Age | Commit message (Collapse) | Author |
|
Encode the type into the bottom four bits of page->private and the info
into the remaining bits. Also turn the bootmem type into a named enum.
[arnd@arndb.de: bootmem: add bootmem_type stub function]
Link: https://lkml.kernel.org/r/20241015143802.577613-1-arnd@kernel.org
[akpm@linux-foundation.org: fix build with !CONFIG_HAVE_BOOTMEM_INFO_NODE]
Link: https://lore.kernel.org/oe-kbuild-all/202410090311.eaqcL7IZ-lkp@intel.com/
Link: https://lkml.kernel.org/r/20241005200121.3231142-6-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: kernel test robot <lkp@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
For clarity. It's increasingly hard to reason about the code, when KASLR
is moving around the boundaries. In this case where KASLR is randomizing
the location of the kernel image within physical memory, the maximum
number of address bits for physical memory has not changed.
What has changed is the ending address of memory that is allowed to be
directly mapped by the kernel.
Let's name the variable, and the associated macro accordingly.
Also, enhance the comment above the direct_map_physmem_end definition,
to further clarify how this all works.
Link: https://lkml.kernel.org/r/20241009025024.89813-1-jhubbard@nvidia.com
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Pankaj Gupta <pankaj.gupta@amd.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Will Deacon <will@kernel.org>
Reviewed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Jordan Niethe <jniethe@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
iounmap() on x86 occasionally fails to unmap because the provided valid
ioremap address is not below high_memory. It turned out that this
happens due to KASLR.
KASLR uses the full address space between PAGE_OFFSET and vaddr_end to
randomize the starting points of the direct map, vmalloc and vmemmap
regions. It thereby limits the size of the direct map by using the
installed memory size plus an extra configurable margin for hot-plug
memory. This limitation is done to gain more randomization space
because otherwise only the holes between the direct map, vmalloc,
vmemmap and vaddr_end would be usable for randomizing.
The limited direct map size is not exposed to the rest of the kernel, so
the memory hot-plug and resource management related code paths still
operate under the assumption that the available address space can be
determined with MAX_PHYSMEM_BITS.
request_free_mem_region() allocates from (1 << MAX_PHYSMEM_BITS) - 1
downwards. That means the first allocation happens past the end of the
direct map and if unlucky this address is in the vmalloc space, which
causes high_memory to become greater than VMALLOC_START and consequently
causes iounmap() to fail for valid ioremap addresses.
MAX_PHYSMEM_BITS cannot be changed for that because the randomization
does not align with address bit boundaries and there are other places
which actually require to know the maximum number of address bits. All
remaining usage sites of MAX_PHYSMEM_BITS have been analyzed and found
to be correct.
Cure this by exposing the end of the direct map via PHYSMEM_END and use
that for the memory hot-plug and resource management related places
instead of relying on MAX_PHYSMEM_BITS. In the KASLR case PHYSMEM_END
maps to a variable which is initialized by the KASLR initialization and
otherwise it is based on MAX_PHYSMEM_BITS as before.
To prevent future hickups add a check into add_pages() to catch callers
trying to add memory above PHYSMEM_END.
Fixes: 0483e1fa6e09 ("x86/mm: Implement ASLR for kernel memory regions")
Reported-by: Max Ramanouski <max8rr8@gmail.com>
Reported-by: Alistair Popple <apopple@nvidia.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-By: Max Ramanouski <max8rr8@gmail.com>
Tested-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Kees Cook <kees@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/87ed6soy3z.ffs@tglx
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- In the series "mm: Avoid possible overflows in dirty throttling" Jan
Kara addresses a couple of issues in the writeback throttling code.
These fixes are also targetted at -stable kernels.
- Ryusuke Konishi's series "nilfs2: fix potential issues related to
reserved inodes" does that. This should actually be in the
mm-nonmm-stable tree, along with the many other nilfs2 patches. My
bad.
- More folio conversions from Kefeng Wang in the series "mm: convert to
folio_alloc_mpol()"
- Kemeng Shi has sent some cleanups to the writeback code in the series
"Add helper functions to remove repeated code and improve readability
of cgroup writeback"
- Kairui Song has made the swap code a little smaller and a little
faster in the series "mm/swap: clean up and optimize swap cache
index".
- In the series "mm/memory: cleanly support zeropage in
vm_insert_page*(), vm_map_pages*() and vmf_insert_mixed()" David
Hildenbrand has reworked the rather sketchy handling of the use of
the zeropage in MAP_SHARED mappings. I don't see any runtime effects
here - more a cleanup/understandability/maintainablity thing.
- Dev Jain has improved selftests/mm/va_high_addr_switch.c's handling
of higher addresses, for aarch64. The (poorly named) series is
"Restructure va_high_addr_switch".
- The core TLB handling code gets some cleanups and possible slight
optimizations in Bang Li's series "Add update_mmu_tlb_range() to
simplify code".
- Jane Chu has improved the handling of our
fake-an-unrecoverable-memory-error testing feature MADV_HWPOISON in
the series "Enhance soft hwpoison handling and injection".
- Jeff Johnson has sent a billion patches everywhere to add
MODULE_DESCRIPTION() to everything. Some landed in this pull.
- In the series "mm: cleanup MIGRATE_SYNC_NO_COPY mode", Kefeng Wang
has simplified migration's use of hardware-offload memory copying.
- Yosry Ahmed performs more folio API conversions in his series "mm:
zswap: trivial folio conversions".
- In the series "large folios swap-in: handle refault cases first",
Chuanhua Han inches us forward in the handling of large pages in the
swap code. This is a cleanup and optimization, working toward the end
objective of full support of large folio swapin/out.
- In the series "mm,swap: cleanup VMA based swap readahead window
calculation", Huang Ying has contributed some cleanups and a possible
fixlet to his VMA based swap readahead code.
- In the series "add mTHP support for anonymous shmem" Baolin Wang has
taught anonymous shmem mappings to use multisize THP. By default this
is a no-op - users must opt in vis sysfs controls. Dramatic
improvements in pagefault latency are realized.
- David Hildenbrand has some cleanups to our remaining use of
page_mapcount() in the series "fs/proc: move page_mapcount() to
fs/proc/internal.h".
- David also has some highmem accounting cleanups in the series
"mm/highmem: don't track highmem pages manually".
- Build-time fixes and cleanups from John Hubbard in the series
"cleanups, fixes, and progress towards avoiding "make headers"".
- Cleanups and consolidation of the core pagemap handling from Barry
Song in the series "mm: introduce pmd|pte_needs_soft_dirty_wp helpers
and utilize them".
- Lance Yang's series "Reclaim lazyfree THP without splitting" has
reduced the latency of the reclaim of pmd-mapped THPs under fairly
common circumstances. A 10x speedup is seen in a microbenchmark.
It does this by punting to aother CPU but I guess that's a win unless
all CPUs are pegged.
- hugetlb_cgroup cleanups from Xiu Jianfeng in the series
"mm/hugetlb_cgroup: rework on cftypes".
- Miaohe Lin's series "Some cleanups for memory-failure" does just that
thing.
- Someone other than SeongJae has developed a DAMON feature in Honggyu
Kim's series "DAMON based tiered memory management for CXL memory".
This adds DAMON features which may be used to help determine the
efficiency of our placement of CXL/PCIe attached DRAM.
- DAMON user API centralization and simplificatio work in SeongJae
Park's series "mm/damon: introduce DAMON parameters online commit
function".
- In the series "mm: page_type, zsmalloc and page_mapcount_reset()"
David Hildenbrand does some maintenance work on zsmalloc - partially
modernizing its use of pageframe fields.
- Kefeng Wang provides more folio conversions in the series "mm: remove
page_maybe_dma_pinned() and page_mkclean()".
- More cleanup from David Hildenbrand, this time in the series
"mm/memory_hotplug: use PageOffline() instead of PageReserved() for
!ZONE_DEVICE". It "enlightens memory hotplug more about PageOffline()
pages" and permits the removal of some virtio-mem hacks.
- Barry Song's series "mm: clarify folio_add_new_anon_rmap() and
__folio_add_anon_rmap()" is a cleanup to the anon folio handling in
preparation for mTHP (multisize THP) swapin.
- Kefeng Wang's series "mm: improve clear and copy user folio"
implements more folio conversions, this time in the area of large
folio userspace copying.
- The series "Docs/mm/damon/maintaier-profile: document a mailing tool
and community meetup series" tells people how to get better involved
with other DAMON developers. From SeongJae Park.
- A large series ("kmsan: Enable on s390") from Ilya Leoshkevich does
that.
- David Hildenbrand sends along more cleanups, this time against the
migration code. The series is "mm/migrate: move NUMA hinting fault
folio isolation + checks under PTL".
- Jan Kara has found quite a lot of strangenesses and minor errors in
the readahead code. He addresses this in the series "mm: Fix various
readahead quirks".
- SeongJae Park's series "selftests/damon: test DAMOS tried regions and
{min,max}_nr_regions" adds features and addresses errors in DAMON's
self testing code.
- Gavin Shan has found a userspace-triggerable WARN in the pagecache
code. The series "mm/filemap: Limit page cache size to that supported
by xarray" addresses this. The series is marked cc:stable.
- Chengming Zhou's series "mm/ksm: cmp_and_merge_page() optimizations
and cleanup" cleans up and slightly optimizes KSM.
- Roman Gushchin has separated the memcg-v1 and memcg-v2 code - lots of
code motion. The series (which also makes the memcg-v1 code
Kconfigurable) are "mm: memcg: separate legacy cgroup v1 code and put
under config option" and "mm: memcg: put cgroup v1-specific memcg
data under CONFIG_MEMCG_V1"
- Dan Schatzberg's series "Add swappiness argument to memory.reclaim"
adds an additional feature to this cgroup-v2 control file.
- The series "Userspace controls soft-offline pages" from Jiaqi Yan
permits userspace to stop the kernel's automatic treatment of
excessive correctable memory errors. In order to permit userspace to
monitor and handle this situation.
- Kefeng Wang's series "mm: migrate: support poison recover from
migrate folio" teaches the kernel to appropriately handle migration
from poisoned source folios rather than simply panicing.
- SeongJae Park's series "Docs/damon: minor fixups and improvements"
does those things.
- In the series "mm/zsmalloc: change back to per-size_class lock"
Chengming Zhou improves zsmalloc's scalability and memory
utilization.
- Vivek Kasireddy's series "mm/gup: Introduce memfd_pin_folios() for
pinning memfd folios" makes the GUP code use FOLL_PIN rather than
bare refcount increments. So these paes can first be moved aside if
they reside in the movable zone or a CMA block.
- Andrii Nakryiko has added a binary ioctl()-based API to
/proc/pid/maps for much faster reading of vma information. The series
is "query VMAs from /proc/<pid>/maps".
- In the series "mm: introduce per-order mTHP split counters" Lance
Yang improves the kernel's presentation of developer information
related to multisize THP splitting.
- Michael Ellerman has developed the series "Reimplement huge pages
without hugepd on powerpc (8xx, e500, book3s/64)". This permits
userspace to use all available huge page sizes.
- In the series "revert unconditional slab and page allocator fault
injection calls" Vlastimil Babka removes a performance-affecting and
not very useful feature from slab fault injection.
* tag 'mm-stable-2024-07-21-14-50' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (411 commits)
mm/mglru: fix ineffective protection calculation
mm/zswap: fix a white space issue
mm/hugetlb: fix kernel NULL pointer dereference when migrating hugetlb folio
mm/hugetlb: fix possible recursive locking detected warning
mm/gup: clear the LRU flag of a page before adding to LRU batch
mm/numa_balancing: teach mpol_to_str about the balancing mode
mm: memcg1: convert charge move flags to unsigned long long
alloc_tag: fix page_ext_get/page_ext_put sequence during page splitting
lib: reuse page_ext_data() to obtain codetag_ref
lib: add missing newline character in the warning message
mm/mglru: fix overshooting shrinker memory
mm/mglru: fix div-by-zero in vmpressure_calc_level()
mm/kmemleak: replace strncpy() with strscpy()
mm, page_alloc: put should_fail_alloc_page() back behing CONFIG_FAIL_PAGE_ALLOC
mm, slab: put should_failslab() back behind CONFIG_SHOULD_FAILSLAB
mm: ignore data-race in __swap_writepage
hugetlbfs: ensure generic_hugetlb_get_unmapped_area() returns higher address than mmap_min_addr
mm: shmem: rename mTHP shmem counters
mm: swap_state: use folio_alloc_mpol() in __read_swap_cache_async()
mm/migrate: putback split folios when numa hint migration fails
...
|
|
In free_pagetable() we use the non-atomic version for clearing the
PageReserved bit from the page. free_pagetable() will either call
free_reserved_page() or put_page_bootmem(), which will eventually end up
calling free_reserved_page(), and in there we already clear the
PageReserved flag.
Link: https://lkml.kernel.org/r/20240527044523.29207-1-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
x86_64 is already using the node's cpu as maximum threads. Make that the
default for all archs setting DEFERRED_STRUCT_PAGE_INIT.
This returns to the behavior prior making the function arch-specific with
commit ecd096506922 ("mm: make deferred init's max threads
arch-specific").
Setting DEFERRED_STRUCT_PAGE_INIT and testing on a few arm64 platforms
shows faster deferred_init_memmap completions:
| | x13s | SA8775p-ride | Ampere R137-P31 | Ampere HR330 |
| | Metal, 32GB | VM, 36GB | VM, 58GB | Metal, 128GB |
| | 8cpus | 8cpus | 8cpus | 32cpus |
|---------|-------------|--------------|-----------------|--------------|
| threads | ms (%) | ms (%) | ms (%) | ms (%) |
|---------|-------------|--------------|-----------------|--------------|
| 1 | 108 (0%) | 72 (0%) | 224 (0%) | 324 (0%) |
| cpus | 24 (-77%) | 36 (-50%) | 40 (-82%) | 56 (-82%) |
Michael Ellerman reported:
: On a machine here (1TB, 40 cores, 4KB pages) the existing code gives:
:
: [ 0.500124] node 2 deferred pages initialised in 210ms
: [ 0.515790] node 3 deferred pages initialised in 230ms
: [ 0.516061] node 0 deferred pages initialised in 230ms
: [ 0.516522] node 7 deferred pages initialised in 230ms
: [ 0.516672] node 4 deferred pages initialised in 230ms
: [ 0.516798] node 6 deferred pages initialised in 230ms
: [ 0.517051] node 5 deferred pages initialised in 230ms
: [ 0.523887] node 1 deferred pages initialised in 240ms
:
: vs with the patch:
:
: [ 0.379613] node 0 deferred pages initialised in 90ms
: [ 0.380388] node 1 deferred pages initialised in 90ms
: [ 0.380540] node 4 deferred pages initialised in 100ms
: [ 0.390239] node 6 deferred pages initialised in 100ms
: [ 0.390249] node 2 deferred pages initialised in 100ms
: [ 0.390786] node 3 deferred pages initialised in 110ms
: [ 0.396721] node 5 deferred pages initialised in 110ms
: [ 0.397095] node 7 deferred pages initialised in 110ms
:
: Which is a nice speedup.
[echanude@redhat.com: v3]
Link: https://lkml.kernel.org/r/20240528185455.643227-4-echanude@redhat.com
Link: https://lkml.kernel.org/r/20240522203758.626932-4-echanude@redhat.com
Signed-off-by: Eric Chanudet <echanude@redhat.com>
Tested-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Alexander Gordeev <agordeev@linux.ibm.com>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
kdump
During crashkernel boot only pre-allocated crash memory is presented as
E820_TYPE_RAM.
This can cause page table entries mapping unaccepted memory table to be zapped
during phys_pte_init(), phys_pmd_init(), phys_pud_init() and phys_p4d_init() as
SNP/TDX guest use E820_TYPE_ACPI to store the unaccepted memory table and pass
it between the kernels on kexec/kdump.
E820_TYPE_ACPI covers not only ACPI data, but also EFI tables and might be
required by kernel to function properly.
The problem was discovered during debugging kdump for SNP guest. The unaccepted
memory table stored with E820_TYPE_ACPI and passed between the kernels on kdump
was getting zapped as the PMD entry mapping this is above the E820_TYPE_RAM
range for the reserved crashkernel memory.
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20240614095904.1345461-14-kirill.shutemov@linux.intel.com
|
|
pud_large() is always defined as pud_leaf(). Merge their usages. Chose
pud_leaf() because pud_leaf() is a global API, while pud_large() is not.
Link: https://lkml.kernel.org/r/20240305043750.93762-9-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
pmd_large() is always defined as pmd_leaf(). Merge their usages. Chose
pmd_leaf() because pmd_leaf() is a global API, while pmd_large() is not.
Link: https://lkml.kernel.org/r/20240305043750.93762-8-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
p4d_large() is always defined as p4d_leaf(). Merge their usages. Chose
p4d_leaf() because p4d_leaf() is a global API, while p4d_large() is not.
Only x86 has p4d_leaf() defined as of now. So it also means after this
patch we removed all p4d_large() usages.
Link: https://lkml.kernel.org/r/20240305043750.93762-4-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@kernel.org>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
All architectures using the core ptdump functionality also implement
CONFIG_DEBUG_WX, and they all do it more or less the same way, with a
function called debug_checkwx() that is called by mark_rodata_ro(), which
is a substitute to ptdump_check_wx() when CONFIG_DEBUG_WX is set and a
no-op otherwise.
Refactor by centrally defining debug_checkwx() in linux/ptdump.h and call
debug_checkwx() immediately after calling mark_rodata_ro() instead of
calling it at the end of every mark_rodata_ro().
On x86_32, mark_rodata_ro() first checks __supported_pte_mask has _PAGE_NX
before calling debug_checkwx(). Now the check is inside the callee
ptdump_walk_pgd_level_checkwx().
On powerpc_64, mark_rodata_ro() bails out early before calling
ptdump_check_wx() when the MMU doesn't have KERNEL_RO feature. The check
is now also done in ptdump_check_wx() as it is called outside
mark_rodata_ro().
Link: https://lkml.kernel.org/r/a59b102d7964261d31ead0316a9f18628e4e7a8e.1706610398.git.christophe.leroy@csgroup.eu
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "Aneesh Kumar K.V (IBM)" <aneesh.kumar@kernel.org>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Greg KH <greg@kroah.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Phong Tran <tranmanphong@gmail.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Steven Price <steven.price@arm.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Fix typos, most reported by "codespell arch/x86". Only touches comments,
no code changes.
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Randy Dunlap <rdunlap@infradead.org>
Link: https://lore.kernel.org/r/20240103004011.1758650-1-helgaas@kernel.org
|
|
Generalise vmemmap_populate_hugepages() so ARM64 & X86 & LoongArch can
share its implementation.
Link: https://lkml.kernel.org/r/20221027125253.3458989-4-chenhuacai@loongson.cn
Signed-off-by: Feiyang Chen <chenfeiyang@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: Guo Ren <guoren@kernel.org>
Cc: Jiaxun Yang <jiaxun.yang@flygoat.com>
Cc: Min Zhou <zhoumin@loongson.cn>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Philippe Mathieu-Daudé <philmd@linaro.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Xuefeng Li <lixuefeng@loongson.cn>
Cc: Xuerui Wang <kernel@xen0n.name>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Most architectures (except arm64/x86/sparc) simply return 1 for
kern_addr_valid(), which is only used in read_kcore(), and it calls
copy_from_kernel_nofault() which could check whether the address is a
valid kernel address. So as there is no need for kern_addr_valid(), let's
remove it.
Link: https://lkml.kernel.org/r/20221018074014.185687-1-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k]
Acked-by: Heiko Carstens <hca@linux.ibm.com> [s390]
Acked-by: Christoph Hellwig <hch@lst.de>
Acked-by: Helge Deller <deller@gmx.de> [parisc]
Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Acked-by: Guo Ren <guoren@kernel.org> [csky]
Acked-by: Catalin Marinas <catalin.marinas@arm.com> [arm64]
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anton Ivanov <anton.ivanov@cambridgegreys.com>
Cc: <aou@eecs.berkeley.edu>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Chris Zankel <chris@zankel.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Palmer Dabbelt <palmer@rivosinc.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Richard Henderson <richard.henderson@linaro.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vineet Gupta <vgupta@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Xuerui Wang <kernel@xen0n.name>
Cc: Yoshinori Sato <ysato@users.osdn.me>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Yu Zhao's Multi-Gen LRU patches are here. They've been under test in
linux-next for a couple of months without, to my knowledge, any
negative reports (or any positive ones, come to that).
- Also the Maple Tree from Liam Howlett. An overlapping range-based
tree for vmas. It it apparently slightly more efficient in its own
right, but is mainly targeted at enabling work to reduce mmap_lock
contention.
Liam has identified a number of other tree users in the kernel which
could be beneficially onverted to mapletrees.
Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat
at [1]. This has yet to be addressed due to Liam's unfortunately
timed vacation. He is now back and we'll get this fixed up.
- Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses
clang-generated instrumentation to detect used-unintialized bugs down
to the single bit level.
KMSAN keeps finding bugs. New ones, as well as the legacy ones.
- Yang Shi adds a userspace mechanism (madvise) to induce a collapse of
memory into THPs.
- Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to
support file/shmem-backed pages.
- userfaultfd updates from Axel Rasmussen
- zsmalloc cleanups from Alexey Romanov
- cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and
memory-failure
- Huang Ying adds enhancements to NUMA balancing memory tiering mode's
page promotion, with a new way of detecting hot pages.
- memcg updates from Shakeel Butt: charging optimizations and reduced
memory consumption.
- memcg cleanups from Kairui Song.
- memcg fixes and cleanups from Johannes Weiner.
- Vishal Moola provides more folio conversions
- Zhang Yi removed ll_rw_block() :(
- migration enhancements from Peter Xu
- migration error-path bugfixes from Huang Ying
- Aneesh Kumar added ability for a device driver to alter the memory
tiering promotion paths. For optimizations by PMEM drivers, DRM
drivers, etc.
- vma merging improvements from Jakub Matěn.
- NUMA hinting cleanups from David Hildenbrand.
- xu xin added aditional userspace visibility into KSM merging
activity.
- THP & KSM code consolidation from Qi Zheng.
- more folio work from Matthew Wilcox.
- KASAN updates from Andrey Konovalov.
- DAMON cleanups from Kaixu Xia.
- DAMON work from SeongJae Park: fixes, cleanups.
- hugetlb sysfs cleanups from Muchun Song.
- Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core.
Link: https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com [1]
* tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (555 commits)
hugetlb: allocate vma lock for all sharable vmas
hugetlb: take hugetlb vma_lock when clearing vma_lock->vma pointer
hugetlb: fix vma lock handling during split vma and range unmapping
mglru: mm/vmscan.c: fix imprecise comments
mm/mglru: don't sync disk for each aging cycle
mm: memcontrol: drop dead CONFIG_MEMCG_SWAP config symbol
mm: memcontrol: use do_memsw_account() in a few more places
mm: memcontrol: deprecate swapaccounting=0 mode
mm: memcontrol: don't allocate cgroup swap arrays when memcg is disabled
mm/secretmem: remove reduntant return value
mm/hugetlb: add available_huge_pages() func
mm: remove unused inline functions from include/linux/mm_inline.h
selftests/vm: add selftest for MADV_COLLAPSE of uffd-minor memory
selftests/vm: add file/shmem MADV_COLLAPSE selftest for cleared pmd
selftests/vm: add thp collapse shmem testing
selftests/vm: add thp collapse file and tmpfs testing
selftests/vm: modularize thp collapse memory operations
selftests/vm: dedup THP helpers
mm/khugepaged: add tracepoint to hpage_collapse_scan_file()
mm/madvise: add file and shmem support to MADV_COLLAPSE
...
|
|
KMSAN is going to use 3/4 of existing vmalloc space to hold the metadata,
therefore we lower VMALLOC_END to make sure vmalloc() doesn't allocate
past the first 1/4.
Link: https://lkml.kernel.org/r/20220915150417.722975-10-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Ilya Leoshkevich <iii@linux.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Marco Elver <elver@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
We still have some historic cases of direct fiddling of page
attributes with (dangerous & fragile) type casting and address shifting.
Add the prot_sethuge() helper instead that gets the types right and
doesn't have to transform addresses.
( Also add a debug check to make sure this doesn't get applied
to _PAGE_BIT_PAT/_PAGE_BIT_PAT_LARGE pages. )
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
|
|
Commit c164fbb40c43f("x86/mm: thread pgprot_t through
init_memory_mapping()") mistakenly used __pgprot() which doesn't respect
__default_kernel_pte_mask when setting PUD mapping.
Fix it by only setting the one bit we actually need (PSE) and leaving
the other bits (that have been properly masked) alone.
Fixes: c164fbb40c43 ("x86/mm: thread pgprot_t through init_memory_mapping()")
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 mm cleanup from Thomas Gleixner:
"Use PAGE_ALIGNED() instead of open coding it in the x86/mm code"
* tag 'x86-mm-2022-06-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Use PAGE_ALIGNED(x) instead of IS_ALIGNED(x, PAGE_SIZE)
|
|
The <linux/mm.h> already provides the PAGE_ALIGNED() macro. Let's
use this macro instead of IS_ALIGNED() and passing PAGE_SIZE directly.
No change in functionality.
[ mingo: Tweak changelog. ]
Signed-off-by: Fanjun Kong <bh1scw@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20220526142038.1582839-1-bh1scw@gmail.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Almost all of MM here. A few things are still getting finished off,
reviewed, etc.
- Yang Shi has improved the behaviour of khugepaged collapsing of
readonly file-backed transparent hugepages.
- Johannes Weiner has arranged for zswap memory use to be tracked and
managed on a per-cgroup basis.
- Munchun Song adds a /proc knob ("hugetlb_optimize_vmemmap") for
runtime enablement of the recent huge page vmemmap optimization
feature.
- Baolin Wang contributes a series to fix some issues around hugetlb
pagetable invalidation.
- Zhenwei Pi has fixed some interactions between hwpoisoned pages and
virtualization.
- Tong Tiangen has enabled the use of the presently x86-only
page_table_check debugging feature on arm64 and riscv.
- David Vernet has done some fixup work on the memcg selftests.
- Peter Xu has taught userfaultfd to handle write protection faults
against shmem- and hugetlbfs-backed files.
- More DAMON development from SeongJae Park - adding online tuning of
the feature and support for monitoring of fixed virtual address
ranges. Also easier discovery of which monitoring operations are
available.
- Nadav Amit has done some optimization of TLB flushing during
mprotect().
- Neil Brown continues to labor away at improving our swap-over-NFS
support.
- David Hildenbrand has some fixes to anon page COWing versus
get_user_pages().
- Peng Liu fixed some errors in the core hugetlb code.
- Joao Martins has reduced the amount of memory consumed by
device-dax's compound devmaps.
- Some cleanups of the arch-specific pagemap code from Anshuman
Khandual.
- Muchun Song has found and fixed some errors in the TLB flushing of
transparent hugepages.
- Roman Gushchin has done more work on the memcg selftests.
... and, of course, many smaller fixes and cleanups. Notably, the
customary million cleanup serieses from Miaohe Lin"
* tag 'mm-stable-2022-05-25' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (381 commits)
mm: kfence: use PAGE_ALIGNED helper
selftests: vm: add the "settings" file with timeout variable
selftests: vm: add "test_hmm.sh" to TEST_FILES
selftests: vm: check numa_available() before operating "merge_across_nodes" in ksm_tests
selftests: vm: add migration to the .gitignore
selftests/vm/pkeys: fix typo in comment
ksm: fix typo in comment
selftests: vm: add process_mrelease tests
Revert "mm/vmscan: never demote for memcg reclaim"
mm/kfence: print disabling or re-enabling message
include/trace/events/percpu.h: cleanup for "percpu: improve percpu_alloc_percpu event trace"
include/trace/events/mmflags.h: cleanup for "tracing: incorrect gfp_t conversion"
mm: fix a potential infinite loop in start_isolate_page_range()
MAINTAINERS: add Muchun as co-maintainer for HugeTLB
zram: fix Kconfig dependency warning
mm/shmem: fix shmem folio swapoff hang
cgroup: fix an error handling path in alloc_pagecache_max_30M()
mm: damon: use HPAGE_PMD_SIZE
tracing: incorrect isolate_mote_t cast in mm_vmscan_lru_isolate
nodemask.h: fix compilation error with GCC12
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 CPU feature updates from Borislav Petkov:
- Remove a bunch of chicken bit options to turn off CPU features which
are not really needed anymore
- Misc fixes and cleanups
* tag 'x86_cpu_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/speculation: Add missing prototype for unpriv_ebpf_notify()
x86/pm: Fix false positive kmemleak report in msr_build_context()
x86/speculation/srbds: Do not try to turn mitigation off when not supported
x86/cpu: Remove "noclflush"
x86/cpu: Remove "noexec"
x86/cpu: Remove "nosmep"
x86/cpu: Remove CONFIG_X86_SMAP and "nosmap"
x86/cpu: Remove "nosep"
x86/cpu: Allow feature bit names from /proc/cpuinfo in clearcpuid=
|
|
The unused part precedes the new range spanned by the start, end parameters
of vmemmap_use_new_sub_pmd(). This means it actually goes from
ALIGN_DOWN(start, PMD_SIZE) up to start.
Use the correct address when applying the mark using memset.
Fixes: 8d400913c231 ("x86/vmemmap: handle unpopulated sub-pmd ranges")
Signed-off-by: Adrian-Ken Rueegsegger <ken@codelabs.ch>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20220509090637.24152-2-ken@codelabs.ch
|
|
The word of "free" is not expressive enough to express the feature of
optimizing vmemmap pages associated with each HugeTLB, rename this keywork
to "optimize". In this patch , cheanup configs to make code more
expressive.
Link: https://lkml.kernel.org/r/20220404074652.68024-4-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
It doesn't make any sense to disable non-executable mappings -
security-wise or else.
So rip out that switch and move the remaining code into setup.c and
delete setup_nx.c
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Lai Jiangshan <jiangshanlai@gmail.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20220127115626.14179-6-bp@alien8.de
|
|
page->freelist is for the use of slab. Using page->index is the same
set of bits as page->freelist, and by using an integer instead of a
pointer, we can avoid casts.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: <x86@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Borislav Petkov:
- Prevent a infinite loop in the MCE recovery on return to user space,
which was caused by a second MCE queueing work for the same page and
thereby creating a circular work list.
- Make kern_addr_valid() handle existing PMD entries, which are marked
not present in the higher level page table, correctly instead of
blindly dereferencing them.
- Pass a valid address to sanitize_phys(). This was caused by the
mixture of inclusive and exclusive ranges. memtype_reserve() expect
'end' being exclusive, but sanitize_phys() wants it inclusive. This
worked so far, but with end being the end of the physical address
space the fail is exposed.
- Increase the maximum supported GPIO numbers for 64bit. Newer SoCs
exceed the previous maximum.
* tag 'x86_urgent_for_v5.15_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce: Avoid infinite loop for copy from user recovery
x86/mm: Fix kern_addr_valid() to cope with existing but not present entries
x86/platform: Increase maximum GPIO number for X86_64
x86/pat: Pass valid address to sanitize_phys()
|
|
Jiri Olsa reported a fault when running:
# cat /proc/kallsyms | grep ksys_read
ffffffff8136d580 T ksys_read
# objdump -d --start-address=0xffffffff8136d580 --stop-address=0xffffffff8136d590 /proc/kcore
/proc/kcore: file format elf64-x86-64
Segmentation fault
general protection fault, probably for non-canonical address 0xf887ffcbff000: 0000 [#1] SMP PTI
CPU: 12 PID: 1079 Comm: objdump Not tainted 5.14.0-rc5qemu+ #508
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.14.0-4.fc34 04/01/2014
RIP: 0010:kern_addr_valid
Call Trace:
read_kcore
? rcu_read_lock_sched_held
? rcu_read_lock_sched_held
? rcu_read_lock_sched_held
? trace_hardirqs_on
? rcu_read_lock_sched_held
? lock_acquire
? lock_acquire
? rcu_read_lock_sched_held
? lock_acquire
? rcu_read_lock_sched_held
? rcu_read_lock_sched_held
? rcu_read_lock_sched_held
? lock_release
? _raw_spin_unlock
? __handle_mm_fault
? rcu_read_lock_sched_held
? lock_acquire
? rcu_read_lock_sched_held
? lock_release
proc_reg_read
? vfs_read
vfs_read
ksys_read
do_syscall_64
entry_SYSCALL_64_after_hwframe
The fault happens because kern_addr_valid() dereferences existent but not
present PMD in the high kernel mappings.
Such PMDs are created when free_kernel_image_pages() frees regions larger
than 2Mb. In this case, a part of the freed memory is mapped with PMDs and
the set_memory_np_noalias() -> ... -> __change_page_attr() sequence will
mark the PMD as not present rather than wipe it completely.
Have kern_addr_valid() check whether higher level page table entries are
present before trying to dereference them to fix this issue and to avoid
similar issues in the future.
Stable backporting note:
------------------------
Note that the stable marking is for all active stable branches because
there could be cases where pagetable entries exist but are not valid -
see 9a14aefc1d28 ("x86: cpa, fix lookup_address"), for example. So make
sure to be on the safe side here and use pXY_present() accessors rather
than pXY_none() which could #GP when accessing pages in the direct map.
Also see:
c40a56a7818c ("x86/mm/init: Remove freed kernel image areas from alias mapping")
for more info.
Reported-by: Jiri Olsa <jolsa@redhat.com>
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Tested-by: Jiri Olsa <jolsa@redhat.com>
Cc: <stable@vger.kernel.org> # 4.4+
Link: https://lkml.kernel.org/r/20210819132717.19358-1-rppt@kernel.org
|
|
The parameter is unused, let's remove it.
Link: https://lkml.kernel.org/r/20210712124052.26491-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Acked-by: Heiko Carstens <hca@linux.ibm.com> [s390]
Reviewed-by: Pankaj Gupta <pankaj.gupta@ionos.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Rich Felker <dalias@libc.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Laurent Dufour <ldufour@linux.ibm.com>
Cc: Sergei Trofimovich <slyfox@gentoo.org>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Michel Lespinasse <michel@lespinasse.org>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Cc: Joe Perches <joe@perches.com>
Cc: Pierre Morel <pmorel@linux.ibm.com>
Cc: Jia He <justin.he@arm.com>
Cc: Anton Blanchard <anton@ozlabs.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Nathan Lynch <nathanl@linux.ibm.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Scott Cheloha <cheloha@linux.ibm.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
No functional change in this patch.
[aneesh.kumar@linux.ibm.com: m68k build error reported by kernel robot]
Link: https://lkml.kernel.org/r/87tulxnb2v.fsf@linux.ibm.com
Link: https://lkml.kernel.org/r/20210615110859.320299-2-aneesh.kumar@linux.ibm.com
Link: https://lore.kernel.org/linuxppc-dev/CAHk-=wi+J+iodze9FtjM3Zi4j4OeS+qqbKxME9QN4roxPEXH9Q@mail.gmail.com/
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Hugh Dickins <hughd@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The preparation of splitting huge PMD mapping of vmemmap pages is ready,
so switch the mapping from PTE to PMD.
Link: https://lkml.kernel.org/r/20210616094915.34432-3-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Chen Huang <chenhuang5@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Add a kernel parameter hugetlb_free_vmemmap to enable the feature of
freeing unused vmemmap pages associated with each hugetlb page on boot.
We disable PMD mapping of vmemmap pages for x86-64 arch when this feature
is enabled. Because vmemmap_remap_free() depends on vmemmap being base
page mapped.
Link: https://lkml.kernel.org/r/20210510030027.56044-8-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Barry Song <song.bao.hua@hisilicon.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Tested-by: Chen Huang <chenhuang5@huawei.com>
Tested-by: Bodeddula Balasubramaniam <bodeddub@amazon.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Oliver Neukum <oneukum@suse.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The option HUGETLB_PAGE_FREE_VMEMMAP allows for the freeing of some
vmemmap pages associated with pre-allocated HugeTLB pages. For example,
on X86_64 6 vmemmap pages of size 4KB each can be saved for each 2MB
HugeTLB page. 4094 vmemmap pages of size 4KB each can be saved for each
1GB HugeTLB page.
When a HugeTLB page is allocated or freed, the vmemmap array representing
the range associated with the page will need to be remapped. When a page
is allocated, vmemmap pages are freed after remapping. When a page is
freed, previously discarded vmemmap pages must be allocated before
remapping.
The config option is introduced early so that supporting code can be
written to depend on the option. The initial version of the code only
provides support for x86-64.
If config HAVE_BOOTMEM_INFO_NODE is enabled, the freeing vmemmap page code
denpend on it to free vmemmap pages. Otherwise, just use
free_reserved_page() to free vmemmmap pages. The routine
register_page_bootmem_info() is used to register bootmem info. Therefore,
make sure register_page_bootmem_info is enabled if
HUGETLB_PAGE_FREE_VMEMMAP is defined.
Link: https://lkml.kernel.org/r/20210510030027.56044-3-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Tested-by: Chen Huang <chenhuang5@huawei.com>
Tested-by: Bodeddula Balasubramaniam <bodeddub@amazon.com>
Reviewed-by: Balbir Singh <bsingharora@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Barry Song <song.bao.hua@hisilicon.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Oliver Neukum <oneukum@suse.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "Free some vmemmap pages of HugeTLB page", v23.
This patch series will free some vmemmap pages(struct page structures)
associated with each HugeTLB page when preallocated to save memory.
In order to reduce the difficulty of the first version of code review. In
this version, we disable PMD/huge page mapping of vmemmap if this feature
was enabled. This acutely eliminates a bunch of the complex code doing
page table manipulation. When this patch series is solid, we cam add the
code of vmemmap page table manipulation in the future.
The struct page structures (page structs) are used to describe a physical
page frame. By default, there is an one-to-one mapping from a page frame
to it's corresponding page struct.
The HugeTLB pages consist of multiple base page size pages and is
supported by many architectures. See hugetlbpage.rst in the Documentation
directory for more details. On the x86 architecture, HugeTLB pages of
size 2MB and 1GB are currently supported. Since the base page size on x86
is 4KB, a 2MB HugeTLB page consists of 512 base pages and a 1GB HugeTLB
page consists of 4096 base pages. For each base page, there is a
corresponding page struct.
Within the HugeTLB subsystem, only the first 4 page structs are used to
contain unique information about a HugeTLB page. HUGETLB_CGROUP_MIN_ORDER
provides this upper limit. The only 'useful' information in the remaining
page structs is the compound_head field, and this field is the same for
all tail pages.
By removing redundant page structs for HugeTLB pages, memory can returned
to the buddy allocator for other uses.
When the system boot up, every 2M HugeTLB has 512 struct page structs which
size is 8 pages(sizeof(struct page) * 512 / PAGE_SIZE).
HugeTLB struct pages(8 pages) page frame(8 pages)
+-----------+ ---virt_to_page---> +-----------+ mapping to +-----------+
| | | 0 | -------------> | 0 |
| | +-----------+ +-----------+
| | | 1 | -------------> | 1 |
| | +-----------+ +-----------+
| | | 2 | -------------> | 2 |
| | +-----------+ +-----------+
| | | 3 | -------------> | 3 |
| | +-----------+ +-----------+
| | | 4 | -------------> | 4 |
| 2MB | +-----------+ +-----------+
| | | 5 | -------------> | 5 |
| | +-----------+ +-----------+
| | | 6 | -------------> | 6 |
| | +-----------+ +-----------+
| | | 7 | -------------> | 7 |
| | +-----------+ +-----------+
| |
| |
| |
+-----------+
The value of page->compound_head is the same for all tail pages. The
first page of page structs (page 0) associated with the HugeTLB page
contains the 4 page structs necessary to describe the HugeTLB. The only
use of the remaining pages of page structs (page 1 to page 7) is to point
to page->compound_head. Therefore, we can remap pages 2 to 7 to page 1.
Only 2 pages of page structs will be used for each HugeTLB page. This
will allow us to free the remaining 6 pages to the buddy allocator.
Here is how things look after remapping.
HugeTLB struct pages(8 pages) page frame(8 pages)
+-----------+ ---virt_to_page---> +-----------+ mapping to +-----------+
| | | 0 | -------------> | 0 |
| | +-----------+ +-----------+
| | | 1 | -------------> | 1 |
| | +-----------+ +-----------+
| | | 2 | ----------------^ ^ ^ ^ ^ ^
| | +-----------+ | | | | |
| | | 3 | ------------------+ | | | |
| | +-----------+ | | | |
| | | 4 | --------------------+ | | |
| 2MB | +-----------+ | | |
| | | 5 | ----------------------+ | |
| | +-----------+ | |
| | | 6 | ------------------------+ |
| | +-----------+ |
| | | 7 | --------------------------+
| | +-----------+
| |
| |
| |
+-----------+
When a HugeTLB is freed to the buddy system, we should allocate 6 pages
for vmemmap pages and restore the previous mapping relationship.
Apart from 2MB HugeTLB page, we also have 1GB HugeTLB page. It is similar
to the 2MB HugeTLB page. We also can use this approach to free the
vmemmap pages.
In this case, for the 1GB HugeTLB page, we can save 4094 pages. This is a
very substantial gain. On our server, run some SPDK/QEMU applications
which will use 1024GB HugeTLB page. With this feature enabled, we can
save ~16GB (1G hugepage)/~12GB (2MB hugepage) memory.
Because there are vmemmap page tables reconstruction on the
freeing/allocating path, it increases some overhead. Here are some
overhead analysis.
1) Allocating 10240 2MB HugeTLB pages.
a) With this patch series applied:
# time echo 10240 > /proc/sys/vm/nr_hugepages
real 0m0.166s
user 0m0.000s
sys 0m0.166s
# bpftrace -e 'kprobe:alloc_fresh_huge_page { @start[tid] = nsecs; }
kretprobe:alloc_fresh_huge_page /@start[tid]/ { @latency = hist(nsecs -
@start[tid]); delete(@start[tid]); }'
Attaching 2 probes...
@latency:
[8K, 16K) 5476 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
[16K, 32K) 4760 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[32K, 64K) 4 | |
b) Without this patch series:
# time echo 10240 > /proc/sys/vm/nr_hugepages
real 0m0.067s
user 0m0.000s
sys 0m0.067s
# bpftrace -e 'kprobe:alloc_fresh_huge_page { @start[tid] = nsecs; }
kretprobe:alloc_fresh_huge_page /@start[tid]/ { @latency = hist(nsecs -
@start[tid]); delete(@start[tid]); }'
Attaching 2 probes...
@latency:
[4K, 8K) 10147 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
[8K, 16K) 93 | |
Summarize: this feature is about ~2x slower than before.
2) Freeing 10240 2MB HugeTLB pages.
a) With this patch series applied:
# time echo 0 > /proc/sys/vm/nr_hugepages
real 0m0.213s
user 0m0.000s
sys 0m0.213s
# bpftrace -e 'kprobe:free_pool_huge_page { @start[tid] = nsecs; }
kretprobe:free_pool_huge_page /@start[tid]/ { @latency = hist(nsecs -
@start[tid]); delete(@start[tid]); }'
Attaching 2 probes...
@latency:
[8K, 16K) 6 | |
[16K, 32K) 10227 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
[32K, 64K) 7 | |
b) Without this patch series:
# time echo 0 > /proc/sys/vm/nr_hugepages
real 0m0.081s
user 0m0.000s
sys 0m0.081s
# bpftrace -e 'kprobe:free_pool_huge_page { @start[tid] = nsecs; }
kretprobe:free_pool_huge_page /@start[tid]/ { @latency = hist(nsecs -
@start[tid]); delete(@start[tid]); }'
Attaching 2 probes...
@latency:
[4K, 8K) 6805 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
[8K, 16K) 3427 |@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[16K, 32K) 8 | |
Summary: The overhead of __free_hugepage is about ~2-3x slower than before.
Although the overhead has increased, the overhead is not significant.
Like Mike said, "However, remember that the majority of use cases create
HugeTLB pages at or shortly after boot time and add them to the pool. So,
additional overhead is at pool creation time. There is no change to
'normal run time' operations of getting a page from or returning a page to
the pool (think page fault/unmap)".
Despite the overhead and in addition to the memory gains from this series.
The following data is obtained by Joao Martins. Very thanks to his
effort.
There's an additional benefit which is page (un)pinners will see an improvement
and Joao presumes because there are fewer memmap pages and thus the tail/head
pages are staying in cache more often.
Out of the box Joao saw (when comparing linux-next against linux-next +
this series) with gup_test and pinning a 16G HugeTLB file (with 1G pages):
get_user_pages(): ~32k -> ~9k
unpin_user_pages(): ~75k -> ~70k
Usually any tight loop fetching compound_head(), or reading tail pages
data (e.g. compound_head) benefit a lot. There's some unpinning
inefficiencies Joao was fixing[2], but with that in added it shows even
more:
unpin_user_pages(): ~27k -> ~3.8k
[1] https://lore.kernel.org/linux-mm/20210409205254.242291-1-mike.kravetz@oracle.com/
[2] https://lore.kernel.org/linux-mm/20210204202500.26474-1-joao.m.martins@oracle.com/
This patch (of 9):
Move bootmem info registration common API to individual bootmem_info.c.
And we will use {get,put}_page_bootmem() to initialize the page for the
vmemmap pages or free the vmemmap pages to buddy in the later patch. So
move them out of CONFIG_MEMORY_HOTPLUG_SPARSE. This is just code movement
without any functional change.
Link: https://lkml.kernel.org/r/20210510030027.56044-1-songmuchun@bytedance.com
Link: https://lkml.kernel.org/r/20210510030027.56044-2-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Tested-by: Chen Huang <chenhuang5@huawei.com>
Tested-by: Bodeddula Balasubramaniam <bodeddub@amazon.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: x86@kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Oliver Neukum <oneukum@suse.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Mina Almasry <almasrymina@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Barry Song <song.bao.hua@hisilicon.com>
Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
mem_init_print_info() is called in mem_init() on each architecture, and
pass NULL argument, so using void argument and move it into mm_init().
Link: https://lkml.kernel.org/r/20210317015210.33641-1-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com> [x86]
Reviewed-by: Christophe Leroy <christophe.leroy@c-s.fr> [powerpc]
Acked-by: David Hildenbrand <david@redhat.com>
Tested-by: Anatoly Pugachev <matorola@gmail.com> [sparc64]
Acked-by: Russell King <rmk+kernel@armlinux.org.uk> [arm]
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Guo Ren <guoren@kernel.org>
Cc: Yoshinori Sato <ysato@users.osdn.me>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: "Peter Zijlstra" <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We can optimize in the case we are adding consecutive sections, so no
memset(PAGE_UNUSED) is needed.
In that case, let us keep track where the unused range of the previous
memory range begins, so we can compare it with start of the range to be
added. If they are equal, we know sections are added consecutively.
For that purpose, let us introduce 'unused_pmd_start', which always holds
the beginning of the unused memory range.
In the case a section does not contiguously follow the previous one, we
know we can memset [unused_pmd_start, PMD_BOUNDARY) with PAGE_UNUSE.
This patch is based on a similar patch by David Hildenbrand:
https://lore.kernel.org/linux-mm/20200722094558.9828-10-david@redhat.com/
Link: https://lkml.kernel.org/r/20210309214050.4674-5-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When sizeof(struct page) is not a power of 2, sections do not span a PMD
anymore and so when populating them some parts of the PMD will remain
unused.
Because of this, PMDs will be left behind when depopulating sections since
remove_pmd_table() thinks that those unused parts are still in use.
Fix this by marking the unused parts with PAGE_UNUSED, so memchr_inv()
will do the right thing and will let us free the PMD when the last user of
it is gone.
This patch is based on a similar patch by David Hildenbrand:
https://lore.kernel.org/linux-mm/20200722094558.9828-9-david@redhat.com/
[osalvador@suse.de: go back to the ifdef version]
Link: https://lkml.kernel.org/r/YGy++mSft7K4u+88@localhost.localdomain
Link: https://lkml.kernel.org/r/20210309214050.4674-4-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
There is no code to allocate 1GB pages when mapping the vmemmap range as
this might waste some memory and requires more complexity which is not
really worth.
Drop the dead code both for the aligned and unaligned cases and leave only
the direct map handling.
Link: https://lkml.kernel.org/r/20210309214050.4674-3-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Suggested-by: David Hildenbrand <david@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "Cleanup and fixups for vmemmap handling", v6.
This series contains cleanups to remove dead code that handles unaligned
cases for 4K and 1GB pages (patch#1 and patch#2) when removing the vemmmap
range, and a fix (patch#3) to handle the case when two vmemmap ranges
intersect the same PMD.
This patch (of 4):
remove_pte_table() is prepared to handle the case where either the start
or the end of the range is not PAGE aligned. This cannot actually happen:
__populate_section_memmap enforces the range to be PMD aligned, so as long
as the size of the struct page remains multiple of 8, the vmemmap range
will be aligned to PAGE_SIZE.
Drop the dead code and place a VM_BUG_ON in vmemmap_{populate,free} to
catch nasty cases. Note that the VM_BUG_ON is placed in there because
vmemmap_{populate,free= } is the gate of all removing and freeing page
tables logic.
Link: https://lkml.kernel.org/r/20210309214050.4674-1-osalvador@suse.de
Link: https://lkml.kernel.org/r/20210309214050.4674-2-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Suggested-by: David Hildenbrand <david@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Fix ~144 single-word typos in arch/x86/ code comments.
Doing this in a single commit should reduce the churn.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: linux-kernel@vger.kernel.org
|
|
The comment explaining why 4-level systems only need to allocate on
the P4D level caused some confustion. Update it to better explain why
on 4-level systems the allocation on PUD level is necessary.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200814151947.26229-3-joro@8bytes.org
|
|
Remove the code to sync the vmalloc and ioremap ranges for x86-64. The
page-table pages are all pre-allocated so that synchronization is
no longer necessary.
This is a patch that already went into the kernel as:
commit 8bb9bf242d1f ("x86/mm/64: Do not sync vmalloc/ioremap mappings")
But it had to be reverted later because it unveiled a bug from:
commit 6eb82f994026 ("x86/mm: Pre-allocate P4D/PUD pages for vmalloc area")
The bug in that commit causes the P4D/PUD pages not to be correctly
allocated, making the synchronization still necessary. That issue got
fixed meanwhile upstream:
commit 995909a4e22b ("x86/mm/64: Do not dereference non-present PGD entries")
With that fix it is safe again to remove the page-table synchronization
for vmalloc/ioremap ranges on x86-64.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200814151947.26229-2-joro@8bytes.org
|
|
Some of our servers spend significant time at kernel boot initializing
memory block sysfs directories and then creating symlinks between them and
the corresponding nodes. The slowness happens because the machines get
stuck with the smallest supported memory block size on x86 (128M), which
results in 16,288 directories to cover the 2T of installed RAM. The
search for each memory block is noticeable even with commit 4fb6eabf1037
("drivers/base/memory.c: cache memory blocks in xarray to accelerate
lookup").
Commit 078eb6aa50dc ("x86/mm/memory_hotplug: determine block size based on
the end of boot memory") chooses the block size based on alignment with
memory end. That addresses hotplug failures in qemu guests, but for bare
metal systems whose memory end isn't aligned to even the smallest size, it
leaves them at 128M.
Make kernels that aren't running on a hypervisor use the largest supported
size (2G) to minimize overhead on big machines. Kernel boot goes 7%
faster on the aforementioned servers, shaving off half a second.
[daniel.m.jordan@oracle.com: v3]
Link: http://lkml.kernel.org/r/20200714205450.945834-1-daniel.m.jordan@oracle.com
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20200609225451.3542648-1-daniel.m.jordan@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Merge misc updates from Andrew Morton:
- a few MM hotfixes
- kthread, tools, scripts, ntfs and ocfs2
- some of MM
Subsystems affected by this patch series: kthread, tools, scripts, ntfs,
ocfs2 and mm (hofixes, pagealloc, slab-generic, slab, slub, kcsan,
debug, pagecache, gup, swap, shmem, memcg, pagemap, mremap, mincore,
sparsemem, vmalloc, kasan, pagealloc, hugetlb and vmscan).
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (162 commits)
mm: vmscan: consistent update to pgrefill
mm/vmscan.c: fix typo
khugepaged: khugepaged_test_exit() check mmget_still_valid()
khugepaged: retract_page_tables() remember to test exit
khugepaged: collapse_pte_mapped_thp() protect the pmd lock
khugepaged: collapse_pte_mapped_thp() flush the right range
mm/hugetlb: fix calculation of adjust_range_if_pmd_sharing_possible
mm: thp: replace HTTP links with HTTPS ones
mm/page_alloc: fix memalloc_nocma_{save/restore} APIs
mm/page_alloc.c: skip setting nodemask when we are in interrupt
mm/page_alloc: fallbacks at most has 3 elements
mm/page_alloc: silence a KASAN false positive
mm/page_alloc.c: remove unnecessary end_bitidx for [set|get]_pfnblock_flags_mask()
mm/page_alloc.c: simplify pageblock bitmap access
mm/page_alloc.c: extract the common part in pfn_to_bitidx()
mm/page_alloc.c: replace the definition of NR_MIGRATETYPE_BITS with PB_migratetype_bits
mm/shuffle: remove dynamic reconfiguration
mm/memory_hotplug: document why shuffle_zone() is relevant
mm/page_alloc: remove nr_free_pagecache_pages()
mm: remove vm_total_pages
...
|
|
After removal of CONFIG_HAVE_MEMBLOCK_NODE_MAP we have two equivalent
functions that call memory_present() for each region in memblock.memory:
sparse_memory_present_with_active_regions() and membocks_present().
Moreover, all architectures have a call to either of these functions
preceding the call to sparse_init() and in the most cases they are called
one after the other.
Mark the regions from memblock.memory as present during sparce_init() by
making sparse_init() call memblocks_present(), make memblocks_present()
and memory_present() functions static and remove redundant
sparse_memory_present_with_active_regions() function.
Also remove no longer required HAVE_MEMORY_PRESENT configuration option.
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20200712083130.22919-1-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
There are many instances where vmemap allocation is often switched between
regular memory and device memory just based on whether altmap is available
or not. vmemmap_alloc_block_buf() is used in various platforms to
allocate vmemmap mappings. Lets also enable it to handle altmap based
device memory allocation along with existing regular memory allocations.
This will help in avoiding the altmap based allocation switch in many
places. To summarize there are two different methods to call
vmemmap_alloc_block_buf().
vmemmap_alloc_block_buf(size, node, NULL) /* Allocate from system RAM */
vmemmap_alloc_block_buf(size, node, altmap) /* Allocate from altmap */
This converts altmap_alloc_block_buf() into a static function, drops it's
entry from the header and updates Documentation/vm/memory-model.rst.
Suggested-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Jia He <justin.he@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Will Deacon <will@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Hsin-Yi Wang <hsinyi@chromium.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Steve Capper <steve.capper@arm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Yu Zhao <yuzhao@google.com>
Link: http://lkml.kernel.org/r/1594004178-8861-3-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "arm64: Enable vmemmap mapping from device memory", v4.
This series enables vmemmap backing memory allocation from device memory
ranges on arm64. But before that, it enables vmemmap_populate_basepages()
and vmemmap_alloc_block_buf() to accommodate struct vmem_altmap based
alocation requests.
This patch (of 3):
vmemmap_populate_basepages() is used across platforms to allocate backing
memory for vmemmap mapping. This is used as a standard default choice or
as a fallback when intended huge pages allocation fails. This just
creates entire vmemmap mapping with base pages (PAGE_SIZE).
On arm64 platforms, vmemmap_populate_basepages() is called instead of the
platform specific vmemmap_populate() when ARM64_SWAPPER_USES_SECTION_MAPS
is not enabled as in case for ARM64_16K_PAGES and ARM64_64K_PAGES configs.
At present vmemmap_populate_basepages() does not support allocating from
driver defined struct vmem_altmap while trying to create vmemmap mapping
for a device memory range. It prevents ARM64_16K_PAGES and
ARM64_64K_PAGES configs on arm64 from supporting device memory with
vmemap_altmap request.
This enables vmem_altmap support in vmemmap_populate_basepages() unlocking
device memory allocation for vmemap mapping on arm64 platforms with 16K or
64K base page configs.
Each architecture should evaluate and decide on subscribing device memory
based base page allocation through vmemmap_populate_basepages(). Hence
lets keep it disabled on all archs in order to preserve the existing
semantics. A subsequent patch enables it on arm64.
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Jia He <justin.he@arm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Hsin-Yi Wang <hsinyi@chromium.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Steve Capper <steve.capper@arm.com>
Cc: Yu Zhao <yuzhao@google.com>
Link: http://lkml.kernel.org/r/1594004178-8861-1-git-send-email-anshuman.khandual@arm.com
Link: http://lkml.kernel.org/r/1594004178-8861-2-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The code for preallocate_vmalloc_pages() was written under the
assumption that the p4d_offset() and pud_offset() functions will perform
present checks before dereferencing the parent entries.
This assumption is wrong an leads to a bug in the code which causes the
physical address found in the PGD be used as a page-table page, even if
the PGD is not present.
So the code flow currently is:
pgd = pgd_offset_k(addr);
p4d = p4d_offset(pgd, addr);
if (p4d_none(*p4d))
p4d = p4d_alloc(&init_mm, pgd, addr);
This lacks a check for pgd_none() at least, the correct flow would be:
pgd = pgd_offset_k(addr);
if (pgd_none(*pgd))
p4d = p4d_alloc(&init_mm, pgd, addr);
else
p4d = p4d_offset(pgd, addr);
But this is the same flow that the p4d_alloc() and the pud_alloc()
functions use internally, so there is no need to duplicate them.
Remove the p?d_none() checks from the function and just call into
p4d_alloc() and pud_alloc() to correctly pre-allocate the PGD entries.
Reported-and-tested-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Fixes: 6eb82f994026 ("x86/mm: Pre-allocate P4D/PUD pages for vmalloc area")
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This reverts commit 8bb9bf242d1fee925636353807c511d54fde8986.
It seems the vmalloc page tables aren't always preallocated in all
situations, because Jason Donenfeld reports an oops with this commit:
BUG: unable to handle page fault for address: ffffe8ffffd00608
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP
CPU: 2 PID: 22 Comm: kworker/2:0 Not tainted 5.8.0+ #154
RIP: process_one_work+0x2c/0x2d0
Code: 41 56 41 55 41 54 55 48 89 f5 53 48 89 fb 48 83 ec 08 48 8b 06 4c 8b 67 40 49 89 c6 45 30 f6 a8 04 b8 00 00 00 00 4c 0f 44 f0 <49> 8b 46 08 44 8b a8 00 01 05
Call Trace:
worker_thread+0x4b/0x3b0
? rescuer_thread+0x360/0x360
kthread+0x116/0x140
? __kthread_create_worker+0x110/0x110
ret_from_fork+0x1f/0x30
CR2: ffffe8ffffd00608
and that page fault address is right in that vmalloc space, and we
clearly don't have a PGD/P4D entry for it.
Looking at the "Code:" line, the actual fault seems to come from the
'pwq->wq' dereference at the top of the process_one_work() function:
struct pool_workqueue *pwq = get_work_pwq(work);
struct worker_pool *pool = worker->pool;
bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
so 'struct pool_workqueue *pwq' is the allocation that hasn't been
synchronized across CPUs.
Just revert for now, while Joerg figures out the cause.
Reported-and-bisected-by: Jason A. Donenfeld <Jason@zx2c4.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The function is only called from within init_64.c and can be static.
Also remove it from pgtable_64.h.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Link: https://lore.kernel.org/r/20200721095953.6218-4-joro@8bytes.org
|