Age | Commit message (Collapse) | Author |
|
Make the completion of hypercalls go through the complete_hypercall
function pointer argument, no matter if the hypercall exits to
userspace or not. Previously, the code assumed that KVM_HC_MAP_GPA_RANGE
specifically went to userspace, and all the others did not; the new code
need not special case KVM_HC_MAP_GPA_RANGE and in fact does not care at
all whether there was an exit to userspace or not.
|
|
Rework __kvm_emulate_hypercall() into a macro so that completion of
hypercalls that don't exit to userspace use direct function calls to the
completion helper, i.e. don't trigger a retpoline when RETPOLINE=y.
Opportunistically take the names of the input registers, as opposed to
taking the input values, to preemptively dedup more of the calling code
(TDX needs to use different registers). Use the direct GPR accessors to
read values to avoid the pointless marking of the registers as available
(KVM requires GPRs to always be available).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Message-ID: <20241128004344.4072099-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Finish "emulation" of KVM hypercalls by function callback, even when the
hypercall is handled entirely within KVM, i.e. doesn't require an exit to
userspace, and refactor __kvm_emulate_hypercall()'s return value to *only*
communicate whether or not KVM should exit to userspace or resume the
guest.
(Ab)Use vcpu->run->hypercall.ret to propagate the return value to the
callback, purely to avoid having to add a trampoline for every completion
callback.
Using the function return value for KVM's control flow eliminates the
multiplexed return value, where '0' for KVM_HC_MAP_GPA_RANGE (and only
that hypercall) means "exit to userspace".
Note, the unnecessary extra indirect call and thus potential retpoline
will be eliminated in the near future by converting the intermediate layer
to a macro.
Suggested-by: Binbin Wu <binbin.wu@linux.intel.com>
Suggested-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Message-ID: <20241128004344.4072099-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move the declarations for the hypercall emulation APIs to x86.h. While the
helpers are exported, they are intended to be consumed only by KVM vendor
modules, i.e. don't need to be exposed to the kernel at-large.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-ID: <20241128004344.4072099-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add and use user_exit_on_hypercall() to check if userspace wants to handle
a KVM hypercall instead of open-coding the logic everywhere.
No functional change intended.
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
[sean: squash into one patch, keep explicit KVM_HC_MAP_GPA_RANGE check]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-ID: <20241128004344.4072099-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Let vendor code inline __kvm_is_valid_cr4() now x86.c's cr4_reserved_bits
no longer exists, as keeping cr4_reserved_bits local to x86.c was the only
reason for "hiding" the definition of __kvm_is_valid_cr4().
No functional change intended.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20241128013424.4096668-11-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
As a result of a recent investigation, it was determined that x86 CPUs
which support 5-level paging, don't always respect CR4.LA57 when doing
canonical checks.
In particular:
1. MSRs which contain a linear address, allow full 57-bitcanonical address
regardless of CR4.LA57 state. For example: MSR_KERNEL_GS_BASE.
2. All hidden segment bases and GDT/IDT bases also behave like MSRs.
This means that full 57-bit canonical address can be loaded to them
regardless of CR4.LA57, both using MSRS (e.g GS_BASE) and instructions
(e.g LGDT).
3. TLB invalidation instructions also allow the user to use full 57-bit
address regardless of the CR4.LA57.
Finally, it must be noted that the CPU doesn't prevent the user from
disabling 5-level paging, even when the full 57-bit canonical address is
present in one of the registers mentioned above (e.g GDT base).
In fact, this can happen without any userspace help, when the CPU enters
SMM mode - some MSRs, for example MSR_KERNEL_GS_BASE are left to contain
a non-canonical address in regard to the new mode.
Since most of the affected MSRs and all segment bases can be read and
written freely by the guest without any KVM intervention, this patch makes
the emulator closely follow hardware behavior, which means that the
emulator doesn't take in the account the guest CPUID support for 5-level
paging, and only takes in the account the host CPU support.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20240906221824.491834-4-mlevitsk@redhat.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
into HEAD
KVM VMX and x86 PAT MSR macro cleanup for 6.12:
- Add common defines for the x86 architectural memory types, i.e. the types
that are shared across PAT, MTRRs, VMCSes, and EPTPs.
- Clean up the various VMX MSR macros to make the code self-documenting
(inasmuch as possible), and to make it less painful to add new macros.
|
|
Leave nested mode before synthesizing shutdown (a.k.a. TRIPLE_FAULT) if
RSM fails when resuming L2 (a.k.a. guest mode). Architecturally, shutdown
on RSM occurs _before_ the transition back to guest mode on both Intel and
AMD.
On Intel, per the SDM pseudocode, SMRAM state is loaded before critical
VMX state:
restore state normally from SMRAM;
...
CR4.VMXE := value stored internally;
IF internal storage indicates that the logical processor had been in
VMX operation (root or non-root)
THEN
enter VMX operation (root or non-root);
restore VMX-critical state as defined in Section 32.14.1;
...
restore current VMCS pointer;
FI;
AMD's APM is both less clearcut and more explicit. Because AMD CPUs save
VMCB and guest state in SMRAM itself, given the lack of anything in the
APM to indicate a shutdown in guest mode is possible, a straightforward
reading of the clause on invalid state is that _what_ state is invalid is
irrelevant, i.e. all roads lead to shutdown.
An RSM causes a processor shutdown if an invalid-state condition is
found in the SMRAM state-save area.
This fixes a bug found by syzkaller where synthesizing shutdown for L2
led to a nested VM-Exit (if L1 is intercepting shutdown), which in turn
caused KVM to complain about trying to cancel a nested VM-Enter (see
commit 759cbd59674a ("KVM: x86: nSVM/nVMX: set nested_run_pending on VM
entry which is a result of RSM").
Note, Paolo pointed out that KVM shouldn't set nested_run_pending until
after loading SMRAM state. But as above, that's only half the story, KVM
shouldn't transition to guest mode either. Unfortunately, fixing that
mess requires rewriting the nVMX and nSVM RSM flows to not piggyback
their nested VM-Enter flows, as executing the nested VM-Enter flows after
loading state from SMRAM would clobber much of said state.
For now, add a FIXME to call out that transitioning to guest mode before
loading state from SMRAM is wrong.
Link: https://lore.kernel.org/all/CABgObfYaUHXyRmsmg8UjRomnpQ0Jnaog9-L2gMjsjkqChjDYUQ@mail.gmail.com
Reported-by: syzbot+988d9efcdf137bc05f66@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/all/0000000000007a9acb06151e1670@google.com
Reported-by: Zheyu Ma <zheyuma97@gmail.com>
Closes: https://lore.kernel.org/all/CAMhUBjmXMYsEoVYw_M8hSZjBMHh24i88QYm-RY6HDta5YZ7Wgw@mail.gmail.com
Analyzed-by: Michal Wilczynski <michal.wilczynski@intel.com>
Cc: Kishen Maloor <kishen.maloor@intel.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20240906161337.1118412-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Add a fastpath for HLT VM-Exits by immediately re-entering the guest if
it has a pending wake event. When virtual interrupt delivery is enabled,
i.e. when KVM doesn't need to manually inject interrupts, this allows KVM
to stay in the fastpath run loop when a vIRQ arrives between the guest
doing CLI and STI;HLT. Without AMD's Idle HLT-intercept support, the CPU
generates a HLT VM-Exit even though KVM will immediately resume the guest.
Note, on bare metal, it's relatively uncommon for a modern guest kernel to
actually trigger this scenario, as the window between the guest checking
for a wake event and committing to HLT is quite small. But in a nested
environment, the timings change significantly, e.g. rudimentary testing
showed that ~50% of HLT exits where HLT-polling was successful would be
serviced by this fastpath, i.e. ~50% of the time that a nested vCPU gets
a wake event before KVM schedules out the vCPU, the wake event was pending
even before the VM-Exit.
Link: https://lore.kernel.org/all/20240528041926.3989-3-manali.shukla@amd.com
Link: https://lore.kernel.org/r/20240802195120.325560-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Rename the "INVALID" internal MSR error return code to "UNSUPPORTED" to
try and make it more clear that access was denied because the MSR itself
is unsupported/unknown. "INVALID" is too ambiguous, as it could just as
easily mean the value for WRMSR as invalid.
Avoid UNKNOWN and UNIMPLEMENTED, as the error code is used for MSRs that
_are_ actually implemented by KVM, e.g. if the MSR is unsupported because
an associated feature flag is not present in guest CPUID.
Opportunistically beef up the comments for the internal MSR error codes.
Link: https://lore.kernel.org/r/20240802181935.292540-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Move VMX's MSR_TYPE_{R,W,RW} #defines to x86.h, as enums, so that they can
be used by common x86 code, e.g. instead of doing "bool write".
Opportunistically tweak the definitions to make it more obvious that the
values are bitmasks, not arbitrary ascending values.
No functional change intended.
Link: https://lore.kernel.org/r/20240802181935.292540-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Move pat/memtype.c's PAT() macro to msr-index.h as PAT_VALUE(), and use it
in KVM to define the default (Power-On / RESET) PAT value instead of open
coding an inscrutable magic number.
No functional change intended.
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240605231918.2915961-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Introduces kvm_x86_call(), to streamline the usage of static calls of
kvm_x86_ops. The current implementation of these calls is verbose and
could lead to alignment challenges. This makes the code susceptible to
exceeding the "80 columns per single line of code" limit as defined in
the coding-style document. Another issue with the existing implementation
is that the addition of kvm_x86_ prefix to hooks at the static_call sites
hinders code readability and navigation. kvm_x86_call() is added to
improve code readability and maintainability, while adhering to the coding
style guidelines.
Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Link: https://lore.kernel.org/r/20240507133103.15052-3-wei.w.wang@intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
KVM x86 MTRR virtualization removal
Remove support for virtualizing MTRRs on Intel CPUs, along with a nasty CR0.CD
hack, and instead always honor guest PAT on CPUs that support self-snoop.
|
|
Remove KVM's support for virtualizing guest MTRR memtypes, as full MTRR
adds no value, negatively impacts guest performance, and is a maintenance
burden due to it's complexity and oddities.
KVM's approach to virtualizating MTRRs make no sense, at all. KVM *only*
honors guest MTRR memtypes if EPT is enabled *and* the guest has a device
that may perform non-coherent DMA access. From a hardware virtualization
perspective of guest MTRRs, there is _nothing_ special about EPT. Legacy
shadowing paging doesn't magically account for guest MTRRs, nor does NPT.
Unwinding and deciphering KVM's murky history, the MTRR virtualization
code appears to be the result of misdiagnosed issues when EPT + VT-d with
passthrough devices was enabled years and years ago. And importantly, the
underlying bugs that were fudged around by honoring guest MTRR memtypes
have since been fixed (though rather poorly in some cases).
The zapping GFNs logic in the MTRR virtualization code came from:
commit efdfe536d8c643391e19d5726b072f82964bfbdb
Author: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Date: Wed May 13 14:42:27 2015 +0800
KVM: MMU: fix MTRR update
Currently, whenever guest MTRR registers are changed
kvm_mmu_reset_context is called to switch to the new root shadow page
table, however, it's useless since:
1) the cache type is not cached into shadow page's attribute so that
the original root shadow page will be reused
2) the cache type is set on the last spte, that means we should sync
the last sptes when MTRR is changed
This patch fixs this issue by drop all the spte in the gfn range which
is being updated by MTRR
which was a fix for:
commit 0bed3b568b68e5835ef5da888a372b9beabf7544
Author: Sheng Yang <sheng@linux.intel.com>
AuthorDate: Thu Oct 9 16:01:54 2008 +0800
Commit: Avi Kivity <avi@redhat.com>
CommitDate: Wed Dec 31 16:51:44 2008 +0200
KVM: Improve MTRR structure
As well as reset mmu context when set MTRR.
which was part of a "MTRR/PAT support for EPT" series that also added:
+ if (mt_mask) {
+ mt_mask = get_memory_type(vcpu, gfn) <<
+ kvm_x86_ops->get_mt_mask_shift();
+ spte |= mt_mask;
+ }
where get_memory_type() was a truly gnarly helper to retrieve the guest
MTRR memtype for a given memtype. And *very* subtly, at the time of that
change, KVM *always* set VMX_EPT_IGMT_BIT,
kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
VMX_EPT_WRITABLE_MASK |
VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT |
VMX_EPT_IGMT_BIT);
which came in via:
commit 928d4bf747e9c290b690ff515d8f81e8ee226d97
Author: Sheng Yang <sheng@linux.intel.com>
AuthorDate: Thu Nov 6 14:55:45 2008 +0800
Commit: Avi Kivity <avi@redhat.com>
CommitDate: Tue Nov 11 21:00:37 2008 +0200
KVM: VMX: Set IGMT bit in EPT entry
There is a potential issue that, when guest using pagetable without vmexit when
EPT enabled, guest would use PAT/PCD/PWT bits to index PAT msr for it's memory,
which would be inconsistent with host side and would cause host MCE due to
inconsistent cache attribute.
The patch set IGMT bit in EPT entry to ignore guest PAT and use WB as default
memory type to protect host (notice that all memory mapped by KVM should be WB).
Note the CommitDates! The AuthorDates strongly suggests Sheng Yang added
the whole "ignoreIGMT things as a bug fix for issues that were detected
during EPT + VT-d + passthrough enabling, but it was applied earlier
because it was a generic fix.
Jumping back to 0bed3b568b68 ("KVM: Improve MTRR structure"), the other
relevant code, or rather lack thereof, is the handling of *host* MMIO.
That fix came in a bit later, but given the author and timing, it's safe
to say it was all part of the same EPT+VT-d enabling mess.
commit 2aaf69dcee864f4fb6402638dd2f263324ac839f
Author: Sheng Yang <sheng@linux.intel.com>
AuthorDate: Wed Jan 21 16:52:16 2009 +0800
Commit: Avi Kivity <avi@redhat.com>
CommitDate: Sun Feb 15 02:47:37 2009 +0200
KVM: MMU: Map device MMIO as UC in EPT
Software are not allow to access device MMIO using cacheable memory type, the
patch limit MMIO region with UC and WC(guest can select WC using PAT and
PCD/PWT).
In addition to the host MMIO and IGMT issues, KVM's MTRR virtualization
was obviously never tested on NPT until much later, which lends further
credence to the theory/argument that this was all the result of
misdiagnosed issues.
Discussion from the EPT+MTRR enabling thread[*] more or less confirms that
Sheng Yang was trying to resolve issues with passthrough MMIO.
* Sheng Yang
: Do you mean host(qemu) would access this memory and if we set it to guest
: MTRR, host access would be broken? We would cover this in our shadow MTRR
: patch, for we encountered this in video ram when doing some experiment with
: VGA assignment.
And in the same thread, there's also what appears to be confirmation of
Intel running into issues with Windows XP related to a guest device driver
mapping DMA with WC in the PAT.
* Avi Kavity
: Sheng Yang wrote:
: > Yes... But it's easy to do with assigned devices' mmio, but what if guest
: > specific some non-mmio memory's memory type? E.g. we have met one issue in
: > Xen, that a assigned-device's XP driver specific one memory region as buffer,
: > and modify the memory type then do DMA.
: >
: > Only map MMIO space can be first step, but I guess we can modify assigned
: > memory region memory type follow guest's?
: >
:
: With ept/npt, we can't, since the memory type is in the guest's
: pagetable entries, and these are not accessible.
[*] https://lore.kernel.org/all/1223539317-32379-1-git-send-email-sheng@linux.intel.com
So, for the most part, what likely happened is that 15 years ago, a few
engineers (a) fixed a #MC problem by ignoring guest PAT and (b) initially
"fixed" passthrough device MMIO by emulating *guest* MTRRs. Except for
the below case, everything since then has been a result of those two
intertwined changes.
The one exception, which is actually yet more confirmation of all of the
above, is the revert of Paolo's attempt at "full" virtualization of guest
MTRRs:
commit 606decd67049217684e3cb5a54104d51ddd4ef35
Author: Paolo Bonzini <pbonzini@redhat.com>
Date: Thu Oct 1 13:12:47 2015 +0200
Revert "KVM: x86: apply guest MTRR virtualization on host reserved pages"
This reverts commit fd717f11015f673487ffc826e59b2bad69d20fe5.
It was reported to cause Machine Check Exceptions (bug 104091).
...
commit fd717f11015f673487ffc826e59b2bad69d20fe5
Author: Paolo Bonzini <pbonzini@redhat.com>
Date: Tue Jul 7 14:38:13 2015 +0200
KVM: x86: apply guest MTRR virtualization on host reserved pages
Currently guest MTRR is avoided if kvm_is_reserved_pfn returns true.
However, the guest could prefer a different page type than UC for
such pages. A good example is that pass-throughed VGA frame buffer is
not always UC as host expected.
This patch enables full use of virtual guest MTRRs.
I.e. Paolo tried to add back KVM's behavior before "Map device MMIO as UC
in EPT" and got the same result: machine checks, likely due to the guest
MTRRs not being trustworthy/sane at all times.
Note, Paolo also tried to enable MTRR virtualization on SVM+NPT, but that
too got reverted. Unfortunately, it doesn't appear that anyone ever found
a smoking gun, i.e. exactly why emulating guest MTRRs via NPT PAT caused
extremely slow boot times doesn't appear to have a definitive root cause.
commit fc07e76ac7ffa3afd621a1c3858a503386a14281
Author: Paolo Bonzini <pbonzini@redhat.com>
Date: Thu Oct 1 13:20:22 2015 +0200
Revert "KVM: SVM: use NPT page attributes"
This reverts commit 3c2e7f7de3240216042b61073803b61b9b3cfb22.
Initializing the mapping from MTRR to PAT values was reported to
fail nondeterministically, and it also caused extremely slow boot
(due to caching getting disabled---bug 103321) with assigned devices.
...
commit 3c2e7f7de3240216042b61073803b61b9b3cfb22
Author: Paolo Bonzini <pbonzini@redhat.com>
Date: Tue Jul 7 14:32:17 2015 +0200
KVM: SVM: use NPT page attributes
Right now, NPT page attributes are not used, and the final page
attribute depends solely on gPAT (which however is not synced
correctly), the guest MTRRs and the guest page attributes.
However, we can do better by mimicking what is done for VMX.
In the absence of PCI passthrough, the guest PAT can be ignored
and the page attributes can be just WB. If passthrough is being
used, instead, keep respecting the guest PAT, and emulate the guest
MTRRs through the PAT field of the nested page tables.
The only snag is that WP memory cannot be emulated correctly,
because Linux's default PAT setting only includes the other types.
In short, honoring guest MTRRs for VMX was initially a workaround of
sorts for KVM ignoring guest PAT *and* for KVM not forcing UC for host
MMIO. And while there *are* known cases where honoring guest MTRRs is
desirable, e.g. passthrough VGA frame buffers, the desired behavior in
that case is to get WC instead of UC, i.e. at this point it's for
performance, not correctness.
Furthermore, the complete absence of MTRR virtualization on NPT and
shadow paging proves that, while KVM theoretically can do better, it's
by no means necessary for correctnesss.
Lastly, since kernels mostly rely on firmware to do MTRR setup, and the
host typically provides guest firmware, honoring guest MTRRs is effectively
honoring *host* userspace memtypes, which is also backwards. I.e. it
would be far better for host userspace to communicate its desired memtype
directly to KVM (or perhaps indirectly via VMAs in the host kernel), not
through guest MTRRs.
Tested-by: Xiangfei Ma <xiangfeix.ma@intel.com>
Tested-by: Yongwei Ma <yongwei.ma@intel.com>
Link: https://lore.kernel.org/r/20240309010929.1403984-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Move shadow_phys_bits into "struct kvm_host_values", i.e. into KVM's
global "kvm_host" variable, so that it is automatically exported for use
in vendor modules. Rename the variable/field to maxphyaddr to more
clearly capture what value it holds, now that it's used outside of the
MMU (and because the "shadow" part is more than a bit misleading as the
variable is not at all unique to shadow paging).
Recomputing the raw/true host.MAXPHYADDR on every use can be subtly
expensive, e.g. it will incur a VM-Exit on the CPUID if KVM is running as
a nested hypervisor. Vendor code already has access to the information,
e.g. by directly doing CPUID or by invoking kvm_get_shadow_phys_bits(), so
there's no tangible benefit to making it MMU-only.
Link: https://lore.kernel.org/r/20240423221521.2923759-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Add "struct kvm_host_values kvm_host" to hold the various host values
that KVM snapshots during initialization. Bundling the host values into
a single struct simplifies adding new MSRs and other features with host
state/values that KVM cares about, and provides a one-stop shop. E.g.
adding a new value requires one line, whereas tracking each value
individual often requires three: declaration, definition, and export.
No functional change intended.
Link: https://lore.kernel.org/r/20240423221521.2923759-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
This simplifies the implementation of KVM_CHECK_EXTENSION(KVM_CAP_VM_TYPES),
and also allows the vendor module to specify which VM types are supported.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20240404121327.3107131-9-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
KVM Xen and pfncache changes for 6.9:
- Rip out the half-baked support for using gfn_to_pfn caches to manage pages
that are "mapped" into guests via physical addresses.
- Add support for using gfn_to_pfn caches with only a host virtual address,
i.e. to bypass the "gfn" stage of the cache. The primary use case is
overlay pages, where the guest may change the gfn used to reference the
overlay page, but the backing hva+pfn remains the same.
- Add an ioctl() to allow mapping Xen's shared_info page using an hva instead
of a gpa, so that userspace doesn't need to reconfigure and invalidate the
cache/mapping if the guest changes the gpa (but userspace keeps the resolved
hva the same).
- When possible, use a single host TSC value when computing the deadline for
Xen timers in order to improve the accuracy of the timer emulation.
- Inject pending upcall events when the vCPU software-enables its APIC to fix
a bug where an upcall can be lost (and to follow Xen's behavior).
- Fall back to the slow path instead of warning if "fast" IRQ delivery of Xen
events fails, e.g. if the guest has aliased xAPIC IDs.
- Extend gfn_to_pfn_cache's mutex to cover (de)activation (in addition to
refresh), and drop a now-redundant acquisition of xen_lock (that was
protecting the shared_info cache) to fix a deadlock due to recursively
acquiring xen_lock.
|
|
A test program such as http://david.woodhou.se/timerlat.c confirms user
reports that timers are increasingly inaccurate as the lifetime of a
guest increases. Reporting the actual delay observed when asking for
100µs of sleep, it starts off OK on a newly-launched guest but gets
worse over time, giving incorrect sleep times:
root@ip-10-0-193-21:~# ./timerlat -c -n 5
00000000 latency 103243/100000 (3.2430%)
00000001 latency 103243/100000 (3.2430%)
00000002 latency 103242/100000 (3.2420%)
00000003 latency 103245/100000 (3.2450%)
00000004 latency 103245/100000 (3.2450%)
The biggest problem is that get_kvmclock_ns() returns inaccurate values
when the guest TSC is scaled. The guest sees a TSC value scaled from the
host TSC by a mul/shift conversion (hopefully done in hardware). The
guest then converts that guest TSC value into nanoseconds using the
mul/shift conversion given to it by the KVM pvclock information.
But get_kvmclock_ns() performs only a single conversion directly from
host TSC to nanoseconds, giving a different result. A test program at
http://david.woodhou.se/tsdrift.c demonstrates the cumulative error
over a day.
It's non-trivial to fix get_kvmclock_ns(), although I'll come back to
that. The actual guest hv_clock is per-CPU, and *theoretically* each
vCPU could be running at a *different* frequency. But this patch is
needed anyway because...
The other issue with Xen timers was that the code would snapshot the
host CLOCK_MONOTONIC at some point in time, and then... after a few
interrupts may have occurred, some preemption perhaps... would also read
the guest's kvmclock. Then it would proceed under the false assumption
that those two happened at the *same* time. Any time which *actually*
elapsed between reading the two clocks was introduced as inaccuracies
in the time at which the timer fired.
Fix it to use a variant of kvm_get_time_and_clockread(), which reads the
host TSC just *once*, then use the returned TSC value to calculate the
kvmclock (making sure to do that the way the guest would instead of
making the same mistake get_kvmclock_ns() does).
Sadly, hrtimers based on CLOCK_MONOTONIC_RAW are not supported, so Xen
timers still have to use CLOCK_MONOTONIC. In practice the difference
between the two won't matter over the timescales involved, as the
*absolute* values don't matter; just the delta.
This does mean a new variant of kvm_get_time_and_clockread() is needed;
called kvm_get_monotonic_and_clockread() because that's what it does.
Fixes: 536395260582 ("KVM: x86/xen: handle PV timers oneshot mode")
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Paul Durrant <paul@xen.org>
Link: https://lore.kernel.org/r/20240227115648.3104-2-dwmw2@infradead.org
[sean: massage moved comment, tweak if statement formatting]
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Explicitly check that the source of external interrupt is indeed an NMI
in kvm_arch_pmi_in_guest(), which reduces perf-kvm false positive samples
(host samples labelled as guest samples) generated by perf/core NMI mode
if an NMI arrives after VM-Exit, but before kvm_after_interrupt():
# test: perf-record + cpu-cycles:HP (which collects host-only precise samples)
# Symbol Overhead sys usr guest sys guest usr
# ....................................... ........ ........ ........ ......... .........
#
# Before:
[g] entry_SYSCALL_64 24.63% 0.00% 0.00% 24.63% 0.00%
[g] syscall_return_via_sysret 23.23% 0.00% 0.00% 23.23% 0.00%
[g] files_lookup_fd_raw 6.35% 0.00% 0.00% 6.35% 0.00%
# After:
[k] perf_adjust_freq_unthr_context 57.23% 57.23% 0.00% 0.00% 0.00%
[k] __vmx_vcpu_run 4.09% 4.09% 0.00% 0.00% 0.00%
[k] vmx_update_host_rsp 3.17% 3.17% 0.00% 0.00% 0.00%
In the above case, perf records the samples labelled '[g]', the RIPs behind
the weird samples are actually being queried by perf_instruction_pointer()
after determining whether it's in GUEST state or not, and here's the issue:
If VM-Exit is caused by a non-NMI interrupt (such as hrtimer_interrupt) and
at least one PMU counter is enabled on host, the kvm_arch_pmi_in_guest()
will remain true (KVM_HANDLING_IRQ is set) until kvm_before_interrupt().
During this window, if a PMI occurs on host (since the KVM instructions on
host are being executed), the control flow, with the help of the host NMI
context, will be transferred to perf/core to generate performance samples,
thus perf_instruction_pointer() and perf_guest_get_ip() is called.
Since kvm_arch_pmi_in_guest() only checks if there is an interrupt, it may
cause perf/core to mistakenly assume that the source RIP of the host NMI
belongs to the guest world and use perf_guest_get_ip() to get the RIP of
a vCPU that has already exited by a non-NMI interrupt.
Error samples are recorded and presented to the end-user via perf-report.
Such false positive samples could be eliminated by explicitly determining
if the exit reason is KVM_HANDLING_NMI.
Note that when VM-exit is indeed triggered by PMI and before HANDLING_NMI
is cleared, it's also still possible that another PMI is generated on host.
Also for perf/core timer mode, the false positives are still possible since
those non-NMI sources of interrupts are not always being used by perf/core.
For events that are host-only, perf/core can and should eliminate false
positives by checking event->attr.exclude_guest, i.e. events that are
configured to exclude KVM guests should never fire in the guest.
Events that are configured to count host and guest are trickier, perhaps
impossible to handle with 100% accuracy? And regardless of what accuracy
is provided by perf/core, improving KVM's accuracy is cheap and easy, with
no real downsides.
Fixes: dd60d217062f ("KVM: x86: Fix perf timer mode IP reporting")
Signed-off-by: Like Xu <likexu@tencent.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20231206032054.55070-1-likexu@tencent.com
[sean: massage changelog, squash !!in_nmi() fixup from Like]
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Add support to allow guests to set the new CR4 control bit for LAM and add
implementation to get untagged address for supervisor pointers.
LAM modifies the canonicality check applied to 64-bit linear addresses for
data accesses, allowing software to use of the untranslated address bits for
metadata and masks the metadata bits before using them as linear addresses
to access memory. LAM uses CR4.LAM_SUP (bit 28) to configure and enable LAM
for supervisor pointers. It also changes VMENTER to allow the bit to be set
in VMCS's HOST_CR4 and GUEST_CR4 to support virtualization. Note CR4.LAM_SUP
is allowed to be set even not in 64-bit mode, but it will not take effect
since LAM only applies to 64-bit linear addresses.
Move CR4.LAM_SUP out of CR4_RESERVED_BITS, its reservation depends on vcpu
supporting LAM or not. Leave it intercepted to prevent guest from setting
the bit if LAM is not exposed to guest as well as to avoid vmread every time
when KVM fetches its value, with the expectation that guest won't toggle the
bit frequently.
Set CR4.LAM_SUP bit in the emulated IA32_VMX_CR4_FIXED1 MSR for guests to
allow guests to enable LAM for supervisor pointers in nested VMX operation.
Hardware is not required to do TLB flush when CR4.LAM_SUP toggled, KVM
doesn't need to emulate TLB flush based on it. There's no other features
or vmx_exec_controls connection, and no other code needed in
{kvm,vmx}_set_cr4().
Skip address untag for instruction fetches (which includes branch targets),
operand of INVLPG instructions, and implicit system accesses, all of which
are not subject to untagging. Note, get_untagged_addr() isn't invoked for
implicit system accesses as there is no reason to do so, but check the
flag anyways for documentation purposes.
Signed-off-by: Robert Hoo <robert.hu@linux.intel.com>
Co-developed-by: Binbin Wu <binbin.wu@linux.intel.com>
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Tested-by: Xuelian Guo <xuelian.guo@intel.com>
Link: https://lore.kernel.org/r/20230913124227.12574-11-binbin.wu@linux.intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
When populating the guest's PV wall clock information, KVM currently does
a simple 'kvm_get_real_ns() - get_kvmclock_ns(kvm)'. This is an antipattern
which should be avoided; when working with the relationship between two
clocks, it's never correct to obtain one of them "now" and then the other
at a slightly different "now" after an unspecified period of preemption
(which might not even be under the control of the kernel, if this is an
L1 hosting an L2 guest under nested virtualization).
Add a kvm_get_wall_clock_epoch() function to return the guest wall clock
epoch in nanoseconds using the same method as __get_kvmclock() — by using
kvm_get_walltime_and_clockread() to calculate both the wall clock and KVM
clock time from a *single* TSC reading.
The condition using get_cpu_tsc_khz() is equivalent to the version in
__get_kvmclock() which separately checks for the CONSTANT_TSC feature or
the per-CPU cpu_tsc_khz. Which is what get_cpu_tsc_khz() does anyway.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lore.kernel.org/r/bfc6d3d7cfb88c47481eabbf5a30a264c58c7789.camel@infradead.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Snapshot the host's MSR_IA32_ARCH_CAPABILITIES, if it's supported, instead
of reading the MSR every time KVM wants to query the host state, e.g. when
initializing the default value during vCPU creation. The paths that query
ARCH_CAPABILITIES aren't particularly performance sensitive, but creating
vCPUs is a frequent enough operation that burning 8 bytes is a good
trade-off.
Alternatively, KVM could add a field in kvm_caps and thus skip the
on-demand calculations entirely, but a pure snapshot isn't possible due to
the way KVM handles the l1tf_vmx_mitigation module param. And unlike the
other "supported" fields in kvm_caps, KVM doesn't enforce the "supported"
value, i.e. KVM treats ARCH_CAPABILITIES like a CPUID leaf and lets
userspace advertise whatever it wants. Those problems are solvable, but
it's not clear there is real benefit versus snapshotting the host value,
and grabbing the host value will allow additional cleanup of KVM's
FB_CLEAR_CTRL code.
Link: https://lore.kernel.org/all/20230524061634.54141-2-chao.gao@intel.com
Cc: Chao Gao <chao.gao@intel.com>
Cc: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20230607004311.1420507-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Make kvm_mtrr_valid() local to mtrr.c now that it's not used to check the
validity of a PAT MSR value.
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230511233351.635053-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
KVM selftests, and an AMX/XCR0 bugfix, for 6.4:
- Don't advertise XTILE_CFG in KVM_GET_SUPPORTED_CPUID if XTILE_DATA is
not being reported due to userspace not opting in via prctl()
- Overhaul the AMX selftests to improve coverage and cleanup the test
- Misc cleanups
|
|
KVM x86 PMU changes for 6.4:
- Disallow virtualizing legacy LBRs if architectural LBRs are available,
the two are mutually exclusive in hardware
- Disallow writes to immutable feature MSRs (notably PERF_CAPABILITIES)
after KVM_RUN, and overhaul the vmx_pmu_caps selftest to better
validate PERF_CAPABILITIES
- Apply PMU filters to emulated events and add test coverage to the
pmu_event_filter selftest
- Misc cleanups and fixes
|
|
Filter out XTILE_CFG from the supported XCR0 reported to userspace if the
current process doesn't have access to XTILE_DATA. Attempting to set
XTILE_CFG in XCR0 will #GP if XTILE_DATA is also not set, and so keeping
XTILE_CFG as supported results in explosions if userspace feeds
KVM_GET_SUPPORTED_CPUID back into KVM and the guest doesn't sanity check
CPUID.
Fixes: 445ecdf79be0 ("kvm: x86: Exclude unpermitted xfeatures at KVM_GET_SUPPORTED_CPUID")
Reported-by: Aaron Lewis <aaronlewis@google.com>
Reviewed-by: Aaron Lewis <aaronlewis@google.com>
Tested-by: Aaron Lewis <aaronlewis@google.com>
Link: https://lore.kernel.org/r/20230405004520.421768-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Add a helper, kvm_get_filtered_xcr0(), to dedup code that needs to account
for XCR0 features that require explicit opt-in on a per-process basis. In
addition to documenting when KVM should/shouldn't consult
xstate_get_guest_group_perm(), the helper will also allow sanitizing the
filtered XCR0 to avoid enumerating architecturally illegal XCR0 values,
e.g. XTILE_CFG without XTILE_DATA.
No functional changes intended.
Signed-off-by: Aaron Lewis <aaronlewis@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
[sean: rename helper, move to x86.h, massage changelog]
Reviewed-by: Aaron Lewis <aaronlewis@google.com>
Tested-by: Aaron Lewis <aaronlewis@google.com>
Link: https://lore.kernel.org/r/20230405004520.421768-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Add macros to track the range of VMX feature MSRs that are emulated by
KVM to reduce the maintenance cost of extending the set of emulated MSRs.
Note, KVM doesn't necessarily emulate all known/consumed VMX MSRs, e.g.
PROCBASED_CTLS3 is consumed by KVM to enable IPI virtualization, but is
not emulated as KVM doesn't emulate/virtualize IPI virtualization for
nested guests.
No functional change intended.
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20230311004618.920745-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Add a helper to query if a vCPU has run so that KVM doesn't have to open
code the check on last_vmentry_cpu being set to a magic value.
No functional change intended.
Suggested-by: Xiaoyao Li <xiaoyao.li@intel.com>
Cc: Like Xu <like.xu.linux@gmail.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20230311004618.920745-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Change return type of is_long_mode() to bool to avoid implicit cast,
as literally every user of is_long_mode() treats its return value as a
boolean.
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Link: https://lore.kernel.org/r/20230322045824.22970-5-binbin.wu@linux.intel.com
Reviewed-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Convert is_{pae,pse,paging}() to use kvm_is_cr{0,4}_bit_set() and return
bools. Returning an "int" requires not one, but two implicit casts, first
from "unsigned long" to "int", and then again to a "bool". Both casts are
more than a bit dangerous; the ulong=>int casts would drop a bit on 64-bit
kernels _if_ the bits in question weren't in the lower 32 bits, and the
int=>bool cast can result in false negatives/positives, e.g. see commit
0c928ff26bd6 ("KVM: SVM: Fix benign "bool vs. int" comparison in
svm_set_cr0()").
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Link: https://lore.kernel.org/r/20230322045824.22970-3-binbin.wu@linux.intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Add helpers to check if a specific CR0/CR4 bit is set to avoid a plethora
of implicit casts from the "unsigned long" return of kvm_read_cr*_bits(),
and to make each caller's intent more obvious.
Defer converting helpers that do truly ugly casts from "unsigned long" to
"int", e.g. is_pse(), to a future commit so that their conversion is more
isolated.
Opportunistically drop the superfluous pcid_enabled from kvm_set_cr3();
the local variable is used only once, immediately after its declaration.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Link: https://lore.kernel.org/r/20230322045824.22970-2-binbin.wu@linux.intel.com
[sean: move "obvious" conversions to this commit, massage changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
KVM VMX changes for 6.3:
- Handle NMI VM-Exits before leaving the noinstr region
- A few trivial cleanups in the VM-Enter flows
- Stop enabling VMFUNC for L1 purely to document that KVM doesn't support
EPTP switching (or any other VM function) for L1
- Fix a crash when using eVMCS's enlighted MSR bitmaps
|
|
Add helpers to print unimplemented MSR accesses and condition all such
prints on report_ignored_msrs, i.e. honor userspace's request to not
print unimplemented MSRs. Even though vcpu_unimpl() is ratelimited,
printing can still be problematic, e.g. if a print gets stalled when host
userspace is writing MSRs during live migration, an effective stall can
result in very noticeable disruption in the guest.
E.g. the profile below was taken while calling KVM_SET_MSRS on the PMU
counters while the PMU was disabled in KVM.
- 99.75% 0.00% [.] __ioctl
- __ioctl
- 99.74% entry_SYSCALL_64_after_hwframe
do_syscall_64
sys_ioctl
- do_vfs_ioctl
- 92.48% kvm_vcpu_ioctl
- kvm_arch_vcpu_ioctl
- 85.12% kvm_set_msr_ignored_check
svm_set_msr
kvm_set_msr_common
printk
vprintk_func
vprintk_default
vprintk_emit
console_unlock
call_console_drivers
univ8250_console_write
serial8250_console_write
uart_console_write
Reported-by: Aaron Lewis <aaronlewis@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20230124234905.3774678-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Move VMX's handling of NMI VM-Exits into vmx_vcpu_enter_exit() so that
the NMI is handled prior to leaving the safety of noinstr. Handling the
NMI after leaving noinstr exposes the kernel to potential ordering
problems as an instrumentation-induced fault, e.g. #DB, #BP, #PF, etc.
will unblock NMIs when IRETing back to the faulting instruction.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20221213060912.654668-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Track KVM's supported PERF_CAPABILITIES in kvm_caps instead of computing
the supported capabilities on the fly every time. Using kvm_caps will
also allow for future cleanups as the kvm_caps values can be used
directly in common x86 code.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Acked-by: Like Xu <likexu@tencent.com>
Message-Id: <20221006000314.73240-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Rename and invert kvm_vcpu_latch_init() to kvm_apic_init_sipi_allowed()
so as to match the behavior of {interrupt,nmi,smi}_allowed(), and expose
the helper so that it can be used by kvm_vcpu_has_events() to determine
whether or not an INIT or SIPI is pending _and_ can be taken immediately.
Opportunistically replaced usage of the "latch" terminology with "blocked"
and/or "allowed", again to align with KVM's terminology used for all other
event types.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220921003201.1441511-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Treat pending TRIPLE_FAULTS as pending exceptions. A triple fault is an
exception for all intents and purposes, it's just not tracked as such
because there's no vector associated the exception. E.g. if userspace
were to set vcpu->request_interrupt_window while running L2 and L2 hit a
triple fault, a triple fault nested VM-Exit should be synthesized to L1
before exiting to userspace with KVM_EXIT_IRQ_WINDOW_OPEN.
Link: https://lore.kernel.org/all/YoVHAIGcFgJit1qp@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20220830231614.3580124-23-seanjc@google.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Morph pending exceptions to pending VM-Exits (due to interception) when
the exception is queued instead of waiting until nested events are
checked at VM-Entry. This fixes a longstanding bug where KVM fails to
handle an exception that occurs during delivery of a previous exception,
KVM (L0) and L1 both want to intercept the exception (e.g. #PF for shadow
paging), and KVM determines that the exception is in the guest's domain,
i.e. queues the new exception for L2. Deferring the interception check
causes KVM to esclate various combinations of injected+pending exceptions
to double fault (#DF) without consulting L1's interception desires, and
ends up injecting a spurious #DF into L2.
KVM has fudged around the issue for #PF by special casing emulated #PF
injection for shadow paging, but the underlying issue is not unique to
shadow paging in L0, e.g. if KVM is intercepting #PF because the guest
has a smaller maxphyaddr and L1 (but not L0) is using shadow paging.
Other exceptions are affected as well, e.g. if KVM is intercepting #GP
for one of SVM's workaround or for the VMware backdoor emulation stuff.
The other cases have gone unnoticed because the #DF is spurious if and
only if L1 resolves the exception, e.g. KVM's goofs go unnoticed if L1
would have injected #DF anyways.
The hack-a-fix has also led to ugly code, e.g. bailing from the emulator
if #PF injection forced a nested VM-Exit and the emulator finds itself
back in L1. Allowing for direct-to-VM-Exit queueing also neatly solves
the async #PF in L2 mess; no need to set a magic flag and token, simply
queue a #PF nested VM-Exit.
Deal with event migration by flagging that a pending exception was queued
by userspace and check for interception at the next KVM_RUN, e.g. so that
KVM does the right thing regardless of the order in which userspace
restores nested state vs. event state.
When "getting" events from userspace, simply drop any pending excpetion
that is destined to be intercepted if there is also an injected exception
to be migrated. Ideally, KVM would migrate both events, but that would
require new ABI, and practically speaking losing the event is unlikely to
be noticed, let alone fatal. The injected exception is captured, RIP
still points at the original faulting instruction, etc... So either the
injection on the target will trigger the same intercepted exception, or
the source of the intercepted exception was transient and/or
non-deterministic, thus dropping it is ok-ish.
Fixes: a04aead144fd ("KVM: nSVM: fix running nested guests when npt=0")
Fixes: feaf0c7dc473 ("KVM: nVMX: Do not generate #DF if #PF happens during exception delivery into L2")
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20220830231614.3580124-22-seanjc@google.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move the definition of "struct kvm_queued_exception" out of kvm_vcpu_arch
in anticipation of adding a second instance in kvm_vcpu_arch to handle
exceptions that occur when vectoring an injected exception and are
morphed to VM-Exit instead of leading to #DF.
Opportunistically take advantage of the churn to rename "nr" to "vector".
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20220830231614.3580124-15-seanjc@google.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Split the common x86 parts of kvm_is_valid_cr4(), i.e. the reserved bits
checks, into a separate helper, __kvm_is_valid_cr4(), and export only the
inner helper to vendor code in order to prevent nested VMX from calling
back into vmx_is_valid_cr4() via kvm_is_valid_cr4().
On SVM, this is a nop as SVM doesn't place any additional restrictions on
CR4.
On VMX, this is also currently a nop, but only because nested VMX is
missing checks on reserved CR4 bits for nested VM-Enter. That bug will
be fixed in a future patch, and could simply use kvm_is_valid_cr4() as-is,
but nVMX has _another_ bug where VMXON emulation doesn't enforce VMX's
restrictions on CR0/CR4. The cleanest and most intuitive way to fix the
VMXON bug is to use nested_host_cr{0,4}_valid(). If the CR4 variant
routes through kvm_is_valid_cr4(), using nested_host_cr4_valid() won't do
the right thing for the VMXON case as vmx_is_valid_cr4() enforces VMX's
restrictions if and only if the vCPU is post-VMXON.
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220607213604.3346000-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
There are cases that malicious virtual machines can cause CPU stuck (due
to event windows don't open up), e.g., infinite loop in microcode when
nested #AC (CVE-2015-5307). No event window means no event (NMI, SMI and
IRQ) can be delivered. It leads the CPU to be unavailable to host or
other VMs.
VMM can enable notify VM exit that a VM exit generated if no event
window occurs in VM non-root mode for a specified amount of time (notify
window).
Feature enabling:
- The new vmcs field SECONDARY_EXEC_NOTIFY_VM_EXITING is introduced to
enable this feature. VMM can set NOTIFY_WINDOW vmcs field to adjust
the expected notify window.
- Add a new KVM capability KVM_CAP_X86_NOTIFY_VMEXIT so that user space
can query and enable this feature in per-VM scope. The argument is a
64bit value: bits 63:32 are used for notify window, and bits 31:0 are
for flags. Current supported flags:
- KVM_X86_NOTIFY_VMEXIT_ENABLED: enable the feature with the notify
window provided.
- KVM_X86_NOTIFY_VMEXIT_USER: exit to userspace once the exits happen.
- It's safe to even set notify window to zero since an internal hardware
threshold is added to vmcs.notify_window.
VM exit handling:
- Introduce a vcpu state notify_window_exits to records the count of
notify VM exits and expose it through the debugfs.
- Notify VM exit can happen incident to delivery of a vector event.
Allow it in KVM.
- Exit to userspace unconditionally for handling when VM_CONTEXT_INVALID
bit is set.
Nested handling
- Nested notify VM exits are not supported yet. Keep the same notify
window control in vmcs02 as vmcs01, so that L1 can't escape the
restriction of notify VM exits through launching L2 VM.
Notify VM exit is defined in latest Intel Architecture Instruction Set
Extensions Programming Reference, chapter 9.2.
Co-developed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Tao Xu <tao3.xu@intel.com>
Co-developed-by: Chenyi Qiang <chenyi.qiang@intel.com>
Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com>
Message-Id: <20220524135624.22988-5-chenyi.qiang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add kvm_caps to hold a variety of capabilites and defaults that aren't
handled by kvm_cpu_caps because they aren't CPUID bits in order to reduce
the amount of boilerplate code required to add a new feature. The vast
majority (all?) of the caps interact with vendor code and are written
only during initialization, i.e. should be tagged __read_mostly, declared
extern in x86.h, and exported.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220524135624.22988-4-chenyi.qiang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Pull kvm updates from Paolo Bonzini:
"ARM:
- Proper emulation of the OSLock feature of the debug architecture
- Scalibility improvements for the MMU lock when dirty logging is on
- New VMID allocator, which will eventually help with SVA in VMs
- Better support for PMUs in heterogenous systems
- PSCI 1.1 support, enabling support for SYSTEM_RESET2
- Implement CONFIG_DEBUG_LIST at EL2
- Make CONFIG_ARM64_ERRATUM_2077057 default y
- Reduce the overhead of VM exit when no interrupt is pending
- Remove traces of 32bit ARM host support from the documentation
- Updated vgic selftests
- Various cleanups, doc updates and spelling fixes
RISC-V:
- Prevent KVM_COMPAT from being selected
- Optimize __kvm_riscv_switch_to() implementation
- RISC-V SBI v0.3 support
s390:
- memop selftest
- fix SCK locking
- adapter interruptions virtualization for secure guests
- add Claudio Imbrenda as maintainer
- first step to do proper storage key checking
x86:
- Continue switching kvm_x86_ops to static_call(); introduce
static_call_cond() and __static_call_ret0 when applicable.
- Cleanup unused arguments in several functions
- Synthesize AMD 0x80000021 leaf
- Fixes and optimization for Hyper-V sparse-bank hypercalls
- Implement Hyper-V's enlightened MSR bitmap for nested SVM
- Remove MMU auditing
- Eager splitting of page tables (new aka "TDP" MMU only) when dirty
page tracking is enabled
- Cleanup the implementation of the guest PGD cache
- Preparation for the implementation of Intel IPI virtualization
- Fix some segment descriptor checks in the emulator
- Allow AMD AVIC support on systems with physical APIC ID above 255
- Better API to disable virtualization quirks
- Fixes and optimizations for the zapping of page tables:
- Zap roots in two passes, avoiding RCU read-side critical
sections that last too long for very large guests backed by 4
KiB SPTEs.
- Zap invalid and defunct roots asynchronously via
concurrency-managed work queue.
- Allowing yielding when zapping TDP MMU roots in response to the
root's last reference being put.
- Batch more TLB flushes with an RCU trick. Whoever frees the
paging structure now holds RCU as a proxy for all vCPUs running
in the guest, i.e. to prolongs the grace period on their behalf.
It then kicks the the vCPUs out of guest mode before doing
rcu_read_unlock().
Generic:
- Introduce __vcalloc and use it for very large allocations that need
memcg accounting"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (246 commits)
KVM: use kvcalloc for array allocations
KVM: x86: Introduce KVM_CAP_DISABLE_QUIRKS2
kvm: x86: Require const tsc for RT
KVM: x86: synthesize CPUID leaf 0x80000021h if useful
KVM: x86: add support for CPUID leaf 0x80000021
KVM: x86: do not use KVM_X86_OP_OPTIONAL_RET0 for get_mt_mask
Revert "KVM: x86/mmu: Zap only TDP MMU leafs in kvm_zap_gfn_range()"
kvm: x86/mmu: Flush TLB before zap_gfn_range releases RCU
KVM: arm64: fix typos in comments
KVM: arm64: Generalise VM features into a set of flags
KVM: s390: selftests: Add error memop tests
KVM: s390: selftests: Add more copy memop tests
KVM: s390: selftests: Add named stages for memop test
KVM: s390: selftests: Add macro as abstraction for MEM_OP
KVM: s390: selftests: Split memop tests
KVM: s390x: fix SCK locking
RISC-V: KVM: Implement SBI HSM suspend call
RISC-V: KVM: Add common kvm_riscv_vcpu_wfi() function
RISC-V: Add SBI HSM suspend related defines
RISC-V: KVM: Implement SBI v0.3 SRST extension
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 perf event updates from Ingo Molnar:
- Fix address filtering for Intel/PT,ARM/CoreSight
- Enable Intel/PEBS format 5
- Allow more fixed-function counters for x86
- Intel/PT: Enable not recording Taken-Not-Taken packets
- Add a few branch-types
* tag 'perf-core-2022-03-21' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/intel/uncore: Fix the build on !CONFIG_PHYS_ADDR_T_64BIT
perf: Add irq and exception return branch types
perf/x86/intel/uncore: Make uncore_discovery clean for 64 bit addresses
perf/x86/intel/pt: Add a capability and config bit for disabling TNTs
perf/x86/intel/pt: Add a capability and config bit for event tracing
perf/x86/intel: Increase max number of the fixed counters
KVM: x86: use the KVM side max supported fixed counter
perf/x86/intel: Enable PEBS format 5
perf/core: Allow kernel address filter when not filtering the kernel
perf/x86/intel/pt: Fix address filter config for 32-bit kernel
perf/core: Fix address filter parser for multiple filters
x86: Share definition of __is_canonical_address()
perf/x86/intel/pt: Relax address filter validation
|
|
When using KVM_DIRTY_LOG_INITIALLY_SET, huge pages are not
write-protected when dirty logging is enabled on the memslot. Instead
they are write-protected once userspace invokes KVM_CLEAR_DIRTY_LOG for
the first time and only for the specific sub-region being cleared.
Enhance KVM_CLEAR_DIRTY_LOG to also try to split huge pages prior to
write-protecting to avoid causing write-protection faults on vCPU
threads. This also allows userspace to smear the cost of huge page
splitting across multiple ioctls, rather than splitting the entire
memslot as is the case when initially-all-set is not used.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-17-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 fixes for 5.17, take #2
- A couple of fixes when handling an exception while a SError has been
delivered
- Workaround for Cortex-A510's single-step[ erratum
|