Age | Commit message (Collapse) | Author |
|
Switch all queries (except XSAVES) of guest features from guest CPUID to
guest capabilities, i.e. replace all calls to guest_cpuid_has() with calls
to guest_cpu_cap_has().
Keep guest_cpuid_has() around for XSAVES, but subsume its helper
guest_cpuid_get_register() and add a compile-time assertion to prevent
using guest_cpuid_has() for any other feature. Add yet another comment
for XSAVE to explain why KVM is allowed to query its raw guest CPUID.
Opportunistically drop the unused guest_cpuid_clear(), as there should be
no circumstance in which KVM needs to _clear_ a guest CPUID feature now
that everything is tracked via cpu_caps. E.g. KVM may need to _change_
a feature to emulate dynamic CPUID flags, but KVM should never need to
clear a feature in guest CPUID to prevent it from being used by the guest.
Delete the last remnants of the governed features framework, as the lone
holdout was vmx_adjust_secondary_exec_control()'s divergent behavior for
governed vs. ungoverned features.
Note, replacing guest_cpuid_has() checks with guest_cpu_cap_has() when
computing reserved CR4 bits is a nop when viewed as a whole, as KVM's
capabilities are already incorporated into the calculation, i.e. if a
feature is present in guest CPUID but unsupported by KVM, its CR4 bit
was already being marked as reserved, checking guest_cpu_cap_has() simply
double-stamps that it's a reserved bit.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20241128013424.4096668-51-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Move the implementations of guest_has_{spec_ctrl,pred_cmd}_msr() down
below guest_cpu_cap_has() so that their use of guest_cpuid_has() can be
replaced with calls to guest_cpu_cap_has().
No functional change intended.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20241128013424.4096668-50-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
When updating guest CPUID entries to emulate runtime behavior, e.g. when
the guest enables a CR4-based feature that is tied to a CPUID flag, also
update the vCPU's cpu_caps accordingly. This will allow replacing all
usage of guest_cpuid_has() with guest_cpu_cap_has().
Note, this relies on kvm_set_cpuid() taking a snapshot of cpu_caps before
invoking kvm_update_cpuid_runtime(), i.e. when KVM is updating CPUID
entries that *may* become the vCPU's CPUID, so that unwinding to the old
cpu_caps is possible if userspace tries to set bogus CPUID information.
Note #2, none of the features in question use guest_cpu_cap_has() at this
time, i.e. aside from settings bits in cpu_caps, this is a glorified nop.
Cc: Yang Weijiang <weijiang.yang@intel.com>
Cc: Robert Hoo <robert.hoo.linux@gmail.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20241128013424.4096668-49-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
When making runtime CPUID updates, change OSXSAVE and OSPKE even if their
respective base features (XSAVE, PKU) are not supported by the host. KVM
already incorporates host support in the vCPU's effective reserved CR4 bits.
I.e. OSXSAVE and OSPKE can be set if and only if the host supports them.
And conversely, since KVM's ABI is that KVM owns the dynamic OS feature
flags, clearing them when they obviously aren't supported and thus can't
be enabled is arguably a fix.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20241128013424.4096668-48-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Drop an unnecessary check that kvm_find_cpuid_entry_index(), i.e.
cpuid_entry2_find(), returns the correct leaf when getting CPUID.0x7.0x0
to update X86_FEATURE_OSPKE. cpuid_entry2_find() never returns an entry
for the wrong function. And not that it matters, but cpuid_entry2_find()
will always return a precise match for CPUID.0x7.0x0 since the index is
significant.
No functional change intended.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20241128013424.4096668-47-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Move the handling of X86_FEATURE_MWAIT during CPUID runtime updates to
utilize the lookup done for other CPUID.0x1 features.
No functional change intended.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20241128013424.4096668-46-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Constrain all guest cpu_caps based on KVM support instead of constraining
only the few features that KVM _currently_ needs to verify are actually
supported by KVM. The intent of cpu_caps is to track what the guest is
actually capable of using, not the raw, unfiltered CPUID values that the
guest sees.
I.e. KVM should always consult it's only support when making decisions
based on guest CPUID, and the only reason KVM has historically made the
checks opt-in was due to lack of centralized tracking.
Suggested-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20241128013424.4096668-45-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Enumerate MWAIT in cpuid_func_emulated(), but only if the caller wants to
include "partially emulated" features, i.e. features that KVM kinda sorta
emulates, but with major caveats. This will allow initializing the guest
cpu_caps based on the set of features that KVM virtualizes and/or emulates,
without needing to handle things like MONITOR/MWAIT as one-off exceptions.
Adding one-off handling for individual features is quite painful,
especially when considering future hardening. It's very doable to verify,
at compile time, that every CPUID-based feature that KVM queries when
emulating guest behavior is actually known to KVM, e.g. to prevent KVM
bugs where KVM emulates some feature but fails to advertise support to
userspace. In other words, any features that are special cased, i.e. not
handled generically in the CPUID framework, would also need to be special
cased for any hardening efforts that build on said framework.
Link: https://lore.kernel.org/r/20241128013424.4096668-44-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Extract the meat of __do_cpuid_func_emulated() into a separate helper,
cpuid_func_emulated(), so that cpuid_func_emulated() can be used with a
single CPUID entry. This will allow marking emulated features as fully
supported in the guest cpu_caps without needing to hardcode the set of
emulated features in multiple locations.
No functional change intended.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20241128013424.4096668-43-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Initialize a vCPU's capabilities based on the guest CPUID provided by
userspace instead of simply zeroing the entire array. This is the first
step toward using cpu_caps to query *all* CPUID-based guest capabilities,
i.e. will allow converting all usage of guest_cpuid_has() to
guest_cpu_cap_has().
Zeroing the array was the logical choice when using cpu_caps was opt-in,
e.g. "unsupported" was generally a safer default, and the whole point of
governed features is that KVM would need to check host and guest support,
i.e. making everything unsupported by default didn't require more code.
But requiring KVM to manually "enable" every CPUID-based feature in
cpu_caps would require an absurd amount of boilerplate code.
Follow existing CPUID/kvm_cpu_caps nomenclature where possible, e.g. for
the change() and clear() APIs. Replace check_and_set() with constrain()
to try and capture that KVM is constraining userspace's desired guest
feature set based on KVM's capabilities.
This is intended to be gigantic nop, i.e. should not have any impact on
guest or KVM functionality.
This is also an intermediate step; a future commit will also incorporate
KVM support into the vCPU's cpu_caps before converting guest_cpuid_has()
to guest_cpu_cap_has().
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20241128013424.4096668-42-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Replace the internals of the governed features framework with a more
comprehensive "guest CPU capabilities" implementation, i.e. with a guest
version of kvm_cpu_caps. Keep the skeleton of governed features around
for now as vmx_adjust_sec_exec_control() relies on detecting governed
features to do the right thing for XSAVES, and switching all guest feature
queries to guest_cpu_cap_has() requires subtle and non-trivial changes,
i.e. is best done as a standalone change.
Tracking *all* guest capabilities that KVM cares will allow excising the
poorly named "governed features" framework, and effectively optimizes all
KVM queries of guest capabilities, i.e. doesn't require making a
subjective decision as to whether or not a feature is worth "governing",
and doesn't require adding the code to do so.
The cost of tracking all features is currently 92 bytes per vCPU on 64-bit
kernels: 100 bytes for cpu_caps versus 8 bytes for governed_features.
That cost is well worth paying even if the only benefit was eliminating
the "governed features" terminology. And practically speaking, the real
cost is zero unless those 92 bytes pushes the size of vcpu_vmx or vcpu_svm
into a new order-N allocation, and if that happens there are better ways
to reduce the footprint of kvm_vcpu_arch, e.g. making the PMU and/or MTRR
state separate allocations.
Suggested-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20241128013424.4096668-41-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
As the first step toward replacing KVM's so-called "governed features"
framework with a more comprehensive, less poorly named implementation,
replace the "kvm_governed_feature" function prefix with "guest_cpu_cap"
and rename guest_can_use() to guest_cpu_cap_has().
The "guest_cpu_cap" naming scheme mirrors that of "kvm_cpu_cap", and
provides a more clear distinction between guest capabilities, which are
KVM controlled (heh, or one might say "governed"), and guest CPUID, which
with few exceptions is fully userspace controlled.
Opportunistically rewrite the comment about XSS passthrough for SEV-ES
guests to avoid referencing so many functions, as such comments are prone
to becoming stale (case in point...).
No functional change intended.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Link: https://lore.kernel.org/r/20241128013424.4096668-40-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Unconditionally advertise "support" for the HYPERVISOR feature in CPUID,
as the flag simply communicates to the guest that's it's running under a
hypervisor.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20241128013424.4096668-39-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Unconditionally advertise TSC_DEADLINE_TIMER via KVM_GET_SUPPORTED_CPUID,
as KVM always emulates deadline mode, *if* the VM has an in-kernel local
APIC. The odds of a VMM emulating the local APIC in userspace, not
emulating the TSC deadline timer, _and_ reflecting
KVM_GET_SUPPORTED_CPUID back into KVM_SET_CPUID2, i.e. the risk of
over-advertising and breaking any setups, is extremely low.
KVM has _unconditionally_ advertised X2APIC via CPUID since commit
0d1de2d901f4 ("KVM: Always report x2apic as supported feature"), and it
is completely impossible for userspace to emulate X2APIC as KVM doesn't
support forwarding the MSR accesses to userspace. I.e. KVM has relied on
userspace VMMs to not misreport local APIC capabilities for nearly 13
years.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20241128013424.4096668-38-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Convert all use of cpuid_entry2_find() to kvm_find_cpuid_entry{,index}()
now that cpuid_entry2_find() operates on the vCPU state, i.e. now that
there is no need to use cpuid_entry2_find() directly in order to pass in
non-vCPU state.
To help prevent unwanted usage of cpuid_entry2_find(), #undef
KVM_CPUID_INDEX_NOT_SIGNIFICANT, i.e. force KVM to use
kvm_find_cpuid_entry().
No functional change intended.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20241128013424.4096668-37-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Move kvm_find_cpuid_entry{,_index}() "up" in cpuid.c so that they are
colocated with cpuid_entry2_find(), e.g. to make it easier to see the
effective guts of the helpers without having to bounce around cpuid.c.
No functional change intended.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20241128013424.4096668-36-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Now that KVM sets vcpu->arch.cpuid_{entries,nent} before processing the
incoming CPUID entries during KVM_SET_CPUID{,2}, drop the @entries and
@nent params from cpuid_entry2_find() and unconditionally operate on the
vCPU state.
No functional change intended.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20241128013424.4096668-35-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Now that KVM only searches for KVM's PV CPUID base when userspace sets
guest CPUID, drop the cache and simply do the search every time.
Practically speaking, this is a nop except for situations where userspace
sets CPUID _after_ running the vCPU, which is anything but a hot path,
e.g. QEMU does so only when hotplugging a vCPU. And on the flip side,
caching guest CPUID information, especially information that is used to
query/modify _other_ CPUID state, is inherently dangerous as it's all too
easy to use stale information, i.e. KVM should only cache CPUID state when
the performance and/or programming benefits justify it.
Link: https://lore.kernel.org/r/20241128013424.4096668-34-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Now that KVM disallows disabling HLT-exiting after vCPUs have been created,
i.e. now that it's impossible for kvm_hlt_in_guest() to change while vCPUs
are running, apply KVM's PV_UNHALT quirk only when userspace is setting
guest CPUID.
Opportunistically rename the helper to make it clear that KVM's behavior
is a quirk that should never have been added. KVM's documentation
explicitly states that userspace should not advertise PV_UNHALT if
HLT-exiting is disabled, but for unknown reasons, commit caa057a2cad6
("KVM: X86: Provide a capability to disable HLT intercepts") didn't stop
at documenting the requirement and also massaged the incoming guest CPUID.
Unfortunately, it's quite likely that userspace has come to rely on KVM's
behavior, i.e. the code can't simply be deleted. The only reason KVM
doesn't have an "official" quirk is that there is no known use case where
disabling the quirk would make sense, i.e. letting userspace disable the
quirk would further increase KVM's burden without any benefit.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20241128013424.4096668-33-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
When handling KVM_SET_CPUID{,2}, swap the old and new CPUID arrays and
lengths before processing the new CPUID, and simply undo the swap if
setting the new CPUID fails for whatever reason.
To keep the diff reasonable, continue passing the entry array and length
to most helpers, and defer the more complete cleanup to future commits.
For any sane VMM, setting "bad" CPUID state is not a hot path (or even
something that is surviable), and setting guest CPUID before it's known
good will allow removing all of KVM's infrastructure for processing CPUID
entries directly (as opposed to operating on vcpu->arch.cpuid_entries).
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20241128013424.4096668-32-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Now that kvm_cpu_cap_init() is a macro with its own scope, add EMUL_F() to
OR-in features that KVM emulates in software, i.e. that don't depend on
the feature being available in hardware. The contained scope
of kvm_cpu_cap_init() allows using a local variable to track the set of
emulated leaves, which in addition to avoiding confusing and/or
unnecessary variables, helps prevent misuse of EMUL_F().
Link: https://lore.kernel.org/r/20241128013424.4096668-31-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Add a macro for use in kvm_set_cpu_caps() to automagically initialize
features that KVM wants to support based solely on the CPU's capabilities,
e.g. KVM advertises LA57 support if it's available in hardware, even if
the host kernel isn't utilizing 57-bit virtual addresses.
Track a features that are passed through to userspace (from hardware) in
a local variable, and simply OR them in *after* adjusting the capabilities
that came from boot_cpu_data.
Note, eliminating the open-coded call to cpuid_ecx() also fixes a largely
benign bug where KVM could incorrectly report LA57 support on Intel CPUs
whose max supported CPUID is less than 7, i.e. if the max supported leaf
(<7) happened to have bit 16 set. In practice, barring a funky virtual
machine setup, the bug is benign as all known CPUs that support VMX also
support leaf 7.
Link: https://lore.kernel.org/r/20241128013424.4096668-30-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Add compile-time assertions to verify that usage of F() and friends in
kvm_set_cpu_caps() is scoped to the correct CPUID word, e.g. to detect
bugs where KVM passes a feature bit from word X into word y.
Add a one-off assertion in the aliased feature macro to ensure that only
word 0x8000_0001.EDX aliased the features defined for 0x1.EDX.
To do so, convert kvm_cpu_cap_init() to a macro and have it define a
local variable to track which CPUID word is being initialized that is
then used to validate usage of F() (all of the inputs are compile-time
constants and thus can be fed into BUILD_BUG_ON()).
Redefine KVM_VALIDATE_CPU_CAP_USAGE after kvm_set_cpu_caps() to be a nop
so that F() can be used in other flows that aren't as easily hardened,
e.g. __do_cpuid_func_emulated() and __do_cpuid_func().
Invoke KVM_VALIDATE_CPU_CAP_USAGE() in SF() and X86_64_F() to ensure the
validation occurs, e.g. if the usage of F() is completely compiled out
(which shouldn't happen for boot_cpu_has(), but could happen in the future,
e.g. if KVM were to use cpu_feature_enabled()).
Link: https://lore.kernel.org/r/20241128013424.4096668-29-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Undefine SPEC_CTRL_SSBD, which is #defined by msr-index.h to represent the
enable flag in MSR_IA32_SPEC_CTRL, to avoid issues with the macro being
unpacked into its raw value when passed to KVM's F() macro. This will
allow using multiple layers of macros in F() and friends, e.g. to harden
against incorrect usage of F().
No functional change intended (cpuid.c doesn't consume SPEC_CTRL_SSBD).
Link: https://lore.kernel.org/r/20241128013424.4096668-28-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Merge kvm_cpu_cap_init() and kvm_cpu_cap_init_kvm_defined() into a single
helper. The only advantage of separating the two was to make it somewhat
obvious that KVM directly initializes the KVM-defined words, whereas using
a common helper will allow for hardening both kernel- and KVM-defined
CPUID words without needing copy+paste.
No functional change intended.
Link: https://lore.kernel.org/r/20241128013424.4096668-27-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Add a macro to precisely handle CPUID features that AMD duplicated from
CPUID.0x1.EDX into CPUID.0x8000_0001.EDX. This will allow adding an
assert that all features passed to kvm_cpu_cap_init() match the word being
processed, e.g. to prevent passing a feature from CPUID 0x7 to CPUID 0x1.
Because the kernel simply reuses the X86_FEATURE_* definitions from
CPUID.0x1.EDX, KVM's use of the aliased features would result in false
positives from such an assert.
No functional change intended.
Link: https://lore.kernel.org/r/20241128013424.4096668-26-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Add a macro to mask-in feature flags that are supported only on 64-bit
kernels/KVM. In addition to reducing overall #ifdeffery, using a macro
will allow hardening the kvm_cpu_cap initialization sequences to assert
that the features being advertised are indeed included in the word being
initialized. And arguably using *F() macros through is more readable.
No functional change intended.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20241128013424.4096668-25-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Rename kvm_cpu_cap_mask() to kvm_cpu_cap_init() in anticipation of merging
it with kvm_cpu_cap_init_kvm_defined(), and in anticipation of _setting_
bits in the helper (a future commit will play macro games to set emulated
feature flags via kvm_cpu_cap_init()).
No functional change intended.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20241128013424.4096668-24-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Refactor kvm_set_cpu_caps() to express each supported (or not) feature
flag on a separate line, modulo a handful of cases where KVM does not, and
likely will not, support a sequence of flags. This will allow adding
fancier macros with longer, more descriptive names without resulting in
absurd line lengths and/or weird code. Isolating each flag also makes it
far easier to review changes, reduces code conflicts, and generally makes
it easier to resolve conflicts. Lastly, it allows co-locating comments
for notable flags, e.g. MONITOR, precisely with the relevant flag.
No functional change intended.
Suggested-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20241128013424.4096668-23-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Explicitly zero out the feature word in kvm_cpu_caps if the word's
associated CPUID function is greater than the max leaf supported by the
CPU. For such unsupported functions, Intel CPUs return the output from
the last supported leaf, not all zeros.
Practically speaking, this is likely a benign bug, as KVM uses the raw
host CPUID to mask the kernel's computed capabilities, and the kernel does
perform max leaf checks when populating boot_cpu_data. The only way KVM's
goof could be problematic is if the kernel force-set a feature in a leaf
that is completely unsupported, _and_ the max supported leaf happened to
return a value with '1' the same bit position. Which is theoretically
possible, but extremely unlikely. And even if that did happen, it's
entirely possible that KVM would still provide the correct functionality;
the kernel did set the capability after all.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20241128013424.4096668-22-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Do the compile-time sanity checks on reverse_cpuid in __feature_leaf() so
that higher level APIs don't need to "manually" perform the sanity checks.
No functional change intended.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20241128013424.4096668-21-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Revert the chunk of commit 01b4f510b9f4 ("kvm: x86: ensure pv_cpuid.features
is initialized when enabling cap") that forced a PV features cache refresh
during KVM_CAP_ENFORCE_PV_FEATURE_CPUID, as whatever ioctl() ordering
issue it alleged to have fixed never existed upstream, and likely never
existed in any kernel.
At the time of the commit, there was a tangentially related ioctl()
ordering issue, as toggling KVM_X86_DISABLE_EXITS_HLT after KVM_SET_CPUID2
would have resulted in KVM potentially leaving KVM_FEATURE_PV_UNHALT set.
But (a) that bug affected the entire guest CPUID, not just the cache, (b)
commit 01b4f510b9f4 didn't address that bug, it only refreshed the cache
(with the bad CPUID), and (c) setting KVM_X86_DISABLE_EXITS_HLT after vCPU
creation is completely broken as KVM configures HLT-exiting only during
vCPU creation, which is why KVM_CAP_X86_DISABLE_EXITS is now disallowed if
vCPUs have been created.
Another tangentially related bug was KVM's failure to clear the cache when
handling KVM_SET_CPUID2, but again commit 01b4f510b9f4 did nothing to fix
that bug.
The most plausible explanation for the what commit 01b4f510b9f4 was trying
to fix is a bug that existed in Google's internal kernel that was the
source of commit 01b4f510b9f4. At the time, Google's internal kernel had
not yet picked up commit 0d3b2ba16ba68 ("KVM: X86: Go on updating other
CPUID leaves when leaf 1 is absent"), i.e. KVM would not initialize the
PV features cache if KVM_SET_CPUID2 was called without a CPUID.0x1 entry.
Of course, no sane real world VMM would omit CPUID.0x1, including the KVM
selftest added by commit ac4a4d6de22e ("selftests: kvm: test enforcement
of paravirtual cpuid features"). And the test didn't actually try to
verify multiple orderings, nor did the selftest enter the guest without
doing KVM_SET_CPUID2, so who knows what motivated the change.
Regardless of why commit 01b4f510b9f4 ("kvm: x86: ensure pv_cpuid.features
is initialized when enabling cap") was added, refreshing the cache during
KVM_CAP_ENFORCE_PV_FEATURE_CPUID isn't necessary.
Cc: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20241128013424.4096668-20-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Clear KVM's PV feature cache prior when processing a new guest CPUID so
that KVM doesn't keep a stale cache entry if userspace does KVM_SET_CPUID2
multiple times, once with a PV features entry, and a second time without.
Fixes: 66570e966dd9 ("kvm: x86: only provide PV features if enabled in guest's CPUID")
Cc: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20241128013424.4096668-19-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Reject KVM_CAP_X86_DISABLE_EXITS if userspace attempts to disable MWAIT or
HLT exits and KVM previously reported (via KVM_CHECK_EXTENSION) that
disabling the exit(s) is not allowed. E.g. because MWAIT isn't supported
or the CPU doesn't have an always-running APIC timer, or because KVM is
configured to mitigate cross-thread vulnerabilities.
Cc: Kechen Lu <kechenl@nvidia.com>
Fixes: 4d5422cea3b6 ("KVM: X86: Provide a capability to disable MWAIT intercepts")
Fixes: 6f0f2d5ef895 ("KVM: x86: Mitigate the cross-thread return address predictions bug")
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20241128013424.4096668-15-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Reject KVM_CAP_X86_DISABLE_EXITS if vCPUs have been created, as disabling
PAUSE/MWAIT/HLT exits after vCPUs have been created is broken and useless,
e.g. except for PAUSE on SVM, the relevant intercepts aren't updated after
vCPU creation. vCPUs may also end up with an inconsistent configuration
if exits are disabled between creation of multiple vCPUs.
Cc: Hou Wenlong <houwenlong.hwl@antgroup.com>
Link: https://lore.kernel.org/all/9227068821b275ac547eb2ede09ec65d2281fe07.1680179693.git.houwenlong.hwl@antgroup.com
Link: https://lore.kernel.org/all/20230121020738.2973-2-kechenl@nvidia.com
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Link: https://lore.kernel.org/r/20241128013424.4096668-14-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Drop the manual initialization of maxphyaddr and reserved_gpa_bits during
vCPU creation now that kvm_arch_vcpu_create() unconditionally invokes
kvm_vcpu_after_set_cpuid(), which handles all such CPUID caching.
None of the helpers between the existing code in kvm_arch_vcpu_create()
and the call to kvm_vcpu_after_set_cpuid() consume maxphyaddr or
reserved_gpa_bits (though auditing vmx_vcpu_create() and svm_vcpu_create()
isn't exactly easy).
Link: https://lore.kernel.org/r/20241128013424.4096668-13-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Drop the manual kvm_pmu_refresh() from kvm_pmu_init() now that
kvm_arch_vcpu_create() performs the refresh via kvm_vcpu_after_set_cpuid().
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20241128013424.4096668-12-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Let vendor code inline __kvm_is_valid_cr4() now x86.c's cr4_reserved_bits
no longer exists, as keeping cr4_reserved_bits local to x86.c was the only
reason for "hiding" the definition of __kvm_is_valid_cr4().
No functional change intended.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20241128013424.4096668-11-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Drop x86.c's local pre-computed cr4_reserved bits and instead fold KVM's
reserved bits into the guest's reserved bits. This fixes a bug where VMX's
set_cr4_guest_host_mask() fails to account for KVM-reserved bits when
deciding which bits can be passed through to the guest. In most cases,
letting the guest directly write reserved CR4 bits is ok, i.e. attempting
to set the bit(s) will still #GP, but not if a feature is available in
hardware but explicitly disabled by the host, e.g. if FSGSBASE support is
disabled via "nofsgsbase".
Note, the extra overhead of computing host reserved bits every time
userspace sets guest CPUID is negligible. The feature bits that are
queried are packed nicely into a handful of words, and so checking and
setting each reserved bit costs in the neighborhood of ~5 cycles, i.e. the
total cost will be in the noise even if the number of checked CR4 bits
doubles over the next few years. In other words, x86 will run out of CR4
bits long before the overhead becomes problematic.
Note #2, __cr4_reserved_bits() starts from CR4_RESERVED_BITS, which is
why the existing __kvm_cpu_cap_has() processing doesn't explicitly OR in
CR4_RESERVED_BITS (and why the new code doesn't do so either).
Fixes: 2ed41aa631fc ("KVM: VMX: Intercept guest reserved CR4 bits to inject #GP fault")
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20241128013424.4096668-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Explicitly perform runtime CPUID adjustments as part of the "after set
CPUID" flow to guard against bugs where KVM consumes stale vCPU/CPUID
state during kvm_update_cpuid_runtime(). E.g. see commit 4736d85f0d18
("KVM: x86: Use actual kvm_cpuid.base for clearing KVM_FEATURE_PV_UNHALT").
Whacking each mole individually is not sustainable or robust, e.g. while
the aforemention commit fixed KVM's PV features, the same issue lurks for
Xen and Hyper-V features, Xen and Hyper-V simply don't have any runtime
features (though spoiler alert, neither should KVM).
Updating runtime features in the "full" path will also simplify adding a
snapshot of the guest's capabilities, i.e. of caching the intersection of
guest CPUID and kvm_cpu_caps (modulo a few edge cases).
Link: https://lore.kernel.org/r/20241128013424.4096668-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
During vCPU creation, process KVM's default, empty CPUID as if userspace
set an empty CPUID to ensure consistent and correct behavior with respect
to guest CPUID. E.g. if userspace never sets guest CPUID, KVM will never
configure cr4_guest_rsvd_bits, and thus create divergent, incorrect, guest-
visible behavior due to letting the guest set any KVM-supported CR4 bits
despite the features not being allowed per guest CPUID.
Note! This changes KVM's ABI, as lack of full CPUID processing allowed
userspace to stuff garbage vCPU state, e.g. userspace could set CR4 to a
guest-unsupported value via KVM_SET_SREGS. But it's extremely unlikely
that this is a breaking change, as KVM already has many flows that require
userspace to set guest CPUID before loading vCPU state. E.g. multiple MSR
flows consult guest CPUID on host writes, and KVM_SET_SREGS itself already
relies on guest CPUID being up-to-date, as KVM's validity check on CR3
consumes CPUID.0x7.1 (for LAM) and CPUID.0x80000008 (for MAXPHYADDR).
Furthermore, the plan is to commit to enforcing guest CPUID for userspace
writes to MSRs, at which point bypassing sregs CPUID checks is even more
nonsensical.
Link: https://lore.kernel.org/r/20241128013424.4096668-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Define and undefine the F() and SF() macros precisely around
kvm_set_cpu_caps() to make it all but impossible to use the macros outside
of kvm_cpu_cap_{mask,init_kvm_defined}(). Currently, F() is a simple
passthrough, but SF() is actively dangerous as it checks that the scattered
feature is supported by the host kernel.
And usage outside of the aforementioned helpers will run afoul of future
changes to harden KVM's CPUID management.
Opportunistically switch to feature_bit() when stuffing LA57 based on raw
hardware support.
No functional change intended.
Link: https://lore.kernel.org/r/20241128013424.4096668-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
When clearing CONSTANT_TSC during CPUID emulation due to a Hyper-V quirk,
use feature_bit() instead of SF() to ensure the bit is actually cleared.
SF() evaluates to zero if the _host_ doesn't support the feature. I.e.
KVM could keep the bit set if userspace advertised CONSTANT_TSC despite
it not being supported in hardware.
Note, translating from a scattered feature to a the hardware version is
done by __feature_translate(), not SF(). The sole purpose of SF() is to
check kernel support for the scattered feature, *before* translation.
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20241128013424.4096668-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Drop SVM's direct TLB flush when CR4.PGE is toggled and NPT is enabled, as
KVM already guarantees TLBs are flushed appropriately.
For the call from cr_trap(), kvm_post_set_cr4() requests TLB_FLUSH_GUEST
(which is a superset of TLB_FLUSH_CURRENT) when CR4.PGE is toggled,
regardless of whether or not KVM is using TDP.
The calls from nested_vmcb02_prepare_save() and nested_svm_vmexit() are
checking guest (L2) vs. host (L1) CR4, and so a flush is unnecessary as L2
is defined to use a different ASID (from L1's perspective).
Lastly, the call from svm_set_cr0() passes in the current CR4 value, i.e.
can't toggle PGE.
Link: https://lore.kernel.org/r/20241127235312.4048445-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Define sev_{,es_,snp_}guest() as "false" when SEV is disabled via Kconfig,
i.e. when CONFIG_KVM_AMD_SEV=n. Despite the helpers being __always_inline,
gcc-12 is somehow incapable of realizing that the return value is a
compile-time constant and generates sub-optimal code.
Opportunistically clump the paths together to reduce the amount of
ifdeffery.
No functional change intended.
Link: https://lore.kernel.org/r/20241127234659.4046347-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
On a first glance it isn't obvious why calling kvm_tdp_page_fault() in
kvm_mmu_do_page_fault() is special cased, as the general case of using
an indirect case would result in calling of kvm_tdp_page_fault()
anyway.
Add a comment to explain the reason.
Signed-off-by: Juergen Gross <jgross@suse.com>
Link: https://lore.kernel.org/r/20241108161416.28552-1-jgross@suse.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Pass the target vCPU to the hwapic_isr_update() vendor hook so that VMX
can defer the update until after nested VM-Exit if an EOI for L1's vAPIC
occurs while L2 is active.
Note, commit d39850f57d21 ("KVM: x86: Drop @vcpu parameter from
kvm_x86_ops.hwapic_isr_update()") removed the parameter with the
justification that doing so "allows for a decent amount of (future)
cleanup in the APIC code", but it's not at all clear what cleanup was
intended, or if it was ever realized.
No functional change intended.
Cc: stable@vger.kernel.org
Reviewed-by: Chao Gao <chao.gao@intel.com>
Tested-by: Chao Gao <chao.gao@intel.com>
Link: https://lore.kernel.org/r/20241128000010.4051275-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Snapshot the output of CPUID.0xD.[1..n] during kvm.ko initiliaization to
avoid the overead of CPUID during runtime. The offset, size, and metadata
for CPUID.0xD.[1..n] sub-leaves does not depend on XCR0 or XSS values, i.e.
is constant for a given CPU, and thus can be cached during module load.
On Intel's Emerald Rapids, CPUID is *wildly* expensive, to the point where
recomputing XSAVE offsets and sizes results in a 4x increase in latency of
nested VM-Enter and VM-Exit (nested transitions can trigger
xstate_required_size() multiple times per transition), relative to using
cached values. The issue is easily visible by running `perf top` while
triggering nested transitions: kvm_update_cpuid_runtime() shows up at a
whopping 50%.
As measured via RDTSC from L2 (using KVM-Unit-Test's CPUID VM-Exit test
and a slightly modified L1 KVM to handle CPUID in the fastpath), a nested
roundtrip to emulate CPUID on Skylake (SKX), Icelake (ICX), and Emerald
Rapids (EMR) takes:
SKX 11650
ICX 22350
EMR 28850
Using cached values, the latency drops to:
SKX 6850
ICX 9000
EMR 7900
The underlying issue is that CPUID itself is slow on ICX, and comically
slow on EMR. The problem is exacerbated on CPUs which support XSAVES
and/or XSAVEC, as KVM invokes xstate_required_size() twice on each
runtime CPUID update, and because there are more supported XSAVE features
(CPUID for supported XSAVE feature sub-leafs is significantly slower).
SKX:
CPUID.0xD.2 = 348 cycles
CPUID.0xD.3 = 400 cycles
CPUID.0xD.4 = 276 cycles
CPUID.0xD.5 = 236 cycles
<other sub-leaves are similar>
EMR:
CPUID.0xD.2 = 1138 cycles
CPUID.0xD.3 = 1362 cycles
CPUID.0xD.4 = 1068 cycles
CPUID.0xD.5 = 910 cycles
CPUID.0xD.6 = 914 cycles
CPUID.0xD.7 = 1350 cycles
CPUID.0xD.8 = 734 cycles
CPUID.0xD.9 = 766 cycles
CPUID.0xD.10 = 732 cycles
CPUID.0xD.11 = 718 cycles
CPUID.0xD.12 = 734 cycles
CPUID.0xD.13 = 1700 cycles
CPUID.0xD.14 = 1126 cycles
CPUID.0xD.15 = 898 cycles
CPUID.0xD.16 = 716 cycles
CPUID.0xD.17 = 748 cycles
CPUID.0xD.18 = 776 cycles
Note, updating runtime CPUID information multiple times per nested
transition is itself a flaw, especially since CPUID is a mandotory
intercept on both Intel and AMD. E.g. KVM doesn't need to ensure emulated
CPUID state is up-to-date while running L2. That flaw will be fixed in a
future patch, as deferring runtime CPUID updates is more subtle than it
appears at first glance, the benefits aren't super critical to have once
the XSAVE issue is resolved, and caching CPUID output is desirable even if
KVM's updates are deferred.
Cc: Jim Mattson <jmattson@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20241211013302.1347853-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Avoid unreachable() as it can (and will in the absence of UBSAN)
generate fallthrough code. Use BUG() so we get a UD2 trap (with
unreachable annotation).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lore.kernel.org/r/20241128094312.028316261@infradead.org
|
|
Pull kvm updates from Paolo Bonzini:
"The biggest change here is eliminating the awful idea that KVM had of
essentially guessing which pfns are refcounted pages.
The reason to do so was that KVM needs to map both non-refcounted
pages (for example BARs of VFIO devices) and VM_PFNMAP/VM_MIXMEDMAP
VMAs that contain refcounted pages.
However, the result was security issues in the past, and more recently
the inability to map VM_IO and VM_PFNMAP memory that _is_ backed by
struct page but is not refcounted. In particular this broke virtio-gpu
blob resources (which directly map host graphics buffers into the
guest as "vram" for the virtio-gpu device) with the amdgpu driver,
because amdgpu allocates non-compound higher order pages and the tail
pages could not be mapped into KVM.
This requires adjusting all uses of struct page in the
per-architecture code, to always work on the pfn whenever possible.
The large series that did this, from David Stevens and Sean
Christopherson, also cleaned up substantially the set of functions
that provided arch code with the pfn for a host virtual addresses.
The previous maze of twisty little passages, all different, is
replaced by five functions (__gfn_to_page, __kvm_faultin_pfn, the
non-__ versions of these two, and kvm_prefetch_pages) saving almost
200 lines of code.
ARM:
- Support for stage-1 permission indirection (FEAT_S1PIE) and
permission overlays (FEAT_S1POE), including nested virt + the
emulated page table walker
- Introduce PSCI SYSTEM_OFF2 support to KVM + client driver. This
call was introduced in PSCIv1.3 as a mechanism to request
hibernation, similar to the S4 state in ACPI
- Explicitly trap + hide FEAT_MPAM (QoS controls) from KVM guests. As
part of it, introduce trivial initialization of the host's MPAM
context so KVM can use the corresponding traps
- PMU support under nested virtualization, honoring the guest
hypervisor's trap configuration and event filtering when running a
nested guest
- Fixes to vgic ITS serialization where stale device/interrupt table
entries are not zeroed when the mapping is invalidated by the VM
- Avoid emulated MMIO completion if userspace has requested
synchronous external abort injection
- Various fixes and cleanups affecting pKVM, vCPU initialization, and
selftests
LoongArch:
- Add iocsr and mmio bus simulation in kernel.
- Add in-kernel interrupt controller emulation.
- Add support for virtualization extensions to the eiointc irqchip.
PPC:
- Drop lingering and utterly obsolete references to PPC970 KVM, which
was removed 10 years ago.
- Fix incorrect documentation references to non-existing ioctls
RISC-V:
- Accelerate KVM RISC-V when running as a guest
- Perf support to collect KVM guest statistics from host side
s390:
- New selftests: more ucontrol selftests and CPU model sanity checks
- Support for the gen17 CPU model
- List registers supported by KVM_GET/SET_ONE_REG in the
documentation
x86:
- Cleanup KVM's handling of Accessed and Dirty bits to dedup code,
improve documentation, harden against unexpected changes.
Even if the hardware A/D tracking is disabled, it is possible to
use the hardware-defined A/D bits to track if a PFN is Accessed
and/or Dirty, and that removes a lot of special cases.
- Elide TLB flushes when aging secondary PTEs, as has been done in
x86's primary MMU for over 10 years.
- Recover huge pages in-place in the TDP MMU when dirty page logging
is toggled off, instead of zapping them and waiting until the page
is re-accessed to create a huge mapping. This reduces vCPU jitter.
- Batch TLB flushes when dirty page logging is toggled off. This
reduces the time it takes to disable dirty logging by ~3x.
- Remove the shrinker that was (poorly) attempting to reclaim shadow
page tables in low-memory situations.
- Clean up and optimize KVM's handling of writes to
MSR_IA32_APICBASE.
- Advertise CPUIDs for new instructions in Clearwater Forest
- Quirk KVM's misguided behavior of initialized certain feature MSRs
to their maximum supported feature set, which can result in KVM
creating invalid vCPU state. E.g. initializing PERF_CAPABILITIES to
a non-zero value results in the vCPU having invalid state if
userspace hides PDCM from the guest, which in turn can lead to
save/restore failures.
- Fix KVM's handling of non-canonical checks for vCPUs that support
LA57 to better follow the "architecture", in quotes because the
actual behavior is poorly documented. E.g. most MSR writes and
descriptor table loads ignore CR4.LA57 and operate purely on
whether the CPU supports LA57.
- Bypass the register cache when querying CPL from kvm_sched_out(),
as filling the cache from IRQ context is generally unsafe; harden
the cache accessors to try to prevent similar issues from occuring
in the future. The issue that triggered this change was already
fixed in 6.12, but was still kinda latent.
- Advertise AMD_IBPB_RET to userspace, and fix a related bug where
KVM over-advertises SPEC_CTRL when trying to support cross-vendor
VMs.
- Minor cleanups
- Switch hugepage recovery thread to use vhost_task.
These kthreads can consume significant amounts of CPU time on
behalf of a VM or in response to how the VM behaves (for example
how it accesses its memory); therefore KVM tried to place the
thread in the VM's cgroups and charge the CPU time consumed by that
work to the VM's container.
However the kthreads did not process SIGSTOP/SIGCONT, and therefore
cgroups which had KVM instances inside could not complete freezing.
Fix this by replacing the kthread with a PF_USER_WORKER thread, via
the vhost_task abstraction. Another 100+ lines removed, with
generally better behavior too like having these threads properly
parented in the process tree.
- Revert a workaround for an old CPU erratum (Nehalem/Westmere) that
didn't really work; there was really nothing to work around anyway:
the broken patch was meant to fix nested virtualization, but the
PERF_GLOBAL_CTRL MSR is virtualized and therefore unaffected by the
erratum.
- Fix 6.12 regression where CONFIG_KVM will be built as a module even
if asked to be builtin, as long as neither KVM_INTEL nor KVM_AMD is
'y'.
x86 selftests:
- x86 selftests can now use AVX.
Documentation:
- Use rST internal links
- Reorganize the introduction to the API document
Generic:
- Protect vcpu->pid accesses outside of vcpu->mutex with a rwlock
instead of RCU, so that running a vCPU on a different task doesn't
encounter long due to having to wait for all CPUs become quiescent.
In general both reads and writes are rare, but userspace that
supports confidential computing is introducing the use of "helper"
vCPUs that may jump from one host processor to another. Those will
be very happy to trigger a synchronize_rcu(), and the effect on
performance is quite the disaster"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (298 commits)
KVM: x86: Break CONFIG_KVM_X86's direct dependency on KVM_INTEL || KVM_AMD
KVM: x86: add back X86_LOCAL_APIC dependency
Revert "KVM: VMX: Move LOAD_IA32_PERF_GLOBAL_CTRL errata handling out of setup_vmcs_config()"
KVM: x86: switch hugepage recovery thread to vhost_task
KVM: x86: expose MSR_PLATFORM_INFO as a feature MSR
x86: KVM: Advertise CPUIDs for new instructions in Clearwater Forest
Documentation: KVM: fix malformed table
irqchip/loongson-eiointc: Add virt extension support
LoongArch: KVM: Add irqfd support
LoongArch: KVM: Add PCHPIC user mode read and write functions
LoongArch: KVM: Add PCHPIC read and write functions
LoongArch: KVM: Add PCHPIC device support
LoongArch: KVM: Add EIOINTC user mode read and write functions
LoongArch: KVM: Add EIOINTC read and write functions
LoongArch: KVM: Add EIOINTC device support
LoongArch: KVM: Add IPI user mode read and write function
LoongArch: KVM: Add IPI read and write function
LoongArch: KVM: Add IPI device support
LoongArch: KVM: Add iocsr and mmio bus simulation in kernel
KVM: arm64: Pass on SVE mapping failures
...
|