Age | Commit message (Collapse) | Author |
|
This adds a one-reg register identifier which can be used to read and
set the virtual PTCR for the guest. This register identifies the
address and size of the virtual partition table for the guest, which
contains information about the nested guests under this guest.
Migrating this value is the only extra requirement for migrating a
guest which has nested guests (assuming of course that the destination
host supports nested virtualization in the kvm-hv module).
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This is only done at level 0, since only level 0 knows which physical
CPU a vcpu is running on. This does for nested guests what L0 already
did for its own guests, which is to flush the TLB on a pCPU when it
goes to run a vCPU there, and there is another vCPU in the same VM
which previously ran on this pCPU and has now started to run on another
pCPU. This is to handle the situation where the other vCPU touched
a mapping, moved to another pCPU and did a tlbiel (local-only tlbie)
on that new pCPU and thus left behind a stale TLB entry on this pCPU.
This introduces a limit on the the vcpu_token values used in the
H_ENTER_NESTED hcall -- they must now be less than NR_CPUS.
[paulus@ozlabs.org - made prev_cpu array be short[] to reduce
memory consumption.]
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This adds code to call the H_TLB_INVALIDATE hypercall when running as
a guest, in the cases where we need to invalidate TLBs (or other MMU
caches) as part of managing the mappings for a nested guest. Calling
H_TLB_INVALIDATE lets the nested hypervisor inform the parent
hypervisor about changes to partition-scoped page tables or the
partition table without needing to do hypervisor-privileged tlbie
instructions.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
When running a nested (L2) guest the guest (L1) hypervisor will use
the H_TLB_INVALIDATE hcall when it needs to change the partition
scoped page tables or the partition table which it manages. It will
use this hcall in the situations where it would use a partition-scoped
tlbie instruction if it were running in hypervisor mode.
The H_TLB_INVALIDATE hcall can invalidate different scopes:
Invalidate TLB for a given target address:
- This invalidates a single L2 -> L1 pte
- We need to invalidate any L2 -> L0 shadow_pgtable ptes which map the L2
address space which is being invalidated. This is because a single
L2 -> L1 pte may have been mapped with more than one pte in the
L2 -> L0 page tables.
Invalidate the entire TLB for a given LPID or for all LPIDs:
- Invalidate the entire shadow_pgtable for a given nested guest, or
for all nested guests.
Invalidate the PWC (page walk cache) for a given LPID or for all LPIDs:
- We don't cache the PWC, so nothing to do.
Invalidate the entire TLB, PWC and partition table for a given/all LPIDs:
- Here we re-read the partition table entry and remove the nested state
for any nested guest for which the first doubleword of the partition
table entry is now zero.
The H_TLB_INVALIDATE hcall takes as parameters the tlbie instruction
word (of which only the RIC, PRS and R fields are used), the rS value
(giving the lpid, where required) and the rB value (giving the IS, AP
and EPN values).
[paulus@ozlabs.org - adapted to having the partition table in guest
memory, added the H_TLB_INVALIDATE implementation, removed tlbie
instruction emulation, reworded the commit message.]
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
When a host (L0) page which is mapped into a (L1) guest is in turn
mapped through to a nested (L2) guest we keep a reverse mapping (rmap)
so that these mappings can be retrieved later.
Whenever we create an entry in a shadow_pgtable for a nested guest we
create a corresponding rmap entry and add it to the list for the
L1 guest memslot at the index of the L1 guest page it maps. This means
at the L1 guest memslot we end up with lists of rmaps.
When we are notified of a host page being invalidated which has been
mapped through to a (L1) guest, we can then walk the rmap list for that
guest page, and find and invalidate all of the corresponding
shadow_pgtable entries.
In order to reduce memory consumption, we compress the information for
each rmap entry down to 52 bits -- 12 bits for the LPID and 40 bits
for the guest real page frame number -- which will fit in a single
unsigned long. To avoid a scenario where a guest can trigger
unbounded memory allocations, we scan the list when adding an entry to
see if there is already an entry with the contents we need. This can
occur, because we don't ever remove entries from the middle of a list.
A struct nested guest rmap is a list pointer and an rmap entry;
----------------
| next pointer |
----------------
| rmap entry |
----------------
Thus the rmap pointer for each guest frame number in the memslot can be
either NULL, a single entry, or a pointer to a list of nested rmap entries.
gfn memslot rmap array
-------------------------
0 | NULL | (no rmap entry)
-------------------------
1 | single rmap entry | (rmap entry with low bit set)
-------------------------
2 | list head pointer | (list of rmap entries)
-------------------------
The final entry always has the lowest bit set and is stored in the next
pointer of the last list entry, or as a single rmap entry.
With a list of rmap entries looking like;
----------------- ----------------- -------------------------
| list head ptr | ----> | next pointer | ----> | single rmap entry |
----------------- ----------------- -------------------------
| rmap entry | | rmap entry |
----------------- -------------------------
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Consider a normal (L1) guest running under the main hypervisor (L0),
and then a nested guest (L2) running under the L1 guest which is acting
as a nested hypervisor. L0 has page tables to map the address space for
L1 providing the translation from L1 real address -> L0 real address;
L1
|
| (L1 -> L0)
|
----> L0
There are also page tables in L1 used to map the address space for L2
providing the translation from L2 real address -> L1 read address. Since
the hardware can only walk a single level of page table, we need to
maintain in L0 a "shadow_pgtable" for L2 which provides the translation
from L2 real address -> L0 real address. Which looks like;
L2 L2
| |
| (L2 -> L1) |
| |
----> L1 | (L2 -> L0)
| |
| (L1 -> L0) |
| |
----> L0 --------> L0
When a page fault occurs while running a nested (L2) guest we need to
insert a pte into this "shadow_pgtable" for the L2 -> L0 mapping. To
do this we need to:
1. Walk the pgtable in L1 memory to find the L2 -> L1 mapping, and
provide a page fault to L1 if this mapping doesn't exist.
2. Use our L1 -> L0 pgtable to convert this L1 address to an L0 address,
or try to insert a pte for that mapping if it doesn't exist.
3. Now we have a L2 -> L0 mapping, insert this into our shadow_pgtable
Once this mapping exists we can take rc faults when hardware is unable
to automatically set the reference and change bits in the pte. On these
we need to:
1. Check the rc bits on the L2 -> L1 pte match, and otherwise reflect
the fault down to L1.
2. Set the rc bits in the L1 -> L0 pte which corresponds to the same
host page.
3. Set the rc bits in the L2 -> L0 pte.
As we reuse a large number of functions in book3s_64_mmu_radix.c for
this we also needed to refactor a number of these functions to take
an lpid parameter so that the correct lpid is used for tlb invalidations.
The functionality however has remained the same.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
When we are running as a nested hypervisor, we use a hypercall to
enter the guest rather than code in book3s_hv_rmhandlers.S. This means
that the hypercall handlers listed in hcall_real_table never get called.
There are some hypercalls that are handled there and not in
kvmppc_pseries_do_hcall(), which therefore won't get processed for
a nested guest.
To fix this, we add cases to kvmppc_pseries_do_hcall() to handle those
hypercalls, with the following exceptions:
- The HPT hypercalls (H_ENTER, H_REMOVE, etc.) are not handled because
we only support radix mode for nested guests.
- H_CEDE has to be handled specially because the cede logic in
kvmhv_run_single_vcpu assumes that it has been processed by the time
that kvmhv_p9_guest_entry() returns. Therefore we put a special
case for H_CEDE in kvmhv_p9_guest_entry().
For the XICS hypercalls, if real-mode processing is enabled, then the
virtual-mode handlers assume that they are being called only to finish
up the operation. Therefore we turn off the real-mode flag in the XICS
code when running as a nested hypervisor.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This adds a new hypercall, H_ENTER_NESTED, which is used by a nested
hypervisor to enter one of its nested guests. The hypercall supplies
register values in two structs. Those values are copied by the level 0
(L0) hypervisor (the one which is running in hypervisor mode) into the
vcpu struct of the L1 guest, and then the guest is run until an
interrupt or error occurs which needs to be reported to L1 via the
hypercall return value.
Currently this assumes that the L0 and L1 hypervisors are the same
endianness, and the structs passed as arguments are in native
endianness. If they are of different endianness, the version number
check will fail and the hcall will be rejected.
Nested hypervisors do not support indep_threads_mode=N, so this adds
code to print a warning message if the administrator has set
indep_threads_mode=N, and treat it as Y.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This starts the process of adding the code to support nested HV-style
virtualization. It defines a new H_SET_PARTITION_TABLE hypercall which
a nested hypervisor can use to set the base address and size of a
partition table in its memory (analogous to the PTCR register).
On the host (level 0 hypervisor) side, the H_SET_PARTITION_TABLE
hypercall from the guest is handled by code that saves the virtual
PTCR value for the guest.
This also adds code for creating and destroying nested guests and for
reading the partition table entry for a nested guest from L1 memory.
Each nested guest has its own shadow LPID value, different in general
from the LPID value used by the nested hypervisor to refer to it. The
shadow LPID value is allocated at nested guest creation time.
Nested hypervisor functionality is only available for a radix guest,
which therefore means a radix host on a POWER9 (or later) processor.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
agnostic
kvmppc_mmu_radix_xlate() is used to translate an effective address
through the process tables. The process table and partition tables have
identical layout. Exploit this fact to make the kvmppc_mmu_radix_xlate()
function able to translate either an effective address through the
process tables or a guest real address through the partition tables.
[paulus@ozlabs.org - reduced diffs from previous code]
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
When the 'regs' field was added to struct kvm_vcpu_arch, the code
was changed to use several of the fields inside regs (e.g., gpr, lr,
etc.) but not the ccr field, because the ccr field in struct pt_regs
is 64 bits on 64-bit platforms, but the cr field in kvm_vcpu_arch is
only 32 bits. This changes the code to use the regs.ccr field
instead of cr, and changes the assembly code on 64-bit platforms to
use 64-bit loads and stores instead of 32-bit ones.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This adds a file called 'radix' in the debugfs directory for the
guest, which when read gives all of the valid leaf PTEs in the
partition-scoped radix tree for a radix guest, in human-readable
format. It is analogous to the existing 'htab' file which dumps
the HPT entries for a HPT guest.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Currently the code for handling hypervisor instruction page faults
passes 0 for the flags indicating the type of fault, which is OK in
the usual case that the page is not mapped in the partition-scoped
page tables. However, there are other causes for hypervisor
instruction page faults, such as not being to update a reference
(R) or change (C) bit. The cause is indicated in bits in HSRR1,
including a bit which indicates that the fault is due to not being
able to write to a page (for example to update an R or C bit).
Not handling these other kinds of faults correctly can lead to a
loop of continual faults without forward progress in the guest.
In order to handle these faults better, this patch constructs a
"DSISR-like" value from the bits which DSISR and SRR1 (for a HISI)
have in common, and passes it to kvmppc_book3s_hv_page_fault() so
that it knows what caused the fault.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This creates an alternative guest entry/exit path which is used for
radix guests on POWER9 systems when we have indep_threads_mode=Y. In
these circumstances there is exactly one vcpu per vcore and there is
no coordination required between vcpus or vcores; the vcpu can enter
the guest without needing to synchronize with anything else.
The new fast path is implemented almost entirely in C in book3s_hv.c
and runs with the MMU on until the guest is entered. On guest exit
we use the existing path until the point where we are committed to
exiting the guest (as distinct from handling an interrupt in the
low-level code and returning to the guest) and we have pulled the
guest context from the XIVE. At that point we check a flag in the
stack frame to see whether we came in via the old path and the new
path; if we came in via the new path then we go back to C code to do
the rest of the process of saving the guest context and restoring the
host context.
The C code is split into separate functions for handling the
OS-accessible state and the hypervisor state, with the idea that the
latter can be replaced by a hypercall when we implement nested
virtualization.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
[mpe: Fix CONFIG_ALTIVEC=n build]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This adds a parameter to __kvmppc_save_tm and __kvmppc_restore_tm
which allows the caller to indicate whether it wants the nonvolatile
register state to be preserved across the call, as required by the C
calling conventions. This parameter being non-zero also causes the
MSR bits that enable TM, FP, VMX and VSX to be preserved. The
condition register and DSCR are now always preserved.
With this, kvmppc_save_tm_hv and kvmppc_restore_tm_hv can be called
from C code provided the 3rd parameter is non-zero. So that these
functions can be called from modules, they now include code to set
the TOC pointer (r2) on entry, as they can call other built-in C
functions which will assume the TOC to have been set.
Also, the fake suspend code in kvmppc_save_tm_hv is modified here to
assume that treclaim in fake-suspend state does not modify any registers,
which is the case on POWER9. This enables the code to be simplified
quite a bit.
_kvmppc_save_tm_pr and _kvmppc_restore_tm_pr become much simpler with
this change, since they now only need to save and restore TAR and pass
1 for the 3rd argument to __kvmppc_{save,restore}_tm.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This pulls out the assembler code that is responsible for saving and
restoring the PMU state for the host and guest into separate functions
so they can be used from an alternate entry path. The calling
convention is made compatible with C.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This is based on a patch by Suraj Jitindar Singh.
This moves the code in book3s_hv_rmhandlers.S that generates an
external, decrementer or privileged doorbell interrupt just before
entering the guest to C code in book3s_hv_builtin.c. This is to
make future maintenance and modification easier. The algorithm
expressed in the C code is almost identical to the previous
algorithm.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Currently we use two bits in the vcpu pending_exceptions bitmap to
indicate that an external interrupt is pending for the guest, one
for "one-shot" interrupts that are cleared when delivered, and one
for interrupts that persist until cleared by an explicit action of
the OS (e.g. an acknowledge to an interrupt controller). The
BOOK3S_IRQPRIO_EXTERNAL bit is used for one-shot interrupt requests
and BOOK3S_IRQPRIO_EXTERNAL_LEVEL is used for persisting interrupts.
In practice BOOK3S_IRQPRIO_EXTERNAL never gets used, because our
Book3S platforms generally, and pseries in particular, expect
external interrupt requests to persist until they are acknowledged
at the interrupt controller. That combined with the confusion
introduced by having two bits for what is essentially the same thing
makes it attractive to simplify things by only using one bit. This
patch does that.
With this patch there is only BOOK3S_IRQPRIO_EXTERNAL, and by default
it has the semantics of a persisting interrupt. In order to avoid
breaking the ABI, we introduce a new "external_oneshot" flag which
preserves the behaviour of the KVM_INTERRUPT ioctl with the
KVM_INTERRUPT_SET argument.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
The kvmppc_gpa_to_ua() helper itself takes care of the permission
bits in the TCE and yet every single caller removes them.
This changes semantics of kvmppc_gpa_to_ua() so it takes TCEs
(which are GPAs + TCE permission bits) to make the callers simpler.
This should cause no behavioural change.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
The userspace can request an arbitrary supported page size for a DMA
window and this works fine as long as the mapped memory is backed with
the pages of the same or bigger size; if this is not the case,
mm_iommu_ua_to_hpa{_rm}() fail and tables do not populated with
dangerously incorrect TCEs.
However since it is quite easy to misconfigure the KVM and we do not do
reverts to all changes made to TCE tables if an error happens in a middle,
we better do the acceptable page size validation before we even touch
the tables.
This enhances kvmppc_tce_validate() to check the hardware IOMMU page sizes
against the preregistered memory page sizes.
Since the new check uses real/virtual mode helpers, this renames
kvmppc_tce_validate() to kvmppc_rm_tce_validate() to handle the real mode
case and mirrors it for the virtual mode under the old name. The real
mode handler is not used for the virtual mode as:
1. it uses _lockless() list traversing primitives instead of RCU;
2. realmode's mm_iommu_ua_to_hpa_rm() uses vmalloc_to_phys() which
virtual mode does not have to use and since on POWER9+radix only virtual
mode handlers actually work, we do not want to slow down that path even
a bit.
This removes EXPORT_SYMBOL_GPL(kvmppc_tce_validate) as the validators
are static now.
From now on the attempts on mapping IOMMU pages bigger than allowed
will result in KVM exit.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
[mpe: Fix KVM_HV=n build]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Rework the defintion of struct siginfo so that the array padding
struct siginfo to SI_MAX_SIZE can be placed in a union along side of
the rest of the struct siginfo members. The result is that we no
longer need the __ARCH_SI_PREAMBLE_SIZE or SI_PAD_SIZE definitions.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
Currently msr_tm_active() is a wrapper around MSR_TM_ACTIVE() if
CONFIG_PPC_TRANSACTIONAL_MEM is set, or it is just a function that
returns false if CONFIG_PPC_TRANSACTIONAL_MEM is not set.
This function is not necessary, since MSR_TM_ACTIVE() just do the same and
could be used, removing the dualism and simplifying the code.
This patchset remove every instance of msr_tm_active() and replaced it
by MSR_TM_ACTIVE().
Signed-off-by: Breno Leitao <leitao@debian.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This is a patch that adds support for PTRACE_SYSEMU ptrace request in
PowerPC architecture.
When ptrace(PTRACE_SYSEMU, ...) request is called, it will be handled by
the arch independent function ptrace_resume(), which will tag the task with
the TIF_SYSCALL_EMU flag. This flag needs to be handled from a platform
dependent point of view, which is what this patch does.
This patch adds this task's flag as part of the _TIF_SYSCALL_DOTRACE, which
is the MACRO that is used to trace syscalls at entrance/exit.
Since TIF_SYSCALL_EMU is now part of _TIF_SYSCALL_DOTRACE, if the task has
_TIF_SYSCALL_DOTRACE set, it will hit do_syscall_trace_enter() at syscall
entrance and do_syscall_trace_leave() at syscall leave.
do_syscall_trace_enter() needs to handle the TIF_SYSCALL_EMU flag properly,
which will interrupt the syscall executing if TIF_SYSCALL_EMU is set. The
output values should not be changed, i.e. the return value (r3) should
contain the original syscall argument on exit.
With this flag set, the syscall is not executed fundamentally, because
do_syscall_trace_enter() is returning -1 which is bigger than NR_syscall,
thus, skipping the syscall execution and exiting userspace.
Signed-off-by: Breno Leitao <leitao@debian.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Moving TIF_32BIT to use bit 20 instead of 4 in the task flag field.
This change is making room for an upcoming new task macro
(_TIF_SYSCALL_EMU) which is preferred to set a bit in the lower 16-bits
part of the word.
This upcoming flag macro will take part in a composed macro
(_TIF_SYSCALL_DOTRACE) which will contain other flags as well, and it is
preferred that the whole _TIF_SYSCALL_DOTRACE macro only sets the lower 16
bits of a word, so, it could be handled using immediate operations (as load
immediate, add immediate, ...) where the immediate operand (SI) is limited
to 16-bits.
Another possible solution would be using the LOAD_REG_IMMEDIATE() macro
to load a full 64-bits word immediate, but it takes 5 operations instead of
one.
Having TIF_32BITS being redefined to use an upper bit is not a problem
since there is only one place in the assembly code where TIF_32BIT is being
used, and it could be replaced with an operation with right shift (addis),
since it is used alone, i.e. not being part of a composed macro, which has
different bits set, and would require LOAD_REG_IMMEDIATE().
Tested on a 64 bits Big Endian machine running a 32 bits task.
Signed-off-by: Breno Leitao <leitao@debian.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
On PPC64, as register r13 points to the paca_struct at all time,
this patch adds a copy of the canary there, which is copied at
task_switch.
That new canary is then used by using the following GCC options:
-mstack-protector-guard=tls
-mstack-protector-guard-reg=r13
-mstack-protector-guard-offset=offsetof(struct paca_struct, canary))
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This functionality was tentatively added in the past
(commit 6533b7c16ee5 ("powerpc: Initial stack protector
(-fstack-protector) support")) but had to be reverted
(commit f2574030b0e3 ("powerpc: Revert the initial stack
protector support") because of GCC implementing it differently
whether it had been built with libc support or not.
Now, GCC offers the possibility to manually set the
stack-protector mode (global or tls) regardless of libc support.
This time, the patch selects HAVE_STACKPROTECTOR only if
-mstack-protector-guard=tls is supported by GCC.
On PPC32, as register r2 points to current task_struct at
all time, the stack_canary located inside task_struct can be
used directly by using the following GCC options:
-mstack-protector-guard=tls
-mstack-protector-guard-reg=r2
-mstack-protector-guard-offset=offsetof(struct task_struct, stack_canary))
The protector is disabled for prom_init and bootx_init as
it is too early to handle it properly.
$ echo CORRUPT_STACK > /sys/kernel/debug/provoke-crash/DIRECT
[ 134.943666] Kernel panic - not syncing: stack-protector: Kernel stack is corrupted in: lkdtm_CORRUPT_STACK+0x64/0x64
[ 134.943666]
[ 134.955414] CPU: 0 PID: 283 Comm: sh Not tainted 4.18.0-s3k-dev-12143-ga3272be41209 #835
[ 134.963380] Call Trace:
[ 134.965860] [c6615d60] [c001f76c] panic+0x118/0x260 (unreliable)
[ 134.971775] [c6615dc0] [c001f654] panic+0x0/0x260
[ 134.976435] [c6615dd0] [c032c368] lkdtm_CORRUPT_STACK_STRONG+0x0/0x64
[ 134.982769] [c6615e00] [ffffffff] 0xffffffff
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
PPC32 uses nonrecoverable_exception() while PPC64 uses
unrecoverable_exception().
Both functions are doing almost the same thing.
This patch removes nonrecoverable_exception()
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
We need to make sure pmd_trans_huge returns false for a pmd migration entry.
We mark the migration entry by clearing the _PAGE_PRESENT bit. We keep the
_PAGE_PTE bit set to indicate a leaf page table entry. Hence we need to make
sure we check for pmd_present() so that pmd_trans_huge won't return true on
pmd migration entry.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This make hugetlb directory pointer similar to other page able entries. A hugepd
entry is identified by lack of _PAGE_PTE bit set and directory size stored in
HUGEPD_SHIFT_MASK. We update that to also look at _PAGE_PRESENT
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
With this patch we use 0x8000000000000000UL (_PAGE_PRESENT) to indicate a valid
pgd/pud/pmd entry. We also switch the p**_present() to look at this bit.
With pmd_present, we have a special case. We need to make sure we consider a
pmd marked invalid during THP split as present. Right now we clear the
_PAGE_PRESENT bit during a pmdp_invalidate. Inorder to consider this special
case we add a new pte bit _PAGE_INVALID (mapped to _RPAGE_SW0). This bit is
only used with _PAGE_PRESENT cleared. Hence we are not really losing a pte bit
for this special case. pmd_present is also updated to look at _PAGE_INVALID.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Ever since fast reboot is enabled by default in opal,
opal_cec_reboot() will use fast-reset instead of full IPL to perform
system reboot. This leaves the user with no direct way to force a full
IPL reboot except changing an nvram setting that persistently disables
fast-reset for all subsequent reboots.
This patch provides a more direct way for the user to force a one-shot
full IPL reboot by passing the command line argument 'full' to the
reboot command. So the user will be able to tweak the reboot behavior
via:
$ sudo reboot full # Force a full ipl reboot skipping fast-reset
or
$ sudo reboot # default reboot path (usually fast-reset)
The reboot command passes the un-parsed command argument to the kernel
via the 'Reboot' syscall which is then passed on to the arch function
pnv_restart(). The patch updates pnv_restart() to handle this cmd-arg
and issues opal_cec_reboot2 with OPAL_REBOOT_FULL_IPL to force a full
IPL reset.
Signed-off-by: Vaibhav Jain <vaibhav@linux.ibm.com>
Acked-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This reverts commits:
5e46e29e6a97 ("powerpc/64s/hash: convert SLB miss handlers to C")
8fed04d0f6ae ("powerpc/64s/hash: remove user SLB data from the paca")
655deecf67b2 ("powerpc/64s/hash: SLB allocation status bitmaps")
2e1626744e8d ("powerpc/64s/hash: provide arch_setup_exec hooks for hash slice setup")
89ca4e126a3f ("powerpc/64s/hash: Add a SLB preload cache")
This series had a few bugs, and the fixes are not all trivial. So
revert most of it for now.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Add the ISO7816 ioctl and associated accessors and data structure.
Drivers can then use this common implementation to handle ISO7816
(smart cards).
Signed-off-by: Nicolas Ferre <nicolas.ferre@microchip.com>
[ludovic.desroches@microchip.com: squash and rebase, removal of gpios, checkpatch fixes]
Signed-off-by: Ludovic Desroches <ludovic.desroches@microchip.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Introduce xarray value entries and tagged pointers to replace radix
tree exceptional entries. This is a slight change in encoding to allow
the use of an extra bit (we can now store BITS_PER_LONG - 1 bits in a
value entry). It is also a change in emphasis; exceptional entries are
intimidating and different. As the comment explains, you can choose
to store values or pointers in the xarray and they are both first-class
citizens.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
|
|
https://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Michael writes:
"powerpc fixes for 4.19 #3
A reasonably big batch of fixes due to me being away for a few weeks.
A fix for the TM emulation support on Power9, which could result in
corrupting the guest r11 when running under KVM.
Two fixes to the TM code which could lead to userspace GPR corruption
if we take an SLB miss at exactly the wrong time.
Our dynamic patching code had a bug that meant we could patch freed
__init text, which could lead to corrupting userspace memory.
csum_ipv6_magic() didn't work on little endian platforms since we
optimised it recently.
A fix for an endian bug when reading a device tree property telling
us how many storage keys the machine has available.
Fix a crash seen on some configurations of PowerVM when migrating the
partition from one machine to another.
A fix for a regression in the setup of our CPU to NUMA node mapping
in KVM guests.
A fix to our selftest Makefiles to make them work since a recent
change to the shared Makefile logic."
* tag 'powerpc-4.19-3' of https://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
selftests/powerpc: Fix Makefiles for headers_install change
powerpc/numa: Use associativity if VPHN hcall is successful
powerpc/tm: Avoid possible userspace r1 corruption on reclaim
powerpc/tm: Fix userspace r13 corruption
powerpc/pseries: Fix unitialized timer reset on migration
powerpc/pkeys: Fix reading of ibm, processor-storage-keys property
powerpc: fix csum_ipv6_magic() on little endian platforms
powerpc/powernv/ioda2: Reduce upper limit for DMA window size (again)
powerpc: Avoid code patching freed init sections
KVM: PPC: Book3S HV: Fix guest r11 corruption with POWER9 TM workarounds
|
|
Now that _exception no longer calls _exception_pkey it is no longer
necessary to handle any signal with any si_code. All pkey exceptions
are SIGSEGV with paired with SEGV_PKUERR. So just handle
that case and remove the now unnecessary parameters from _exception_pkey.
Reviewed-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
Replace user_single_step_siginfo with user_single_step_report
that allocates siginfo structure on the stack and sends it.
This allows tracehook_report_syscall_exit to become a simple
if statement that calls user_single_step_report or ptrace_report_syscall
depending on the value of step.
Update the default helper function now called user_single_step_report
to explicitly set si_code to SI_USER and to set si_uid and si_pid to 0.
The default helper has always been doing this (using memset) but it
was far from obvious.
The powerpc helper can now just call force_sig_fault.
The x86 helper can now just call send_sigtrap.
Unfortunately the default implementation of user_single_step_report
can not use force_sig_fault as it does not use a SIGTRAP si_code.
So it has to carefully setup the siginfo and use use force_sig_info.
The net result is code that is easier to understand and simpler
to maintain.
Ref: 85ec7fd9f8e5 ("ptrace: introduce user_single_step_siginfo() helper")
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
This re-applies commit b91c1e3e7a6f ("powerpc: Fix duplicate const
clang warning in user access code") (Jun 2015) which was undone in
commits:
f2ca80905929 ("powerpc/sparse: Constify the address pointer in __get_user_nosleep()") (Feb 2017)
d466f6c5cac1 ("powerpc/sparse: Constify the address pointer in __get_user_nocheck()") (Feb 2017)
f84ed59a612d ("powerpc/sparse: Constify the address pointer in __get_user_check()") (Feb 2017)
We see a large number of duplicate const errors in the user access
code when building with llvm/clang:
include/linux/pagemap.h:576:8: warning: duplicate 'const' declaration specifier [-Wduplicate-decl-specifier]
ret = __get_user(c, uaddr);
The problem is we are doing const __typeof__(*(ptr)), which will hit
the warning if ptr is marked const.
Removing const does not seem to have any effect on GCC code
generation.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Joel Stanley <joel@jms.id.au>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
The updates to powerpc numa and memory hotplug code now use the
in-kernel LMB array instead of the device tree. This change allows the
pseries memory DLPAR code to only update the device tree once after
successfully handling a DLPAR request.
Prior to the in-kernel LMB array, the numa code looked up the affinity
for memory being added in the device tree, the code now looks this up
in the LMB array. This change means the memory hotplug code can just
update the affinity for an LMB in the LMB array instead of updating
the device tree.
This also provides a savings in kernel memory. When updating the
device tree old properties are never free'ed since there is no
usecount on properties. This behavior leads to a new copy of the
property being allocated every time a LMB is added or removed (i.e. a
request to add 100 LMBs creates 100 new copies of the property). With
this update only a single new property is created when a DLPAR request
completes successfully.
Signed-off-by: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
When switching processes, currently all user SLBEs are cleared, and a
few (exec_base, pc, and stack) are preloaded. In trivial testing with
small apps, this tends to miss the heap and low 256MB segments, and it
will also miss commonly accessed segments on large memory workloads.
Add a simple round-robin preload cache that just inserts the last SLB
miss into the head of the cache and preloads those at context switch
time. Every 256 context switches, the oldest entry is removed from the
cache to shrink the cache and require fewer slbmte if they are unused.
Much more could go into this, including into the SLB entry reclaim
side to track some LRU information etc, which would require a study of
large memory workloads. But this is a simple thing we can do now that
is an obvious win for common workloads.
With the full series, process switching speed on the context_switch
benchmark on POWER9/hash (with kernel speculation security masures
disabled) increases from 140K/s to 178K/s (27%).
POWER8 does not change much (within 1%), it's unclear why it does not
see a big gain like POWER9.
Booting to busybox init with 256MB segments has SLB misses go down
from 945 to 69, and with 1T segments 900 to 21. These could almost all
be eliminated by preloading a bit more carefully with ELF binary
loading.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This will be used by the SLB code in the next patch, but for now this
sets the slb_addr_limit to the correct size for 32-bit tasks.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Add 32-entry bitmaps to track the allocation status of the first 32
SLB entries, and whether they are user or kernel entries. These are
used to allocate free SLB entries first, before resorting to the round
robin allocator.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
User SLB mappig data is copied into the PACA from the mm->context so
it can be accessed by the SLB miss handlers.
After the C conversion, SLB miss handlers now run with relocation on,
and user SLB misses are able to take recursive kernel SLB misses, so
the user SLB mapping data can be removed from the paca and accessed
directly.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This patch moves SLB miss handlers completely to C, using the standard
exception handler macros to set up the stack and branch to C.
This can be done because the segment containing the kernel stack is
always bolted, so accessing it with relocation on will not cause an
SLB exception.
Arbitrary kernel memory may not be accessed when handling kernel space
SLB misses, so care should be taken there. However user SLB misses can
access any kernel memory, which can be used to move some fields out of
the paca (in later patches).
User SLB misses could quite easily reconcile IRQs and set up a first
class kernel environment and exit via ret_from_except, however that
doesn't seem to be necessary at the moment, so we only do that if a
bad fault is encountered.
[ Credit to Aneesh for bug fixes, error checks, and improvements to bad
address handling, etc ]
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Since RFC:
- Added MSR[RI] handling
- Fixed up a register loss bug exposed by irq tracing (Aneesh)
- Reject misses outside the defined kernel regions (Aneesh)
- Added several more sanity checks and error handling (Aneesh), we may
look at consolidating these tests and tightenig up the code but for
a first pass we decided it's better to check carefully.
Since v1:
- Fixed SLB cache corruption (Aneesh)
- Fixed untidy SLBE allocation "leak" in get_vsid error case
- Now survives some stress testing on real hardware
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Remove the vmalloc segment from bolted SLBEs. This is not required to
be bolted, and seems like it was added to help pre-load the SLB on
context switch. However there are now other segments like the vmemmap
segment and non-zero node memory that often take misses after a context
switch, so it is better to solve this in a more general way.
A subsequent change will track free SLB entries and uses those rather
than round-robin overwrite valid entries, which makes it far less
likely for kernel SLBEs to be evicted after they are installed.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
If we get a machine check exceptions due to SLB errors then dump the
current SLB contents which will be very much helpful in debugging the
root cause of SLB errors. Introduce an exclusive buffer per cpu to hold
faulty SLB entries. In real mode mce handler saves the old SLB contents
into this buffer accessible through paca and print it out later in virtual
mode.
With this patch the console will log SLB contents like below on SLB MCE
errors:
[ 507.297236] SLB contents of cpu 0x1
[ 507.297237] Last SLB entry inserted at slot 16
[ 507.297238] 00 c000000008000000 400ea1b217000500
[ 507.297239] 1T ESID= c00000 VSID= ea1b217 LLP:100
[ 507.297240] 01 d000000008000000 400d43642f000510
[ 507.297242] 1T ESID= d00000 VSID= d43642f LLP:110
[ 507.297243] 11 f000000008000000 400a86c85f000500
[ 507.297244] 1T ESID= f00000 VSID= a86c85f LLP:100
[ 507.297245] 12 00007f0008000000 4008119624000d90
[ 507.297246] 1T ESID= 7f VSID= 8119624 LLP:110
[ 507.297247] 13 0000000018000000 00092885f5150d90
[ 507.297247] 256M ESID= 1 VSID= 92885f5150 LLP:110
[ 507.297248] 14 0000010008000000 4009e7cb50000d90
[ 507.297249] 1T ESID= 1 VSID= 9e7cb50 LLP:110
[ 507.297250] 15 d000000008000000 400d43642f000510
[ 507.297251] 1T ESID= d00000 VSID= d43642f LLP:110
[ 507.297252] 16 d000000008000000 400d43642f000510
[ 507.297253] 1T ESID= d00000 VSID= d43642f LLP:110
[ 507.297253] ----------------------------------
[ 507.297254] SLB cache ptr value = 3
[ 507.297254] Valid SLB cache entries:
[ 507.297255] 00 EA[0-35]= 7f000
[ 507.297256] 01 EA[0-35]= 1
[ 507.297257] 02 EA[0-35]= 1000
[ 507.297257] Rest of SLB cache entries:
[ 507.297258] 03 EA[0-35]= 7f000
[ 507.297258] 04 EA[0-35]= 1
[ 507.297259] 05 EA[0-35]= 1000
[ 507.297260] 06 EA[0-35]= 12
[ 507.297260] 07 EA[0-35]= 7f000
Suggested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Suggested-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Extract the MCE error details from RTAS extended log and display it to
console.
With this patch you should now see mce logs like below:
[ 142.371818] Severe Machine check interrupt [Recovered]
[ 142.371822] NIP [d00000000ca301b8]: init_module+0x1b8/0x338 [bork_kernel]
[ 142.371822] Initiator: CPU
[ 142.371823] Error type: SLB [Multihit]
[ 142.371824] Effective address: d00000000ca70000
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
On pseries, as of today system crashes if we get a machine check
exceptions due to SLB errors. These are soft errors and can be fixed
by flushing the SLBs so the kernel can continue to function instead of
system crash. We do this in real mode before turning on MMU. Otherwise
we would run into nested machine checks. This patch now fetches the
rtas error log in real mode and flushes the SLBs on SLB/ERAT errors.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Michal Suchanek <msuchanek@suse.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
On pseries, the machine check error details are part of RTAS extended
event log passed under Machine check exception section. This patch adds
the definition of rtas MCE event section and related helper
functions.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|