing it into read-only memory which can not be
modified at runtime.
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Suggested-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Ricardo B. Marliere <ricardo@marliere.net>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux
Pull parisc architecture fixes from Helge Deller:
"Fixes CPU hotplug, the parisc stack unwinder and two possible build
errors in kprobes and ftrace area:
- Fix CPU hotplug
- Fix unaligned accesses and faults in stack unwinder
- Fix potential build errors by always including asm-generic/kprobes.h
- Fix build bug by add missing CONFIG_DYNAMIC_FTRACE check"
* tag 'parisc-for-6.8-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux:
parisc: Fix stack unwinder
parisc/kprobes: always include asm-generic/kprobes.h
parisc/ftrace: add missing CONFIG_DYNAMIC_FTRACE check
Revert "parisc: Only list existing CPUs in cpu_possible_mask"
|
|
Introduce a generic way to query whether the data cache is virtually
aliased on all architectures. Its purpose is to ensure that subsystems
which are incompatible with virtually aliased data caches (e.g. FS_DAX)
can reliably query this.
For data cache aliasing, there are three scenarios dependending on the
architecture. Here is a breakdown based on my understanding:
A) The data cache is always aliasing:
* arc
* csky
* m68k (note: shared memory mappings are incoherent ? SHMLBA is missing there.)
* sh
* parisc
B) The data cache aliasing is statically known or depends on querying CPU
state at runtime:
* arm (cache_is_vivt() || cache_is_vipt_aliasing())
* mips (cpu_has_dc_aliases)
* nios2 (NIOS2_DCACHE_SIZE > PAGE_SIZE)
* sparc32 (vac_cache_size > PAGE_SIZE)
* sparc64 (L1DCACHE_SIZE > PAGE_SIZE)
* xtensa (DCACHE_WAY_SIZE > PAGE_SIZE)
C) The data cache is never aliasing:
* alpha
* arm64 (aarch64)
* hexagon
* loongarch (but with incoherent write buffers, which are disabled since
commit d23b7795 ("LoongArch: Change SHMLBA from SZ_64K to PAGE_SIZE"))
* microblaze
* openrisc
* powerpc
* riscv
* s390
* um
* x86
Require architectures in A) and B) to select ARCH_HAS_CPU_CACHE_ALIASING and
implement "cpu_dcache_is_aliasing()".
Architectures in C) don't select ARCH_HAS_CPU_CACHE_ALIASING, and thus
cpu_dcache_is_aliasing() simply evaluates to "false".
Note that this leaves "cpu_icache_is_aliasing()" to be implemented as future
work. This would be useful to gate features like XIP on architectures
which have aliasing CPU dcache-icache but not CPU dcache-dcache.
Use "cpu_dcache" and "cpu_cache" rather than just "dcache" and "cache"
to clarify that we really mean "CPU data cache" and "CPU cache" to
eliminate any possible confusion with VFS "dentry cache" and "page
cache".
Link: https://lore.kernel.org/lkml/20030910210416.GA24258@mail.jlokier.co.uk/
Link: https://lkml.kernel.org/r/20240215144633.96437-9-mathieu.desnoyers@efficios.com
Fixes: d92576f1167c ("dax: does not work correctly with virtual aliasing caches")
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Alasdair Kergon <agk@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: kernel test robot <lkp@intel.com>
Cc: Michael Sclafani <dm-devel@lists.linux.dev>
Cc: Mike Snitzer <snitzer@kernel.org>
Cc: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The NOKPROBE_SYMBOL macro (and others) were moved to
asm-generic/kprobes.h in 2017 by commit 7d134b2ce639 ("kprobes: move
kprobe declarations to asm-generic/kprobes.h"), and this new header
was included by asm/kprobes.h unconditionally on all architectures.
When kprobe support was added to parisc in 2017 by commit
8858ac8e9e9b1 ("parisc: Implement kprobes"), that header was only
included when CONFIG_KPROBES was enabled.
This can lead to build failures when NOKPROBE_SYMBOL is used, but
CONFIG_KPROBES is disabled. This mistake however was never actually
noticed because linux/kprobes.h also includes asm-generic/kprobes.h
(though I do not understand why that is, because it also includes
asm/kprobes.h).
To prevent eventual build failures, I suggest to always include
asm-generic/kprobes.h on parisc, just like all the other architectures
do. This way, including asm/kprobes.h suffices, and nobody (outside
of arch/) ever needs to explicitly include asm-generic/kprobes.h.
Signed-off-by: Max Kellermann <max.kellermann@ionos.com>
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
We've had issues with gcc and 'asm goto' before, and we created a
'asm_volatile_goto()' macro for that in the past: see commits
3f0116c3238a ("compiler/gcc4: Add quirk for 'asm goto' miscompilation
bug") and a9f180345f53 ("compiler/gcc4: Make quirk for
asm_volatile_goto() unconditional").
Then, much later, we ended up removing the workaround in commit
43c249ea0b1e ("compiler-gcc.h: remove ancient workaround for gcc PR
58670") because we no longer supported building the kernel with the
affected gcc versions, but we left the macro uses around.
Now, Sean Christopherson reports a new version of a very similar
problem, which is fixed by re-applying that ancient workaround. But the
problem in question is limited to only the 'asm goto with outputs'
cases, so instead of re-introducing the old workaround as-is, let's
rename and limit the workaround to just that much less common case.
It looks like there are at least two separate issues that all hit in
this area:
(a) some versions of gcc don't mark the asm goto as 'volatile' when it
has outputs:
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=98619
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=110420
which is easy to work around by just adding the 'volatile' by hand.
(b) Internal compiler errors:
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=110422
which are worked around by adding the extra empty 'asm' as a
barrier, as in the original workaround.
but the problem Sean sees may be a third thing since it involves bad
code generation (not an ICE) even with the manually added 'volatile'.
but the same old workaround works for this case, even if this feels a
bit like voodoo programming and may only be hiding the issue.
Reported-and-tested-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/all/20240208220604.140859-1-seanjc@google.com/
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Uros Bizjak <ubizjak@gmail.com>
Cc: Jakub Jelinek <jakub@redhat.com>
Cc: Andrew Pinski <quic_apinski@quicinc.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The current exception handler implementation, which assists when accessing
user space memory, may exhibit random data corruption if the compiler decides
to use a different register than the specified register %r29 (defined in
ASM_EXCEPTIONTABLE_REG) for the error code. If the compiler choose another
register, the fault handler will nevertheless store -EFAULT into %r29 and thus
trash whatever this register is used for.
Looking at the assembly I found that this happens sometimes in emulate_ldd().
To solve the issue, the easiest solution would be if it somehow is
possible to tell the fault handler which register is used to hold the error
code. Using %0 or %1 in the inline assembly is not posssible as it will show
up as e.g. %r29 (with the "%r" prefix), which the GNU assembler can not
convert to an integer.
This patch takes another, better and more flexible approach:
We extend the __ex_table (which is out of the execution path) by one 32-word.
In this word we tell the compiler to insert the assembler instruction
"or %r0,%r0,%reg", where %reg references the register which the compiler
choosed for the error return code.
In case of an access failure, the fault handler finds the __ex_table entry and
can examine the opcode. The used register is encoded in the lowest 5 bits, and
the fault handler can then store -EFAULT into this register.
Since we extend the __ex_table to 3 words we can't use the BUILDTIME_TABLE_SORT
config option any longer.
Signed-off-by: Helge Deller <deller@gmx.de>
Cc: <stable@vger.kernel.org> # v6.0+
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/dennis/percpu
Pull percpu updates from Dennis Zhou:
"Enable percpu page allocator for RISC-V.
There are RISC-V configurations with sparse NUMA configurations and
small vmalloc space causing dynamic percpu allocations to fail as the
backing chunk stride is too far apart"
* tag 'percpu-for-6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/dennis/percpu:
riscv: Enable pcpu page first chunk allocator
mm: Introduce flush_cache_vmap_early()
|