summaryrefslogtreecommitdiff
path: root/arch/x86/kvm/svm/svm.c
AgeCommit message (Collapse)Author
2025-06-02Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds
Pull more kvm updates from Paolo Bonzini: Generic: - Clean up locking of all vCPUs for a VM by using the *_nest_lock() family of functions, and move duplicated code to virt/kvm/. kernel/ patches acked by Peter Zijlstra - Add MGLRU support to the access tracking perf test ARM fixes: - Make the irqbypass hooks resilient to changes in the GSI<->MSI routing, avoiding behind stale vLPI mappings being left behind. The fix is to resolve the VGIC IRQ using the host IRQ (which is stable) and nuking the vLPI mapping upon a routing change - Close another VGIC race where vCPU creation races with VGIC creation, leading to in-flight vCPUs entering the kernel w/o private IRQs allocated - Fix a build issue triggered by the recently added workaround for Ampere's AC04_CPU_23 erratum - Correctly sign-extend the VA when emulating a TLBI instruction potentially targeting a VNCR mapping - Avoid dereferencing a NULL pointer in the VGIC debug code, which can happen if the device doesn't have any mapping yet s390: - Fix interaction between some filesystems and Secure Execution - Some cleanups and refactorings, preparing for an upcoming big series x86: - Wait for target vCPU to ack KVM_REQ_UPDATE_PROTECTED_GUEST_STATE to fix a race between AP destroy and VMRUN - Decrypt and dump the VMSA in dump_vmcb() if debugging enabled for the VM - Refine and harden handling of spurious faults - Add support for ALLOWED_SEV_FEATURES - Add #VMGEXIT to the set of handlers special cased for CONFIG_RETPOLINE=y - Treat DEBUGCTL[5:2] as reserved to pave the way for virtualizing features that utilize those bits - Don't account temporary allocations in sev_send_update_data() - Add support for KVM_CAP_X86_BUS_LOCK_EXIT on SVM, via Bus Lock Threshold - Unify virtualization of IBRS on nested VM-Exit, and cross-vCPU IBPB, between SVM and VMX - Advertise support to userspace for WRMSRNS and PREFETCHI - Rescan I/O APIC routes after handling EOI that needed to be intercepted due to the old/previous routing, but not the new/current routing - Add a module param to control and enumerate support for device posted interrupts - Fix a potential overflow with nested virt on Intel systems running 32-bit kernels - Flush shadow VMCSes on emergency reboot - Add support for SNP to the various SEV selftests - Add a selftest to verify fastops instructions via forced emulation - Refine and optimize KVM's software processing of the posted interrupt bitmap, and share the harvesting code between KVM and the kernel's Posted MSI handler" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (93 commits) rtmutex_api: provide correct extern functions KVM: arm64: vgic-debug: Avoid dereferencing NULL ITE pointer KVM: arm64: vgic-init: Plug vCPU vs. VGIC creation race KVM: arm64: Unmap vLPIs affected by changes to GSI routing information KVM: arm64: Resolve vLPI by host IRQ in vgic_v4_unset_forwarding() KVM: arm64: Protect vLPI translation with vgic_irq::irq_lock KVM: arm64: Use lock guard in vgic_v4_set_forwarding() KVM: arm64: Mask out non-VA bits from TLBI VA* on VNCR invalidation arm64: sysreg: Drag linux/kconfig.h to work around vdso build issue KVM: s390: Simplify and move pv code KVM: s390: Refactor and split some gmap helpers KVM: s390: Remove unneeded srcu lock s390: Remove unneeded includes s390/uv: Improve splitting of large folios that cannot be split while dirty s390/uv: Always return 0 from s390_wiggle_split_folio() if successful s390/uv: Don't return 0 from make_hva_secure() if the operation was not successful rust: add helper for mutex_trylock RISC-V: KVM: use kvm_trylock_all_vcpus when locking all vCPUs KVM: arm64: use kvm_trylock_all_vcpus when locking all vCPUs x86: KVM: SVM: use kvm_lock_all_vcpus instead of a custom implementation ...
2025-05-29Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds
Pull kvm updates from Paolo Bonzini: "As far as x86 goes this pull request "only" includes TDX host support. Quotes are appropriate because (at 6k lines and 100+ commits) it is much bigger than the rest, which will come later this week and consists mostly of bugfixes and selftests. s390 changes will also come in the second batch. ARM: - Add large stage-2 mapping (THP) support for non-protected guests when pKVM is enabled, clawing back some performance. - Enable nested virtualisation support on systems that support it, though it is disabled by default. - Add UBSAN support to the standalone EL2 object used in nVHE/hVHE and protected modes. - Large rework of the way KVM tracks architecture features and links them with the effects of control bits. While this has no functional impact, it ensures correctness of emulation (the data is automatically extracted from the published JSON files), and helps dealing with the evolution of the architecture. - Significant changes to the way pKVM tracks ownership of pages, avoiding page table walks by storing the state in the hypervisor's vmemmap. This in turn enables the THP support described above. - New selftest checking the pKVM ownership transition rules - Fixes for FEAT_MTE_ASYNC being accidentally advertised to guests even if the host didn't have it. - Fixes for the address translation emulation, which happened to be rather buggy in some specific contexts. - Fixes for the PMU emulation in NV contexts, decoupling PMCR_EL0.N from the number of counters exposed to a guest and addressing a number of issues in the process. - Add a new selftest for the SVE host state being corrupted by a guest. - Keep HCR_EL2.xMO set at all times for systems running with the kernel at EL2, ensuring that the window for interrupts is slightly bigger, and avoiding a pretty bad erratum on the AmpereOne HW. - Add workaround for AmpereOne's erratum AC04_CPU_23, which suffers from a pretty bad case of TLB corruption unless accesses to HCR_EL2 are heavily synchronised. - Add a per-VM, per-ITS debugfs entry to dump the state of the ITS tables in a human-friendly fashion. - and the usual random cleanups. LoongArch: - Don't flush tlb if the host supports hardware page table walks. - Add KVM selftests support. RISC-V: - Add vector registers to get-reg-list selftest - VCPU reset related improvements - Remove scounteren initialization from VCPU reset - Support VCPU reset from userspace using set_mpstate() ioctl x86: - Initial support for TDX in KVM. This finally makes it possible to use the TDX module to run confidential guests on Intel processors. This is quite a large series, including support for private page tables (managed by the TDX module and mirrored in KVM for efficiency), forwarding some TDVMCALLs to userspace, and handling several special VM exits from the TDX module. This has been in the works for literally years and it's not really possible to describe everything here, so I'll defer to the various merge commits up to and including commit 7bcf7246c42a ('Merge branch 'kvm-tdx-finish-initial' into HEAD')" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (248 commits) x86/tdx: mark tdh_vp_enter() as __flatten Documentation: virt/kvm: remove unreferenced footnote RISC-V: KVM: lock the correct mp_state during reset KVM: arm64: Fix documentation for vgic_its_iter_next() KVM: arm64: np-guest CMOs with PMD_SIZE fixmap KVM: arm64: Stage-2 huge mappings for np-guests KVM: arm64: Add a range to pkvm_mappings KVM: arm64: Convert pkvm_mappings to interval tree KVM: arm64: Add a range to __pkvm_host_test_clear_young_guest() KVM: arm64: Add a range to __pkvm_host_wrprotect_guest() KVM: arm64: Add a range to __pkvm_host_unshare_guest() KVM: arm64: Add a range to __pkvm_host_share_guest() KVM: arm64: Introduce for_each_hyp_page KVM: arm64: Handle huge mappings for np-guest CMOs KVM: arm64: nv: Release faulted-in VNCR page from mmu_lock critical section KVM: arm64: nv: Handle TLBI S1E2 for VNCR invalidation with mmu_lock held KVM: arm64: nv: Hold mmu_lock when invalidating VNCR SW-TLB before translating RISC-V: KVM: add KVM_CAP_RISCV_MP_STATE_RESET RISC-V: KVM: Remove scounteren initialization KVM: RISC-V: remove unnecessary SBI reset state ...
2025-05-27Merge tag 'kvm-x86-svm-6.16' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini
KVM SVM changes for 6.16: - Wait for target vCPU to acknowledge KVM_REQ_UPDATE_PROTECTED_GUEST_STATE to fix a race between AP destroy and VMRUN. - Decrypt and dump the VMSA in dump_vmcb() if debugging enabled for the VM. - Add support for ALLOWED_SEV_FEATURES. - Add #VMGEXIT to the set of handlers special cased for CONFIG_RETPOLINE=y. - Treat DEBUGCTL[5:2] as reserved to pave the way for virtualizing features that utilize those bits. - Don't account temporary allocations in sev_send_update_data(). - Add support for KVM_CAP_X86_BUS_LOCK_EXIT on SVM, via Bus Lock Threshold.
2025-05-27Merge tag 'kvm-x86-misc-6.16' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini
KVM x86 misc changes for 6.16: - Unify virtualization of IBRS on nested VM-Exit, and cross-vCPU IBPB, between SVM and VMX. - Advertise support to userspace for WRMSRNS and PREFETCHI. - Rescan I/O APIC routes after handling EOI that needed to be intercepted due to the old/previous routing, but not the new/current routing. - Add a module param to control and enumerate support for device posted interrupts. - Misc cleanups.
2025-05-26Merge tag 'loongarch-kvm-6.16' of ↵Paolo Bonzini
git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson into HEAD LoongArch KVM changes for v6.16 1. Don't flush tlb if HW PTW supported. 2. Add LoongArch KVM selftests support.
2025-05-19KVM: SVM: Add support for KVM_CAP_X86_BUS_LOCK_EXIT on SVM CPUsManali Shukla
Add support for KVM_CAP_X86_BUS_LOCK_EXIT on SVM CPUs with Bus Lock Threshold, which is close enough to VMX's Bus Lock Detection VM-Exit to allow reusing KVM_CAP_X86_BUS_LOCK_EXIT. The biggest difference between the two features is that Threshold is fault-like, whereas Detection is trap-like. To allow the guest to make forward progress, Threshold provides a per-VMCB counter which is decremented every time a bus lock occurs, and a VM-Exit is triggered if and only if the counter is '0'. To provide Detection-like semantics, initialize the counter to '0', i.e. exit on every bus lock, and when re-executing the guilty instruction, set the counter to '1' to effectively step past the instruction. Note, in the unlikely scenario that re-executing the instruction doesn't trigger a bus lock, e.g. because the guest has changed memory types or patched the guilty instruction, the bus lock counter will be left at '1', i.e. the guest will be able to do a bus lock on a different instruction. In a perfect world, KVM would ensure the counter is '0' if the guest has made forward progress, e.g. if RIP has changed. But trying to close that hole would incur non-trivial complexity, for marginal benefit; the intent of KVM_CAP_X86_BUS_LOCK_EXIT is to allow userspace rate-limit bus locks, not to allow for precise detection of problematic guest code. And, it's simply not feasible to fully close the hole, e.g. if an interrupt arrives before the original instruction can re-execute, the guest could step past a different bus lock. Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Manali Shukla <manali.shukla@amd.com> Link: https://lore.kernel.org/r/20250502050346.14274-5-manali.shukla@amd.com [sean: fix typo in comment] Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-05-13Merge branch 'x86/msr' into x86/core, to resolve conflictsIngo Molnar
Conflicts: arch/x86/boot/startup/sme.c arch/x86/coco/sev/core.c arch/x86/kernel/fpu/core.c arch/x86/kernel/fpu/xstate.c Semantic conflict: arch/x86/include/asm/sev-internal.h Signed-off-by: Ingo Molnar <mingo@kernel.org>
2025-05-08KVM: SVM: Set/clear SRSO's BP_SPEC_REDUCE on 0 <=> 1 VM count transitionsSean Christopherson
Set the magic BP_SPEC_REDUCE bit to mitigate SRSO when running VMs if and only if KVM has at least one active VM. Leaving the bit set at all times unfortunately degrades performance by a wee bit more than expected. Use a dedicated spinlock and counter instead of hooking virtualization enablement, as changing the behavior of kvm.enable_virt_at_load based on SRSO_BP_SPEC_REDUCE is painful, and has its own drawbacks, e.g. could result in performance issues for flows that are sensitive to VM creation latency. Defer setting BP_SPEC_REDUCE until VMRUN is imminent to avoid impacting performance on CPUs that aren't running VMs, e.g. if a setup is using housekeeping CPUs. Setting BP_SPEC_REDUCE in task context, i.e. without blasting IPIs to all CPUs, also helps avoid serializing 1<=>N transitions without incurring a gross amount of complexity (see the Link for details on how ugly coordinating via IPIs gets). Link: https://lore.kernel.org/all/aBOnzNCngyS_pQIW@google.com Fixes: 8442df2b49ed ("x86/bugs: KVM: Add support for SRSO_MSR_FIX") Reported-by: Michael Larabel <Michael@michaellarabel.com> Closes: https://www.phoronix.com/review/linux-615-amd-regression Cc: Borislav Petkov <bp@alien8.de> Tested-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20250505180300.973137-1-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-05-02x86/msr: Change the function type of native_read_msr_safe()Xin Li (Intel)
Modify the function type of native_read_msr_safe() to: int native_read_msr_safe(u32 msr, u64 *val) This change makes the function return an error code instead of the MSR value, aligning it with the type of native_write_msr_safe(). Consequently, their callers can check the results in the same way. While at it, convert leftover MSR data type "unsigned int" to u32. Signed-off-by: Xin Li (Intel) <xin@zytor.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Sean Christopherson <seanjc@google.com> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: Uros Bizjak <ubizjak@gmail.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Link: https://lore.kernel.org/r/20250427092027.1598740-16-xin@zytor.com
2025-05-02x86/pvops/msr: Refactor pv_cpu_ops.write_msr{,_safe}()Xin Li (Intel)
An MSR value is represented as a 64-bit unsigned integer, with existing MSR instructions storing it in EDX:EAX as two 32-bit segments. The new immediate form MSR instructions, however, utilize a 64-bit general-purpose register to store the MSR value. To unify the usage of all MSR instructions, let the default MSR access APIs accept an MSR value as a single 64-bit argument instead of two 32-bit segments. The dual 32-bit APIs are still available as convenient wrappers over the APIs that handle an MSR value as a single 64-bit argument. The following illustrates the updated derivation of the MSR write APIs: __wrmsrq(u32 msr, u64 val) / \ / \ native_wrmsrq(msr, val) native_wrmsr(msr, low, high) | | native_write_msr(msr, val) / \ / \ wrmsrq(msr, val) wrmsr(msr, low, high) When CONFIG_PARAVIRT is enabled, wrmsrq() and wrmsr() are defined on top of paravirt_write_msr(): paravirt_write_msr(u32 msr, u64 val) / \ / \ wrmsrq(msr, val) wrmsr(msr, low, high) paravirt_write_msr() invokes cpu.write_msr(msr, val), an indirect layer of pv_ops MSR write call: If on native: cpu.write_msr = native_write_msr If on Xen: cpu.write_msr = xen_write_msr Therefore, refactor pv_cpu_ops.write_msr{_safe}() to accept an MSR value in a single u64 argument, replacing the current dual u32 arguments. No functional change intended. Signed-off-by: Xin Li (Intel) <xin@zytor.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Juergen Gross <jgross@suse.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Sean Christopherson <seanjc@google.com> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: Uros Bizjak <ubizjak@gmail.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Link: https://lore.kernel.org/r/20250427092027.1598740-14-xin@zytor.com
2025-05-02x86/msr: Add explicit includes of <asm/msr.h>Xin Li (Intel)
For historic reasons there are some TSC-related functions in the <asm/msr.h> header, even though there's an <asm/tsc.h> header. To facilitate the relocation of rdtsc{,_ordered}() from <asm/msr.h> to <asm/tsc.h> and to eventually eliminate the inclusion of <asm/msr.h> in <asm/tsc.h>, add an explicit <asm/msr.h> dependency to the source files that reference definitions from <asm/msr.h>. [ mingo: Clarified the changelog. ] Signed-off-by: Xin Li (Intel) <xin@zytor.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: Juergen Gross <jgross@suse.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Kees Cook <keescook@chromium.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Uros Bizjak <ubizjak@gmail.com> Link: https://lore.kernel.org/r/20250501054241.1245648-1-xin@zytor.com
2025-04-29KVM: x86: Unify cross-vCPU IBPBSean Christopherson
Both SVM and VMX have similar implementation for executing an IBPB between running different vCPUs on the same CPU to create separate prediction domains for different vCPUs. For VMX, when the currently loaded VMCS is changed in vmx_vcpu_load_vmcs(), an IBPB is executed if there is no 'buddy', which is the case on vCPU load. The intention is to execute an IBPB when switching vCPUs, but not when switching the VMCS within the same vCPU. Executing an IBPB on nested transitions within the same vCPU is handled separately and conditionally in nested_vmx_vmexit(). For SVM, the current VMCB is tracked on vCPU load and an IBPB is executed when it is changed. The intention is also to execute an IBPB when switching vCPUs, although it is possible that in some cases an IBBP is executed when switching VMCBs for the same vCPU. Executing an IBPB on nested transitions should be handled separately, and is proposed at [1]. Unify the logic by tracking the last loaded vCPU and execuintg the IBPB on vCPU change in kvm_arch_vcpu_load() instead. When a vCPU is destroyed, make sure all references to it are removed from any CPU. This is similar to how SVM clears the current_vmcb tracking on vCPU destruction. Remove the current VMCB tracking in SVM as it is no longer required, as well as the 'buddy' parameter to vmx_vcpu_load_vmcs(). [1] https://lore.kernel.org/lkml/20250221163352.3818347-4-yosry.ahmed@linux.dev Link: https://lore.kernel.org/all/20250320013759.3965869-1-yosry.ahmed@linux.dev Signed-off-by: Yosry Ahmed <yosry.ahmed@linux.dev> [sean: tweak comment to stay at/under 80 columns] Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-04-29KVM: SVM: Clear current_vmcb during vCPU free for all *possible* CPUsYosry Ahmed
When freeing a vCPU and thus its VMCB, clear current_vmcb for all possible CPUs, not just online CPUs, as it's theoretically possible a CPU could go offline and come back online in conjunction with KVM reusing the page for a new VMCB. Link: https://lore.kernel.org/all/20250320013759.3965869-1-yosry.ahmed@linux.dev Fixes: fd65d3142f73 ("kvm: svm: Ensure an IBPB on all affected CPUs when freeing a vmcb") Cc: stable@vger.kernel.org Cc: Jim Mattson <jmattson@google.com> Signed-off-by: Yosry Ahmed <yosry.ahmed@linux.dev> [sean: split to separate patch, write changelog] Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-04-28KVM: SVM: Treat DEBUGCTL[5:2] as reservedSean Christopherson
Stop ignoring DEBUGCTL[5:2] on AMD CPUs and instead treat them as reserved. KVM has never properly virtualized AMD's legacy PBi bits, but did allow the guest (and host userspace) to set the bits. To avoid breaking guests when running on CPUs with BusLockTrap, which redefined bit 2 to BLCKDB and made bits 5:3 reserved, a previous KVM change ignored bits 5:3, e.g. so that legacy guest software wouldn't inadvertently enable BusLockTrap or hit a VMRUN failure due to setting reserved. To allow for virtualizing BusLockTrap and whatever future features may use bits 5:3, treat bits 5:2 as reserved (and hope that doing so doesn't break any existing guests). Reviewed-and-tested-by: Ravi Bangoria <ravi.bangoria@amd.com> Link: https://lore.kernel.org/r/20250227222411.3490595-7-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-04-25KVM: SVM: avoid frequency indirect callsPeng Hao
When retpoline is enabled, indirect function calls introduce additional performance overhead. Avoid frequent indirect calls to VMGEXIT when SEV is enabled. Signed-off-by: Peng Hao <flyingpeng@tencent.com> Link: https://lore.kernel.org/r/20250306075425.66693-1-flyingpeng@tencent.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-04-25KVM: SEV: Configure "ALLOWED_SEV_FEATURES" VMCB FieldKim Phillips
AMD EPYC 5th generation processors have introduced a feature that allows the hypervisor to control the SEV_FEATURES that are set for, or by, a guest [1]. ALLOWED_SEV_FEATURES can be used by the hypervisor to enforce that SEV-ES and SEV-SNP guests cannot enable features that the hypervisor does not want to be enabled. Always enable ALLOWED_SEV_FEATURES. A VMRUN will fail if any non-reserved bits are 1 in SEV_FEATURES but are 0 in ALLOWED_SEV_FEATURES. Some SEV_FEATURES - currently PmcVirtualization and SecureAvic (see Appendix B, Table B-4) - require an opt-in via ALLOWED_SEV_FEATURES, i.e. are off-by-default, whereas all other features are effectively on-by-default, but still honor ALLOWED_SEV_FEATURES. [1] Section 15.36.20 "Allowed SEV Features", AMD64 Architecture Programmer's Manual, Pub. 24593 Rev. 3.42 - March 2024: https://bugzilla.kernel.org/attachment.cgi?id=306250 Co-developed-by: Kishon Vijay Abraham I <kvijayab@amd.com> Signed-off-by: Kishon Vijay Abraham I <kvijayab@amd.com> Reviewed-by: Pankaj Gupta <pankaj.gupta@amd.com> Signed-off-by: Kim Phillips <kim.phillips@amd.com> Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Link: https://lore.kernel.org/r/20250310201603.1217954-3-kim.phillips@amd.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-04-25KVM: SVM: Add a mutex to dump_vmcb() to prevent concurrent outputTom Lendacky
If multiple VMRUN instructions fail, resulting in calls to dump_vmcb(), the output can become interleaved and it is impossible to identify which line of output belongs to which VMCB. Add a mutex to dump_vmcb() so that the output is serialized. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Acked-by: Borislav Petkov (AMD) <bp@alien8.de> Tested-by: Kim Phillips <kim.phillips@amd.com> Link: https://lore.kernel.org/r/a880678afd9488e1dd6017445802712f7c02cc6d.1742477213.git.thomas.lendacky@amd.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-04-25KVM: SVM: Include the vCPU ID when dumping a VMCBTom Lendacky
Provide the vCPU ID of the VMCB in dump_vmcb(). Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Acked-by: Borislav Petkov (AMD) <bp@alien8.de> Tested-by: Kim Phillips <kim.phillips@amd.com> Link: https://lore.kernel.org/r/ee0af5a6c1a49aebb4a8291071c3f68cacf107b2.1742477213.git.thomas.lendacky@amd.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-04-25KVM: SVM: Add the type of VM for which the VMCB/VMSA is being dumpedTom Lendacky
Add the type of VM (SVM, SEV, SEV-ES, or SEV-SNP) being dumped to the dump_vmcb() function. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Acked-by: Borislav Petkov (AMD) <bp@alien8.de> Tested-by: Kim Phillips <kim.phillips@amd.com> Link: https://lore.kernel.org/r/7a183a8beedf4ee26c42001160e073a884fe466e.1742477213.git.thomas.lendacky@amd.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-04-25KVM: SVM: Dump guest register state in dump_vmcb()Tom Lendacky
Guest register state can be useful when debugging, include it as part of dump_vmcb(). Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Acked-by: Borislav Petkov (AMD) <bp@alien8.de> Tested-by: Kim Phillips <kim.phillips@amd.com> Link: https://lore.kernel.org/r/a4131a10c082a93610cac12b35dca90292e50f50.1742477213.git.thomas.lendacky@amd.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-04-25KVM: SVM: Decrypt SEV VMSA in dump_vmcb() if debugging is enabledTom Lendacky
An SEV-ES/SEV-SNP VM save area (VMSA) can be decrypted if the guest policy allows debugging. Update the dump_vmcb() routine to output some of the SEV VMSA contents if possible. This can be useful for debug purposes. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Acked-by: Borislav Petkov (AMD) <bp@alien8.de> Tested-by: Kim Phillips <kim.phillips@amd.com> Link: https://lore.kernel.org/r/ea3b852c295b6f4b200925ed6b6e2c90d9475e71.1742477213.git.thomas.lendacky@amd.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-04-24KVM: x86: Add module param to control and enumerate device posted IRQsSean Christopherson
Add a module param to each KVM vendor module to allow disabling device posted interrupts without having to sacrifice all of APICv/AVIC, and to also effectively enumerate to userspace whether or not KVM may be utilizing device posted IRQs. Disabling device posted interrupts is very desirable for testing, and can even be desirable for production environments, e.g. if the host kernel wants to interpose on device interrupts. Put the module param in kvm-{amd,intel}.ko instead of kvm.ko to match the overall APICv/AVIC controls, and to avoid complications with said controls. E.g. if the param is in kvm.ko, KVM needs to be snapshot the original user-defined value to play nice with a vendor module being reloaded with different enable_apicv settings. Link: https://lore.kernel.org/r/20250401161804.842968-4-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-04-24KVM: SVM: Forcibly leave SMM mode on SHUTDOWN interceptionMikhail Lobanov
Previously, commit ed129ec9057f ("KVM: x86: forcibly leave nested mode on vCPU reset") addressed an issue where a triple fault occurring in nested mode could lead to use-after-free scenarios. However, the commit did not handle the analogous situation for System Management Mode (SMM). This omission results in triggering a WARN when KVM forces a vCPU INIT after SHUTDOWN interception while the vCPU is in SMM. This situation was reprodused using Syzkaller by: 1) Creating a KVM VM and vCPU 2) Sending a KVM_SMI ioctl to explicitly enter SMM 3) Executing invalid instructions causing consecutive exceptions and eventually a triple fault The issue manifests as follows: WARNING: CPU: 0 PID: 25506 at arch/x86/kvm/x86.c:12112 kvm_vcpu_reset+0x1d2/0x1530 arch/x86/kvm/x86.c:12112 Modules linked in: CPU: 0 PID: 25506 Comm: syz-executor.0 Not tainted 6.1.130-syzkaller-00157-g164fe5dde9b6 #0 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014 RIP: 0010:kvm_vcpu_reset+0x1d2/0x1530 arch/x86/kvm/x86.c:12112 Call Trace: <TASK> shutdown_interception+0x66/0xb0 arch/x86/kvm/svm/svm.c:2136 svm_invoke_exit_handler+0x110/0x530 arch/x86/kvm/svm/svm.c:3395 svm_handle_exit+0x424/0x920 arch/x86/kvm/svm/svm.c:3457 vcpu_enter_guest arch/x86/kvm/x86.c:10959 [inline] vcpu_run+0x2c43/0x5a90 arch/x86/kvm/x86.c:11062 kvm_arch_vcpu_ioctl_run+0x50f/0x1cf0 arch/x86/kvm/x86.c:11283 kvm_vcpu_ioctl+0x570/0xf00 arch/x86/kvm/../../../virt/kvm/kvm_main.c:4122 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:870 [inline] __se_sys_ioctl fs/ioctl.c:856 [inline] __x64_sys_ioctl+0x19a/0x210 fs/ioctl.c:856 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x35/0x80 arch/x86/entry/common.c:81 entry_SYSCALL_64_after_hwframe+0x6e/0xd8 Architecturally, INIT is blocked when the CPU is in SMM, hence KVM's WARN() in kvm_vcpu_reset() to guard against KVM bugs, e.g. to detect improper emulation of INIT. SHUTDOWN on SVM is a weird edge case where KVM needs to do _something_ sane with the VMCB, since it's technically undefined, and INIT is the least awful choice given KVM's ABI. So, double down on stuffing INIT on SHUTDOWN, and force the vCPU out of SMM to avoid any weirdness (and the WARN). Found by Linux Verification Center (linuxtesting.org) with Syzkaller. Fixes: ed129ec9057f ("KVM: x86: forcibly leave nested mode on vCPU reset") Cc: stable@vger.kernel.org Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Mikhail Lobanov <m.lobanov@rosa.ru> Link: https://lore.kernel.org/r/20250414171207.155121-1-m.lobanov@rosa.ru [sean: massage changelog, make it clear this isn't architectural behavior] Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-04-10x86/msr: Rename 'wrmsrl()' to 'wrmsrq()'Ingo Molnar
Suggested-by: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Juergen Gross <jgross@suse.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Xin Li <xin@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org>
2025-04-10x86/msr: Rename 'rdmsrl()' to 'rdmsrq()'Ingo Molnar
Suggested-by: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Juergen Gross <jgross@suse.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Xin Li <xin@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org>
2025-04-07Merge branch 'kvm-tdx-initial' into HEADPaolo Bonzini
This large commit contains the initial support for TDX in KVM. All x86 parts enable the host-side hypercalls that KVM uses to talk to the TDX module, a software component that runs in a special CPU mode called SEAM (Secure Arbitration Mode). The series is in turn split into multiple sub-series, each with a separate merge commit: - Initialization: basic setup for using the TDX module from KVM, plus ioctls to create TDX VMs and vCPUs. - MMU: in TDX, private and shared halves of the address space are mapped by different EPT roots, and the private half is managed by the TDX module. Using the support that was added to the generic MMU code in 6.14, add support for TDX's secure page tables to the Intel side of KVM. Generic KVM code takes care of maintaining a mirror of the secure page tables so that they can be queried efficiently, and ensuring that changes are applied to both the mirror and the secure EPT. - vCPU enter/exit: implement the callbacks that handle the entry of a TDX vCPU (via the SEAMCALL TDH.VP.ENTER) and the corresponding save/restore of host state. - Userspace exits: introduce support for guest TDVMCALLs that KVM forwards to userspace. These correspond to the usual KVM_EXIT_* "heavyweight vmexits" but are triggered through a different mechanism, similar to VMGEXIT for SEV-ES and SEV-SNP. - Interrupt handling: support for virtual interrupt injection as well as handling VM-Exits that are caused by vectored events. Exclusive to TDX are machine-check SMIs, which the kernel already knows how to handle through the kernel machine check handler (commit 7911f145de5f, "x86/mce: Implement recovery for errors in TDX/SEAM non-root mode") - Loose ends: handling of the remaining exits from the TDX module, including EPT violation/misconfig and several TDVMCALL leaves that are handled in the kernel (CPUID, HLT, RDMSR/WRMSR, GetTdVmCallInfo); plus returning an error or ignoring operations that are not supported by TDX guests Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-03-25Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds
Pull kvm updates from Paolo Bonzini: "ARM: - Nested virtualization support for VGICv3, giving the nested hypervisor control of the VGIC hardware when running an L2 VM - Removal of 'late' nested virtualization feature register masking, making the supported feature set directly visible to userspace - Support for emulating FEAT_PMUv3 on Apple silicon, taking advantage of an IMPLEMENTATION DEFINED trap that covers all PMUv3 registers - Paravirtual interface for discovering the set of CPU implementations where a VM may run, addressing a longstanding issue of guest CPU errata awareness in big-little systems and cross-implementation VM migration - Userspace control of the registers responsible for identifying a particular CPU implementation (MIDR_EL1, REVIDR_EL1, AIDR_EL1), allowing VMs to be migrated cross-implementation - pKVM updates, including support for tracking stage-2 page table allocations in the protected hypervisor in the 'SecPageTable' stat - Fixes to vPMU, ensuring that userspace updates to the vPMU after KVM_RUN are reflected into the backing perf events LoongArch: - Remove unnecessary header include path - Assume constant PGD during VM context switch - Add perf events support for guest VM RISC-V: - Disable the kernel perf counter during configure - KVM selftests improvements for PMU - Fix warning at the time of KVM module removal x86: - Add support for aging of SPTEs without holding mmu_lock. Not taking mmu_lock allows multiple aging actions to run in parallel, and more importantly avoids stalling vCPUs. This includes an implementation of per-rmap-entry locking; aging the gfn is done with only a per-rmap single-bin spinlock taken, whereas locking an rmap for write requires taking both the per-rmap spinlock and the mmu_lock. Note that this decreases slightly the accuracy of accessed-page information, because changes to the SPTE outside aging might not use atomic operations even if they could race against a clear of the Accessed bit. This is deliberate because KVM and mm/ tolerate false positives/negatives for accessed information, and testing has shown that reducing the latency of aging is far more beneficial to overall system performance than providing "perfect" young/old information. - Defer runtime CPUID updates until KVM emulates a CPUID instruction, to coalesce updates when multiple pieces of vCPU state are changing, e.g. as part of a nested transition - Fix a variety of nested emulation bugs, and add VMX support for synthesizing nested VM-Exit on interception (instead of injecting #UD into L2) - Drop "support" for async page faults for protected guests that do not set SEND_ALWAYS (i.e. that only want async page faults at CPL3) - Bring a bit of sanity to x86's VM teardown code, which has accumulated a lot of cruft over the years. Particularly, destroy vCPUs before the MMU, despite the latter being a VM-wide operation - Add common secure TSC infrastructure for use within SNP and in the future TDX - Block KVM_CAP_SYNC_REGS if guest state is protected. It does not make sense to use the capability if the relevant registers are not available for reading or writing - Don't take kvm->lock when iterating over vCPUs in the suspend notifier to fix a largely theoretical deadlock - Use the vCPU's actual Xen PV clock information when starting the Xen timer, as the cached state in arch.hv_clock can be stale/bogus - Fix a bug where KVM could bleed PVCLOCK_GUEST_STOPPED across different PV clocks; restrict PVCLOCK_GUEST_STOPPED to kvmclock, as KVM's suspend notifier only accounts for kvmclock, and there's no evidence that the flag is actually supported by Xen guests - Clean up the per-vCPU "cache" of its reference pvclock, and instead only track the vCPU's TSC scaling (multipler+shift) metadata (which is moderately expensive to compute, and rarely changes for modern setups) - Don't write to the Xen hypercall page on MSR writes that are initiated by the host (userspace or KVM) to fix a class of bugs where KVM can write to guest memory at unexpected times, e.g. during vCPU creation if userspace has set the Xen hypercall MSR index to collide with an MSR that KVM emulates - Restrict the Xen hypercall MSR index to the unofficial synthetic range to reduce the set of possible collisions with MSRs that are emulated by KVM (collisions can still happen as KVM emulates Hyper-V MSRs, which also reside in the synthetic range) - Clean up and optimize KVM's handling of Xen MSR writes and xen_hvm_config - Update Xen TSC leaves during CPUID emulation instead of modifying the CPUID entries when updating PV clocks; there is no guarantee PV clocks will be updated between TSC frequency changes and CPUID emulation, and guest reads of the TSC leaves should be rare, i.e. are not a hot path x86 (Intel): - Fix a bug where KVM unnecessarily reads XFD_ERR from hardware and thus modifies the vCPU's XFD_ERR on a #NM due to CR0.TS=1 - Pass XFD_ERR as the payload when injecting #NM, as a preparatory step for upcoming FRED virtualization support - Decouple the EPT entry RWX protection bit macros from the EPT Violation bits, both as a general cleanup and in anticipation of adding support for emulating Mode-Based Execution Control (MBEC) - Reject KVM_RUN if userspace manages to gain control and stuff invalid guest state while KVM is in the middle of emulating nested VM-Enter - Add a macro to handle KVM's sanity checks on entry/exit VMCS control pairs in anticipation of adding sanity checks for secondary exit controls (the primary field is out of bits) x86 (AMD): - Ensure the PSP driver is initialized when both the PSP and KVM modules are built-in (the initcall framework doesn't handle dependencies) - Use long-term pins when registering encrypted memory regions, so that the pages are migrated out of MIGRATE_CMA/ZONE_MOVABLE and don't lead to excessive fragmentation - Add macros and helpers for setting GHCB return/error codes - Add support for Idle HLT interception, which elides interception if the vCPU has a pending, unmasked virtual IRQ when HLT is executed - Fix a bug in INVPCID emulation where KVM fails to check for a non-canonical address - Don't attempt VMRUN for SEV-ES+ guests if the vCPU's VMSA is invalid, e.g. because the vCPU was "destroyed" via SNP's AP Creation hypercall - Reject SNP AP Creation if the requested SEV features for the vCPU don't match the VM's configured set of features Selftests: - Fix again the Intel PMU counters test; add a data load and do CLFLUSH{OPT} on the data instead of executing code. The theory is that modern Intel CPUs have learned new code prefetching tricks that bypass the PMU counters - Fix a flaw in the Intel PMU counters test where it asserts that an event is counting correctly without actually knowing what the event counts on the underlying hardware - Fix a variety of flaws, bugs, and false failures/passes dirty_log_test, and improve its coverage by collecting all dirty entries on each iteration - Fix a few minor bugs related to handling of stats FDs - Add infrastructure to make vCPU and VM stats FDs available to tests by default (open the FDs during VM/vCPU creation) - Relax an assertion on the number of HLT exits in the xAPIC IPI test when running on a CPU that supports AMD's Idle HLT (which elides interception of HLT if a virtual IRQ is pending and unmasked)" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (216 commits) RISC-V: KVM: Optimize comments in kvm_riscv_vcpu_isa_disable_allowed RISC-V: KVM: Teardown riscv specific bits after kvm_exit LoongArch: KVM: Register perf callbacks for guest LoongArch: KVM: Implement arch-specific functions for guest perf LoongArch: KVM: Add stub for kvm_arch_vcpu_preempted_in_kernel() LoongArch: KVM: Remove PGD saving during VM context switch LoongArch: KVM: Remove unnecessary header include path KVM: arm64: Tear down vGIC on failed vCPU creation KVM: arm64: PMU: Reload when resetting KVM: arm64: PMU: Reload when user modifies registers KVM: arm64: PMU: Fix SET_ONE_REG for vPMC regs KVM: arm64: PMU: Assume PMU presence in pmu-emul.c KVM: arm64: PMU: Set raw values from user to PM{C,I}NTEN{SET,CLR}, PMOVS{SET,CLR} KVM: arm64: Create each pKVM hyp vcpu after its corresponding host vcpu KVM: arm64: Factor out pKVM hyp vcpu creation to separate function KVM: arm64: Initialize HCRX_EL2 traps in pKVM KVM: arm64: Factor out setting HCRX_EL2 traps into separate function KVM: x86: block KVM_CAP_SYNC_REGS if guest state is protected KVM: x86: Add infrastructure for secure TSC KVM: x86: Push down setting vcpu.arch.user_set_tsc ...
2025-03-25Merge tag 'x86_bugs_for_v6.15' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 speculation mitigation updates from Borislav Petkov: - Some preparatory work to convert the mitigations machinery to mitigating attack vectors instead of single vulnerabilities - Untangle and remove a now unneeded X86_FEATURE_USE_IBPB flag - Add support for a Zen5-specific SRSO mitigation - Cleanups and minor improvements * tag 'x86_bugs_for_v6.15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/bugs: Make spectre user default depend on MITIGATION_SPECTRE_V2 x86/bugs: Use the cpu_smt_possible() helper instead of open-coded code x86/bugs: Add AUTO mitigations for mds/taa/mmio/rfds x86/bugs: Relocate mds/taa/mmio/rfds defines x86/bugs: Add X86_BUG_SPECTRE_V2_USER x86/bugs: Remove X86_FEATURE_USE_IBPB KVM: nVMX: Always use IBPB to properly virtualize IBRS x86/bugs: Use a static branch to guard IBPB on vCPU switch x86/bugs: Remove the X86_FEATURE_USE_IBPB check in ib_prctl_set() x86/mm: Remove X86_FEATURE_USE_IBPB checks in cond_mitigation() x86/bugs: Move the X86_FEATURE_USE_IBPB check into callers x86/bugs: KVM: Add support for SRSO_MSR_FIX
2025-03-19Merge tag 'kvm-x86-svm-6.15' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini
KVM SVM changes for 6.15 - Ensure the PSP driver is initialized when both the PSP and KVM modules are built-in (the initcall framework doesn't handle dependencies). - Use long-term pins when registering encrypted memory regions, so that the pages are migrated out of MIGRATE_CMA/ZONE_MOVABLE and don't lead to excessive fragmentation. - Add macros and helpers for setting GHCB return/error codes. - Add support for Idle HLT interception, which elides interception if the vCPU has a pending, unmasked virtual IRQ when HLT is executed. - Fix a bug in INVPCID emulation where KVM fails to check for a non-canonical address. - Don't attempt VMRUN for SEV-ES+ guests if the vCPU's VMSA is invalid, e.g. because the vCPU was "destroyed" via SNP's AP Creation hypercall. - Reject SNP AP Creation if the requested SEV features for the vCPU don't match the VM's configured set of features. - Misc cleanups
2025-03-19Merge tag 'kvm-x86-misc-6.15' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini
KVM x86 misc changes for 6.15: - Fix a bug in PIC emulation that caused KVM to emit a spurious KVM_REQ_EVENT. - Add a helper to consolidate handling of mp_state transitions, and use it to clear pv_unhalted whenever a vCPU is made RUNNABLE. - Defer runtime CPUID updates until KVM emulates a CPUID instruction, to coalesce updates when multiple pieces of vCPU state are changing, e.g. as part of a nested transition. - Fix a variety of nested emulation bugs, and add VMX support for synthesizing nested VM-Exit on interception (instead of injecting #UD into L2). - Drop "support" for PV Async #PF with proctected guests without SEND_ALWAYS, as KVM can't get the current CPL. - Misc cleanups
2025-03-14KVM: x86: Allow vendor code to disable quirksPaolo Bonzini
In some cases, the handling of quirks is split between platform-specific code and generic code, or it is done entirely in generic code, but the relevant bug does not trigger on some platforms; for example, this will be the case for "ignore guest PAT". Allow unaffected vendor modules to disable handling of a quirk for all VMs via a new entry in kvm_caps. Such quirks remain available in KVM_CAP_DISABLE_QUIRKS2, because that API tells userspace that KVM *knows* that some of its past behavior was bogus or just undesirable. In other words, it's plausible for userspace to refuse to run if a quirk is not listed by KVM_CAP_DISABLE_QUIRKS2, so preserve that and make it part of the API. As an example, mark KVM_X86_QUIRK_CD_NW_CLEARED as auto-disabled on Intel systems. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-03-03KVM: SVM: Refuse to attempt VRMUN if an SEV-ES+ guest has an invalid VMSASean Christopherson
Explicitly reject KVM_RUN with KVM_EXIT_FAIL_ENTRY if userspace "coerces" KVM into running an SEV-ES+ guest with an invalid VMSA, e.g. by modifying a vCPU's mp_state to be RUNNABLE after an SNP vCPU has undergone a Destroy event. On Destroy or failed Create, KVM marks the vCPU HALTED so that *KVM* doesn't run the vCPU, but nothing prevents a misbehaving VMM from manually making the vCPU RUNNABLE via KVM_SET_MP_STATE. Attempting VMRUN with an invalid VMSA should be harmless, but knowingly executing VMRUN with bad control state is at best dodgy. Fixes: e366f92ea99e ("KVM: SEV: Support SEV-SNP AP Creation NAE event") Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Pankaj Gupta <pankaj.gupta@amd.com> Link: https://lore.kernel.org/r/20250227012541.3234589-4-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-28KVM: SVM: Manually context switch DEBUGCTL if LBR virtualization is disabledSean Christopherson
Manually load the guest's DEBUGCTL prior to VMRUN (and restore the host's value on #VMEXIT) if it diverges from the host's value and LBR virtualization is disabled, as hardware only context switches DEBUGCTL if LBR virtualization is fully enabled. Running the guest with the host's value has likely been mildly problematic for quite some time, e.g. it will result in undesirable behavior if BTF diverges (with the caveat that KVM now suppresses guest BTF due to lack of support). But the bug became fatal with the introduction of Bus Lock Trap ("Detect" in kernel paralance) support for AMD (commit 408eb7417a92 ("x86/bus_lock: Add support for AMD")), as a bus lock in the guest will trigger an unexpected #DB. Note, suppressing the bus lock #DB, i.e. simply resuming the guest without injecting a #DB, is not an option. It wouldn't address the general issue with DEBUGCTL, e.g. for things like BTF, and there are other guest-visible side effects if BusLockTrap is left enabled. If BusLockTrap is disabled, then DR6.BLD is reserved-to-1; any attempts to clear it by software are ignored. But if BusLockTrap is enabled, software can clear DR6.BLD: Software enables bus lock trap by setting DebugCtl MSR[BLCKDB] (bit 2) to 1. When bus lock trap is enabled, ... The processor indicates that this #DB was caused by a bus lock by clearing DR6[BLD] (bit 11). DR6[11] previously had been defined to be always 1. and clearing DR6.BLD is "sticky" in that it's not set (i.e. lowered) by other #DBs: All other #DB exceptions leave DR6[BLD] unmodified E.g. leaving BusLockTrap enable can confuse a legacy guest that writes '0' to reset DR6. Reported-by: rangemachine@gmail.com Reported-by: whanos@sergal.fun Closes: https://bugzilla.kernel.org/show_bug.cgi?id=219787 Closes: https://lore.kernel.org/all/bug-219787-28872@https.bugzilla.kernel.org%2F Cc: Ravi Bangoria <ravi.bangoria@amd.com> Cc: stable@vger.kernel.org Reviewed-and-tested-by: Ravi Bangoria <ravi.bangoria@amd.com> Link: https://lore.kernel.org/r/20250227222411.3490595-5-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-28KVM: SVM: Suppress DEBUGCTL.BTF on AMDSean Christopherson
Mark BTF as reserved in DEBUGCTL on AMD, as KVM doesn't actually support BTF, and fully enabling BTF virtualization is non-trivial due to interactions with the emulator, guest_debug, #DB interception, nested SVM, etc. Don't inject #GP if the guest attempts to set BTF, as there's no way to communicate lack of support to the guest, and instead suppress the flag and treat the WRMSR as (partially) unsupported. In short, make KVM behave the same on AMD and Intel (VMX already squashes BTF). Note, due to other bugs in KVM's handling of DEBUGCTL, the only way BTF has "worked" in any capacity is if the guest simultaneously enables LBRs. Reported-by: Ravi Bangoria <ravi.bangoria@amd.com> Cc: stable@vger.kernel.org Reviewed-and-tested-by: Ravi Bangoria <ravi.bangoria@amd.com> Link: https://lore.kernel.org/r/20250227222411.3490595-3-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-28KVM: SVM: Drop DEBUGCTL[5:2] from guest's effective valueSean Christopherson
Drop bits 5:2 from the guest's effective DEBUGCTL value, as AMD changed the architectural behavior of the bits and broke backwards compatibility. On CPUs without BusLockTrap (or at least, in APMs from before ~2023), bits 5:2 controlled the behavior of external pins: Performance-Monitoring/Breakpoint Pin-Control (PBi)—Bits 5:2, read/write. Software uses thesebits to control the type of information reported by the four external performance-monitoring/breakpoint pins on the processor. When a PBi bit is cleared to 0, the corresponding external pin (BPi) reports performance-monitor information. When a PBi bit is set to 1, the corresponding external pin (BPi) reports breakpoint information. With the introduction of BusLockTrap, presumably to be compatible with Intel CPUs, AMD redefined bit 2 to be BLCKDB: Bus Lock #DB Trap (BLCKDB)—Bit 2, read/write. Software sets this bit to enable generation of a #DB trap following successful execution of a bus lock when CPL is > 0. and redefined bits 5:3 (and bit 6) as "6:3 Reserved MBZ". Ideally, KVM would treat bits 5:2 as reserved. Defer that change to a feature cleanup to avoid breaking existing guest in LTS kernels. For now, drop the bits to retain backwards compatibility (of a sort). Note, dropping bits 5:2 is still a guest-visible change, e.g. if the guest is enabling LBRs *and* the legacy PBi bits, then the state of the PBi bits is visible to the guest, whereas now the guest will always see '0'. Reported-by: Ravi Bangoria <ravi.bangoria@amd.com> Cc: stable@vger.kernel.org Reviewed-and-tested-by: Ravi Bangoria <ravi.bangoria@amd.com> Link: https://lore.kernel.org/r/20250227222411.3490595-2-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-28KVM: SVM: Inject #GP if memory operand for INVPCID is non-canonicalSean Christopherson
Inject a #GP if the memory operand received by INVCPID is non-canonical. The APM clearly states that the intercept takes priority over all #GP checks except the CPL0 restriction. Of course, that begs the question of how the CPU generates a linear address in the first place. Tracing confirms that EXITINFO1 does hold a linear address, at least for 64-bit mode guests (hooray GS prefix). Unfortunately, the APM says absolutely nothing about the EXITINFO fields for INVPCID intercepts, so it's not at all clear what's supposed to happen. Add a FIXME to call out that KVM still does the wrong thing for 32-bit guests, and if the stack segment is used for the memory operand. Cc: Babu Moger <babu.moger@amd.com> Cc: Jim Mattson <jmattson@google.com> Fixes: 4407a797e941 ("KVM: SVM: Enable INVPCID feature on AMD") Link: https://lore.kernel.org/r/20250224174522.2363400-1-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-28KVM: SVM: Set RFLAGS.IF=1 in C code, to get VMRUN out of the STI shadowSean Christopherson
Enable/disable local IRQs, i.e. set/clear RFLAGS.IF, in the common svm_vcpu_enter_exit() just after/before guest_state_{enter,exit}_irqoff() so that VMRUN is not executed in an STI shadow. AMD CPUs have a quirk (some would say "bug"), where the STI shadow bleeds into the guest's intr_state field if a #VMEXIT occurs during injection of an event, i.e. if the VMRUN doesn't complete before the subsequent #VMEXIT. The spurious "interrupts masked" state is relatively benign, as it only occurs during event injection and is transient. Because KVM is already injecting an event, the guest can't be in HLT, and if KVM is querying IRQ blocking for injection, then KVM would need to force an immediate exit anyways since injecting multiple events is impossible. However, because KVM copies int_state verbatim from vmcb02 to vmcb12, the spurious STI shadow is visible to L1 when running a nested VM, which can trip sanity checks, e.g. in VMware's VMM. Hoist the STI+CLI all the way to C code, as the aforementioned calls to guest_state_{enter,exit}_irqoff() already inform lockdep that IRQs are enabled/disabled, and taking a fault on VMRUN with RFLAGS.IF=1 is already possible. I.e. if there's kernel code that is confused by running with RFLAGS.IF=1, then it's already a problem. In practice, since GIF=0 also blocks NMIs, the only change in exposure to non-KVM code (relative to surrounding VMRUN with STI+CLI) is exception handling code, and except for the kvm_rebooting=1 case, all exception in the core VM-Enter/VM-Exit path are fatal. Use the "raw" variants to enable/disable IRQs to avoid tracing in the "no instrumentation" code; the guest state helpers also take care of tracing IRQ state. Oppurtunstically document why KVM needs to do STI in the first place. Reported-by: Doug Covelli <doug.covelli@broadcom.com> Closes: https://lore.kernel.org/all/CADH9ctBs1YPmE4aCfGPNBwA10cA8RuAk2gO7542DjMZgs4uzJQ@mail.gmail.com Fixes: f14eec0a3203 ("KVM: SVM: move more vmentry code to assembly") Cc: stable@vger.kernel.org Reviewed-by: Jim Mattson <jmattson@google.com> Link: https://lore.kernel.org/r/20250224165442.2338294-2-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-27x86/bugs: Use a static branch to guard IBPB on vCPU switchYosry Ahmed
Instead of using X86_FEATURE_USE_IBPB to guard the IBPB execution in KVM when a new vCPU is loaded, introduce a static branch, similar to switch_mm_*_ibpb. This makes it obvious in spectre_v2_user_select_mitigation() what exactly is being toggled, instead of the unclear X86_FEATURE_USE_IBPB (which will be shortly removed). It also provides more fine-grained control, making it simpler to change/add paths that control the IBPB in the vCPU switch path without affecting other IBPBs. Signed-off-by: Yosry Ahmed <yosry.ahmed@linux.dev> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Josh Poimboeuf <jpoimboe@kernel.org> Acked-by: Sean Christopherson <seanjc@google.com> Link: https://lore.kernel.org/r/20250227012712.3193063-5-yosry.ahmed@linux.dev
2025-02-27x86/bugs: Move the X86_FEATURE_USE_IBPB check into callersYosry Ahmed
indirect_branch_prediction_barrier() only performs the MSR write if X86_FEATURE_USE_IBPB is set, using alternative_msr_write(). In preparation for removing X86_FEATURE_USE_IBPB, move the feature check into the callers so that they can be addressed one-by-one, and use X86_FEATURE_IBPB instead to guard the MSR write. Signed-off-by: Yosry Ahmed <yosry.ahmed@linux.dev> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Josh Poimboeuf <jpoimboe@kernel.org> Acked-by: Sean Christopherson <seanjc@google.com> Link: https://lore.kernel.org/r/20250227012712.3193063-2-yosry.ahmed@linux.dev
2025-02-26x86/bugs: KVM: Add support for SRSO_MSR_FIXBorislav Petkov
Add support for CPUID Fn8000_0021_EAX[31] (SRSO_MSR_FIX). If this bit is 1, it indicates that software may use MSR BP_CFG[BpSpecReduce] to mitigate SRSO. Enable BpSpecReduce to mitigate SRSO across guest/host boundaries. Switch back to enabling the bit when virtualization is enabled and to clear the bit when virtualization is disabled because using a MSR slot would clear the bit when the guest is exited and any training the guest has done, would potentially influence the host kernel when execution enters the kernel and hasn't VMRUN the guest yet. More detail on the public thread in Link below. Co-developed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20241202120416.6054-1-bp@kernel.org
2025-02-25KVM: SVM: Add Idle HLT intercept supportManali Shukla
Add support for "Idle HLT" interception on AMD CPUs, and enable Idle HLT interception instead of "normal" HLT interception for all VMs for which HLT-exiting is enabled. Idle HLT provides a mild performance boost for all VM types, by avoiding a VM-Exit in the scenario where KVM would immediately "wake" and resume the vCPU. Idle HLT makes HLT-exiting conditional on the vCPU not having a valid, unmasked interrupt. Specifically, a VM-Exit occurs on execution of HLT if and only if there are no pending V_IRQ or V_NMI events. Note, Idle is a replacement for full HLT interception, i.e. enabling HLT interception would result in all HLT instructions causing unconditional VM-Exits. Per the APM: When both HLT and Idle HLT intercepts are active at the same time, the HLT intercept takes priority. This intercept occurs only if a virtual interrupt is not pending (V_INTR or V_NMI). For KVM's use of V_IRQ (also called V_INTR in the APM) to detect interrupt windows, the net effect of enabling Idle HLT is that, if a virtual interupt is pending and unmasked at the time of HLT, the vCPU will take a V_IRQ intercept instead of a HLT intercept. When AVIC is enabled, Idle HLT works as intended: the vCPU continues unimpeded and services the pending virtual interrupt. Note, the APM's description of V_IRQ interaction with AVIC is quite confusing, and requires piecing together implied behavior. Per the APM, when AVIC is enabled, V_IRQ *from the VMCB* is ignored: When AVIC mode is enabled for a virtual processor, the V_IRQ, V_INTR_PRIO, V_INTR_VECTOR, and V_IGN_TPR fields in the VMCB are ignored. Which seems to contradict the behavior of Idle HLT: This intercept occurs only if a virtual interrupt is not pending (V_INTR or V_NMI). What's not explicitly stated is that hardware's internal copy of V_IRQ (and related fields) *are* still active, i.e. are presumably used to cache information from the virtual APIC. Handle Idle HLT exits as if they were normal HLT exits, e.g. don't try to optimize the handling under the assumption that there isn't a pending IRQ. Irrespective of AVIC, Idle HLT is inherently racy with respect to the vIRR, as KVM can set vIRR bits asychronously. No changes are required to support KVM's use Idle HLT while running L2. In fact, supporting Idle HLT is actually a bug fix to some extent. If L1 wants to intercept HLT, recalc_intercepts() will enable HLT interception in vmcb02 and forward the intercept to L1 as normal. But if L1 does not want to intercept HLT, then KVM will run L2 with Idle HLT enabled and HLT interception disabled. If a V_IRQ or V_NMI for L2 becomes pending and L2 executes HLT, then use of Idle HLT will do the right thing, i.e. not #VMEXIT and instead deliver the virtual event. KVM currently doesn't handle this scenario correctly, e.g. doesn't check V_IRQ or V_NMI in vmcs02 as part of kvm_vcpu_has_events(). Do not expose Idle HLT to L1 at this time, as supporting nested Idle HLT is more complex than just enumerating the feature, e.g. requires KVM to handle the aforementioned scenarios of V_IRQ and V_NMI at the time of exit. Signed-off-by: Manali Shukla <Manali.Shukla@amd.com> Reviewed-by: Nikunj A Dadhania <nikunj@amd.com> Link: https://bugzilla.kernel.org/attachment.cgi?id=306250 Link: https://lore.kernel.org/r/20250128124812.7324-3-manali.shukla@amd.com [sean: rewrite changelog, drop nested "support"] Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-25KVM: SVM: Provide helpers to set the error codeMelody Wang
Provide helpers to set the error code when converting VMGEXIT SW_EXITINFO1 and SW_EXITINFO2 codes from plain numbers to proper defines. Add comments for better code readability. No functionality changed. Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Melody Wang <huibo.wang@amd.com> Link: https://lore.kernel.org/r/20250225213937.2471419-3-huibo.wang@amd.com [sean: tweak comments, fix formatting goofs] Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-25KVM: SVM: Convert plain error code numbers to definesMelody Wang
Convert VMGEXIT SW_EXITINFO1 codes from plain numbers to proper defines. Opportunistically update the comment for the malformed input "sub-error" codes to state that they are defined by the GHCB, and to capure the relationship to the malformed input response. No functional change intended. Signed-off-by: Melody Wang <huibo.wang@amd.com> Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Pavan Kumar Paluri <papaluri@amd.com> Link: https://lore.kernel.org/r/20250225213937.2471419-2-huibo.wang@amd.com [sean: update comments] Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-25KVM: x86: Use a dedicated flow for queueing re-injected exceptionsSean Christopherson
Open code the filling of vcpu->arch.exception in kvm_requeue_exception() instead of bouncing through kvm_multiple_exception(), as re-injection doesn't actually share that much code with "normal" injection, e.g. the VM-Exit interception check, payload delivery, and nested exception code is all bypassed as those flows only apply during initial injection. When FRED comes along, the special casing will only get worse, as FRED explicitly tracks nested exceptions and essentially delivers the payload on the stack frame, i.e. re-injection will need more inputs, and normal injection will have yet more code that needs to be bypassed when KVM is re-injecting an exception. No functional change intended. Signed-off-by: Xin Li (Intel) <xin@zytor.com> Tested-by: Shan Kang <shan.kang@intel.com> Link: https://lore.kernel.org/r/20241001050110.3643764-2-xin@zytor.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-12KVM: x86: Defer runtime updates of dynamic CPUID bits until CPUID emulationSean Christopherson
Defer runtime CPUID updates until the next non-faulting CPUID emulation or KVM_GET_CPUID2, which are the only paths in KVM that consume the dynamic entries. Deferring the updates is especially beneficial to nested VM-Enter/VM-Exit, as KVM will almost always detect multiple state changes, not to mention the updates don't need to be realized while L2 is active if CPUID is being intercepted by L1 (CPUID is a mandatory intercept on Intel, but not AMD). Deferring CPUID updates shaves several hundred cycles from nested VMX roundtrips, as measured from L2 executing CPUID in a tight loop: SKX 6850 => 6450 ICX 9000 => 8800 EMR 7900 => 7700 Alternatively, KVM could update only the CPUID leaves that are affected by the state change, e.g. update XSAVE info only if XCR0 or XSS changes, but that adds non-trivial complexity and doesn't solve the underlying problem of nested transitions potentially changing both XCR0 and XSS, on both nested VM-Enter and VM-Exit. Skipping updates entirely if L2 is active and CPUID is being intercepted by L1 could work for the common case. However, simply skipping updates if L2 is active is *very* subtly dangerous and complex. Most KVM updates are triggered by changes to the current vCPU state, which may be L2 state, whereas performing updates only for L1 would requiring detecting changes to L1 state. KVM would need to either track relevant L1 state, or defer runtime CPUID updates until the next nested VM-Exit. The former is ugly and complex, while the latter comes with similar dangers to deferring all CPUID updates, and would only address the nested VM-Enter path. To guard against using stale data, disallow querying dynamic CPUID feature bits, i.e. features that KVM updates at runtime, via a compile-time assertion in guest_cpu_cap_has(). Exempt MWAIT from the rule, as the MISC_ENABLE_NO_MWAIT means that MWAIT is _conditionally_ a dynamic CPUID feature. Note, the rule could be enforced for MWAIT as well, e.g. by querying guest CPUID in kvm_emulate_monitor_mwait, but there's no obvious advtantage to doing so, and allowing MWAIT for guest_cpuid_has() opens up a different can of worms. MONITOR/MWAIT can't be virtualized (for a reasonable definition), and the nature of the MWAIT_NEVER_UD_FAULTS and MISC_ENABLE_NO_MWAIT quirks means checking X86_FEATURE_MWAIT outside of kvm_emulate_monitor_mwait() is wrong for other reasons. Beyond the aforementioned feature bits, the only other dynamic CPUID (sub)leaves are the XSAVE sizes, and similar to MWAIT, consuming those CPUID entries in KVM is all but guaranteed to be a bug. The layout for an actual XSAVE buffer depends on the format (compacted or not) and potentially the features that are actually enabled. E.g. see the logic in fpstate_clear_xstate_component() needed to poke into the guest's effective XSAVE state to clear MPX state on INIT. KVM does consume CPUID.0xD.0.{EAX,EDX} in kvm_check_cpuid() and cpuid_get_supported_xcr0(), but not EBX, which is the only dynamic output register in the leaf. Link: https://lore.kernel.org/r/20241211013302.1347853-6-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-12KVM: x86: Load DR6 with guest value only before entering .vcpu_run() loopSean Christopherson
Move the conditional loading of hardware DR6 with the guest's DR6 value out of the core .vcpu_run() loop to fix a bug where KVM can load hardware with a stale vcpu->arch.dr6. When the guest accesses a DR and host userspace isn't debugging the guest, KVM disables DR interception and loads the guest's values into hardware on VM-Enter and saves them on VM-Exit. This allows the guest to access DRs at will, e.g. so that a sequence of DR accesses to configure a breakpoint only generates one VM-Exit. For DR0-DR3, the logic/behavior is identical between VMX and SVM, and also identical between KVM_DEBUGREG_BP_ENABLED (userspace debugging the guest) and KVM_DEBUGREG_WONT_EXIT (guest using DRs), and so KVM handles loading DR0-DR3 in common code, _outside_ of the core kvm_x86_ops.vcpu_run() loop. But for DR6, the guest's value doesn't need to be loaded into hardware for KVM_DEBUGREG_BP_ENABLED, and SVM provides a dedicated VMCB field whereas VMX requires software to manually load the guest value, and so loading the guest's value into DR6 is handled by {svm,vmx}_vcpu_run(), i.e. is done _inside_ the core run loop. Unfortunately, saving the guest values on VM-Exit is initiated by common x86, again outside of the core run loop. If the guest modifies DR6 (in hardware, when DR interception is disabled), and then the next VM-Exit is a fastpath VM-Exit, KVM will reload hardware DR6 with vcpu->arch.dr6 and clobber the guest's actual value. The bug shows up primarily with nested VMX because KVM handles the VMX preemption timer in the fastpath, and the window between hardware DR6 being modified (in guest context) and DR6 being read by guest software is orders of magnitude larger in a nested setup. E.g. in non-nested, the VMX preemption timer would need to fire precisely between #DB injection and the #DB handler's read of DR6, whereas with a KVM-on-KVM setup, the window where hardware DR6 is "dirty" extends all the way from L1 writing DR6 to VMRESUME (in L1). L1's view: ========== <L1 disables DR interception> CPU 0/KVM-7289 [023] d.... 2925.640961: kvm_entry: vcpu 0 A: L1 Writes DR6 CPU 0/KVM-7289 [023] d.... 2925.640963: <hack>: Set DRs, DR6 = 0xffff0ff1 B: CPU 0/KVM-7289 [023] d.... 2925.640967: kvm_exit: vcpu 0 reason EXTERNAL_INTERRUPT intr_info 0x800000ec D: L1 reads DR6, arch.dr6 = 0 CPU 0/KVM-7289 [023] d.... 2925.640969: <hack>: Sync DRs, DR6 = 0xffff0ff0 CPU 0/KVM-7289 [023] d.... 2925.640976: kvm_entry: vcpu 0 L2 reads DR6, L1 disables DR interception CPU 0/KVM-7289 [023] d.... 2925.640980: kvm_exit: vcpu 0 reason DR_ACCESS info1 0x0000000000000216 CPU 0/KVM-7289 [023] d.... 2925.640983: kvm_entry: vcpu 0 CPU 0/KVM-7289 [023] d.... 2925.640983: <hack>: Set DRs, DR6 = 0xffff0ff0 L2 detects failure CPU 0/KVM-7289 [023] d.... 2925.640987: kvm_exit: vcpu 0 reason HLT L1 reads DR6 (confirms failure) CPU 0/KVM-7289 [023] d.... 2925.640990: <hack>: Sync DRs, DR6 = 0xffff0ff0 L0's view: ========== L2 reads DR6, arch.dr6 = 0 CPU 23/KVM-5046 [001] d.... 3410.005610: kvm_exit: vcpu 23 reason DR_ACCESS info1 0x0000000000000216 CPU 23/KVM-5046 [001] ..... 3410.005610: kvm_nested_vmexit: vcpu 23 reason DR_ACCESS info1 0x0000000000000216 L2 => L1 nested VM-Exit CPU 23/KVM-5046 [001] ..... 3410.005610: kvm_nested_vmexit_inject: reason: DR_ACCESS ext_inf1: 0x0000000000000216 CPU 23/KVM-5046 [001] d.... 3410.005610: kvm_entry: vcpu 23 CPU 23/KVM-5046 [001] d.... 3410.005611: kvm_exit: vcpu 23 reason VMREAD CPU 23/KVM-5046 [001] d.... 3410.005611: kvm_entry: vcpu 23 CPU 23/KVM-5046 [001] d.... 3410.005612: kvm_exit: vcpu 23 reason VMREAD CPU 23/KVM-5046 [001] d.... 3410.005612: kvm_entry: vcpu 23 L1 writes DR7, L0 disables DR interception CPU 23/KVM-5046 [001] d.... 3410.005612: kvm_exit: vcpu 23 reason DR_ACCESS info1 0x0000000000000007 CPU 23/KVM-5046 [001] d.... 3410.005613: kvm_entry: vcpu 23 L0 writes DR6 = 0 (arch.dr6) CPU 23/KVM-5046 [001] d.... 3410.005613: <hack>: Set DRs, DR6 = 0xffff0ff0 A: <L1 writes DR6 = 1, no interception, arch.dr6 is still '0'> B: CPU 23/KVM-5046 [001] d.... 3410.005614: kvm_exit: vcpu 23 reason PREEMPTION_TIMER CPU 23/KVM-5046 [001] d.... 3410.005614: kvm_entry: vcpu 23 C: L0 writes DR6 = 0 (arch.dr6) CPU 23/KVM-5046 [001] d.... 3410.005614: <hack>: Set DRs, DR6 = 0xffff0ff0 L1 => L2 nested VM-Enter CPU 23/KVM-5046 [001] d.... 3410.005616: kvm_exit: vcpu 23 reason VMRESUME L0 reads DR6, arch.dr6 = 0 Reported-by: John Stultz <jstultz@google.com> Closes: https://lkml.kernel.org/r/CANDhNCq5_F3HfFYABqFGCA1bPd_%2BxgNj-iDQhH4tDk%2Bwi8iZZg%40mail.gmail.com Fixes: 375e28ffc0cf ("KVM: X86: Set host DR6 only on VMX and for KVM_DEBUGREG_WONT_EXIT") Fixes: d67668e9dd76 ("KVM: x86, SVM: isolate vcpu->arch.dr6 from vmcb->save.dr6") Cc: stable@vger.kernel.org Cc: Jim Mattson <jmattson@google.com> Tested-by: John Stultz <jstultz@google.com> Link: https://lore.kernel.org/r/20250125011833.3644371-1-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-01-20Merge tag 'kvm-x86-misc-6.14' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini
KVM x86 misc changes for 6.14: - Overhaul KVM's CPUID feature infrastructure to track all vCPU capabilities instead of just those where KVM needs to manage state and/or explicitly enable the feature in hardware. Along the way, refactor the code to make it easier to add features, and to make it more self-documenting how KVM is handling each feature. - Rework KVM's handling of VM-Exits during event vectoring; this plugs holes where KVM unintentionally puts the vCPU into infinite loops in some scenarios (e.g. if emulation is triggered by the exit), and brings parity between VMX and SVM. - Add pending request and interrupt injection information to the kvm_exit and kvm_entry tracepoints respectively. - Fix a relatively benign flaw where KVM would end up redoing RDPKRU when loading guest/host PKRU, due to a refactoring of the kernel helpers that didn't account for KVM's pre-checking of the need to do WRPKRU.
2025-01-20Merge tag 'kvm-x86-svm-6.14' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini
KVM SVM changes for 6.14: - Macrofy the SEV=n version of the sev_xxx_guest() helpers so that the code is optimized away when building with less than brilliant compilers. - Remove a now-redundant TLB flush when guest CR4.PGE changes. - Use str_enabled_disabled() to replace open coded strings.
2025-01-10KVM: SVM: Use str_enabled_disabled() helper in svm_hardware_setup()Thorsten Blum
Remove hard-coded strings by using the str_enabled_disabled() helper function. Suggested-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr> Signed-off-by: Thorsten Blum <thorsten.blum@linux.dev> Link: https://lore.kernel.org/r/20250110101100.272312-2-thorsten.blum@linux.dev Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-12-19KVM: SVM: Allow guest writes to set MSR_AMD64_DE_CFG bitsSean Christopherson
Drop KVM's arbitrary behavior of making DE_CFG.LFENCE_SERIALIZE read-only for the guest, as rejecting writes can lead to guest crashes, e.g. Windows in particular doesn't gracefully handle unexpected #GPs on the WRMSR, and nothing in the AMD manuals suggests that LFENCE_SERIALIZE is read-only _if it exists_. KVM only allows LFENCE_SERIALIZE to be set, by the guest or host, if the underlying CPU has X86_FEATURE_LFENCE_RDTSC, i.e. if LFENCE is guaranteed to be serializing. So if the guest sets LFENCE_SERIALIZE, KVM will provide the desired/correct behavior without any additional action (the guest's value is never stuffed into hardware). And having LFENCE be serializing even when it's not _required_ to be is a-ok from a functional perspective. Fixes: 74a0e79df68a ("KVM: SVM: Disallow guest from changing userspace's MSR_AMD64_DE_CFG value") Fixes: d1d93fa90f1a ("KVM: SVM: Add MSR-based feature support for serializing LFENCE") Reported-by: Simon Pilkington <simonp.git@mailbox.org> Closes: https://lore.kernel.org/all/52914da7-a97b-45ad-86a0-affdf8266c61@mailbox.org Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: stable@vger.kernel.org Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Link: https://lore.kernel.org/r/20241211172952.1477605-1-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>