Age | Commit message (Collapse) | Author |
|
On AMD, the effect of set_nmi_mask called by emulate_iret_real and em_rsm
on hflags is reverted later on in x86_emulate_instruction where hflags are
overwritten with ctxt->emul_flags (the kvm_set_hflags call). This manifests
as a hang when rebooting Windows VMs with QEMU, OVMF, and >1 vcpu.
Instead of trying to merge ctxt->emul_flags into vcpu->arch.hflags after
an instruction is emulated, this commit deletes emul_flags altogether and
makes the emulator access vcpu->arch.hflags using two new accessors. This
way all changes, on the emulator side as well as in functions called from
the emulator and accessing vcpu state with emul_to_vcpu, are preserved.
More details on the bug and its manifestation with Windows and OVMF:
It's a KVM bug in the interaction between SMI/SMM and NMI, specific to AMD.
I believe that the SMM part explains why we started seeing this only with
OVMF.
KVM masks and unmasks NMI when entering and leaving SMM. When KVM emulates
the RSM instruction in em_rsm, the set_nmi_mask call doesn't stick because
later on in x86_emulate_instruction we overwrite arch.hflags with
ctxt->emul_flags, effectively reverting the effect of the set_nmi_mask call.
The AMD-specific hflag of interest here is HF_NMI_MASK.
When rebooting the system, Windows sends an NMI IPI to all but the current
cpu to shut them down. Only after all of them are parked in HLT will the
initiating cpu finish the restart. If NMI is masked, other cpus never get
the memo and the initiating cpu spins forever, waiting for
hal!HalpInterruptProcessorsStarted to drop. That's the symptom we observe.
Fixes: a584539b24b8 ("KVM: x86: pass the whole hflags field to emulator and back")
Signed-off-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
kvm_make_all_requests() provides a synchronization that waits until all
kicked VCPUs have acknowledged the kick. This is important for
KVM_REQ_MMU_RELOAD as it prevents freeing while lockless paging is
underway.
This patch adds the synchronization property into all requests that are
currently being used with kvm_make_all_requests() in order to preserve
the current behavior and only introduce a new framework. Removing it
from requests where it is not necessary is left for future patches.
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
kvm_vcpu_kick() must issue a general memory barrier prior to reading
vcpu->mode in order to ensure correctness of the mutual-exclusion
memory barrier pattern used with vcpu->requests. While the cmpxchg
called from kvm_vcpu_kick():
kvm_vcpu_kick
kvm_arch_vcpu_should_kick
kvm_vcpu_exiting_guest_mode
cmpxchg
implies general memory barriers before and after the operation, that
implication is only valid when cmpxchg succeeds. We need an explicit
barrier for when it fails, otherwise a VCPU thread on its entry path
that reads zero for vcpu->requests does not exclude the possibility
the requesting thread sees !IN_GUEST_MODE when it reads vcpu->mode.
kvm_make_all_cpus_request already had a barrier, so we remove it, as
now it would be redundant.
Signed-off-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Some operations must ensure that the guest is not running with stale
data, but if the guest is halted, then the update can wait until another
event happens. kvm_make_all_requests() currently doesn't wake up, so we
can mark all requests used with it.
First 8 bits were arbitrarily reserved for request numbers.
Most uses of requests have the request type as a constant, so a compiler
will optimize the '&'.
An alternative would be to have an inline function that would return
whether the request needs a wake-up or not, but I like this one better
even though it might produce worse assembly.
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Users were expected to use kvm_check_request() for testing and clearing,
but request have expanded their use since then and some users want to
only test or do a faster clear.
Make sure that requests are not directly accessed with bit operations.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
IOMMU harms performance signficantly when we run very fast networking
workloads. It's 40GB networking doing XDP test. Software overhead is
almost unaware, but it's the IOTLB miss (based on our analysis) which
kills the performance. We observed the same performance issue even with
software passthrough (identity mapping), only the hardware passthrough
survives. The pps with iommu (with software passthrough) is only about
~30% of that without it. This is a limitation in hardware based on our
observation, so we'd like to disable the IOMMU force on, but we do want
to use TBOOT and we can sacrifice the DMA security bought by IOMMU. I
must admit I know nothing about TBOOT, but TBOOT guys (cc-ed) think not
eabling IOMMU is totally ok.
So introduce a new boot option to disable the force on. It's kind of
silly we need to run into intel_iommu_init even without force on, but we
need to disable TBOOT PMR registers. For system without the boot option,
nothing is changed.
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
all architectures converted
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
'uaccess.arm64', 'uaccess.avr32', 'uaccess.bfin', 'uaccess.c6x', 'uaccess.cris', 'uaccess.frv', 'uaccess.h8300', 'uaccess.hexagon', 'uaccess.ia64', 'uaccess.m32r', 'uaccess.m68k', 'uaccess.metag', 'uaccess.microblaze', 'uaccess.mips', 'uaccess.mn10300', 'uaccess.nios2', 'uaccess.openrisc', 'uaccess.parisc', 'uaccess.powerpc', 'uaccess.s390', 'uaccess.score', 'uaccess.sh', 'uaccess.sparc', 'uaccess.tile', 'uaccess.um', 'uaccess.unicore32', 'uaccess.x86' and 'uaccess.xtensa' into work.uaccess
|
|
flush_tlb_page() passes a bogus range to flush_tlb_others() and
expects the latter to fix it up. native_flush_tlb_others() has the
fixup but Xen's version doesn't. Move the fixup to
flush_tlb_others().
AFAICS the only real effect is that, without this fix, Xen would
flush everything instead of just the one page on remote vCPUs in
when flush_tlb_page() was called.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: e7b52ffd45a6 ("x86/flush_tlb: try flush_tlb_single one by one in flush_tlb_range")
Link: http://lkml.kernel.org/r/10ed0e4dfea64daef10b87fb85df1746999b4dba.1492844372.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
I'm about to rewrite the function almost completely, but first I
want to get a functional change out of the way. Currently, if
flush_tlb_mm_range() does not flush the local TLB at all, it will
never do individual page flushes on remote CPUs. This seems to be
an accident, and preserving it will be awkward. Let's change it
first so that any regressions in the rewrite will be easier to
bisect and so that the rewrite can attempt to change no visible
behavior at all.
The fix is simple: we can simply avoid short-circuiting the
calculation of base_pages_to_flush.
As a side effect, this also eliminates a potential corner case: if
tlb_single_page_flush_ceiling == TLB_FLUSH_ALL, flush_tlb_mm_range()
could have ended up flushing the entire address space one page at a
time.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/4b29b771d9975aad7154c314534fec235618175a.1492844372.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
I was trying to figure out what how flush_tlb_current_task() would
possibly work correctly if current->mm != current->active_mm, but I
realized I could spare myself the effort: it has no callers except
the unused flush_tlb() macro.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/e52d64c11690f85e9f1d69d7b48cc2269cd2e94b.1492844372.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
mark_screen_rdonly() is the last remaining caller of flush_tlb().
flush_tlb_mm_range() is potentially faster and isn't obsolete.
Compile-tested only because I don't know whether software that uses
this mechanism even exists.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/791a644076fc3577ba7f7b7cafd643cc089baa7d.1492844372.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
remove_pagetable() does page walk using p*d_page_vaddr() plus cast.
It's not canonical approach -- we usually use p*d_offset() for that.
It works fine as long as all page table levels are present. We broke the
invariant by introducing folded p4d page table level.
As result, remove_pagetable() interprets PMD as PUD and it leads to
crash:
BUG: unable to handle kernel paging request at ffff880300000000
IP: memchr_inv+0x60/0x110
PGD 317d067
P4D 317d067
PUD 3180067
PMD 33f102067
PTE 8000000300000060
Let's fix this by using p*d_offset() instead of p*d_page_vaddr() for
page walk.
Reported-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Fixes: f2a6a7050109 ("x86: Convert the rest of the code to support p4d_t")
Link: http://lkml.kernel.org/r/20170425092557.21852-1-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Currently unwind_dump() dumps only the most recently accessed stack.
But it has a few issues.
In some cases, 'first_sp' can get out of sync with 'stack_info', causing
unwind_dump() to start from the wrong address, flood the printk buffer,
and eventually read a bad address.
In other cases, dumping only the most recently accessed stack doesn't
give enough data to diagnose the error.
Fix both issues by dumping *all* stacks involved in the trace, not just
the last one.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 8b5e99f02264 ("x86/unwind: Dump stack data on warnings")
Link: http://lkml.kernel.org/r/016d6a9810d7d1bfc87ef8c0e6ee041c6744c909.1493171120.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Borislav Petkov reported the following unwinder warning:
WARNING: kernel stack regs at ffffc9000024fea8 in udevadm:92 has bad 'bp' value 00007fffc4614d30
unwind stack type:0 next_sp: (null) mask:0x6 graph_idx:0
ffffc9000024fea8: 000055a6100e9b38 (0x55a6100e9b38)
ffffc9000024feb0: 000055a6100e9b35 (0x55a6100e9b35)
ffffc9000024feb8: 000055a6100e9f68 (0x55a6100e9f68)
ffffc9000024fec0: 000055a6100e9f50 (0x55a6100e9f50)
ffffc9000024fec8: 00007fffc4614d30 (0x7fffc4614d30)
ffffc9000024fed0: 000055a6100eaf50 (0x55a6100eaf50)
ffffc9000024fed8: 0000000000000000 ...
ffffc9000024fee0: 0000000000000100 (0x100)
ffffc9000024fee8: ffff8801187df488 (0xffff8801187df488)
ffffc9000024fef0: 00007ffffffff000 (0x7ffffffff000)
ffffc9000024fef8: 0000000000000000 ...
ffffc9000024ff10: ffffc9000024fe98 (0xffffc9000024fe98)
ffffc9000024ff18: 00007fffc4614d00 (0x7fffc4614d00)
ffffc9000024ff20: ffffffffffffff10 (0xffffffffffffff10)
ffffc9000024ff28: ffffffff811c6c1f (SyS_newlstat+0xf/0x10)
ffffc9000024ff30: 0000000000000010 (0x10)
ffffc9000024ff38: 0000000000000296 (0x296)
ffffc9000024ff40: ffffc9000024ff50 (0xffffc9000024ff50)
ffffc9000024ff48: 0000000000000018 (0x18)
ffffc9000024ff50: ffffffff816b2e6a (entry_SYSCALL_64_fastpath+0x18/0xa8)
...
It unwinded from an interrupt which came in right after entry code
called into a C syscall handler, before it had a chance to set up the
frame pointer, so regs->bp still had its user space value.
Add a check to silence warnings in such a case, where an interrupt
has occurred and regs->sp is almost at the end of the stack.
Reported-by: Borislav Petkov <bp@suse.de>
Tested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: c32c47c68a0a ("x86/unwind: Warn on bad frame pointer")
Link: http://lkml.kernel.org/r/c695f0d0d4c2cfe6542b90e2d0520e11eb901eb5.1493171120.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
memcpy_from_pmem() maps directly to memcpy_mcsafe(). The wrapper
serves no real benefit aside from affording a more generic function name
than the x86-specific 'mcsafe'. However this would not be the first time
that x86 terminology leaked into the global namespace. For lack of
better name, just use memcpy_mcsafe() directly.
This conversion also catches a place where we should have been using
plain memcpy, acpi_nfit_blk_single_io().
Cc: <x86@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Acked-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
implementation"
This reverts commit 2947ba054a4dabbd82848728d765346886050029.
Dan Williams reported dax-pmem kernel warnings with the following signature:
WARNING: CPU: 8 PID: 245 at lib/percpu-refcount.c:155 percpu_ref_switch_to_atomic_rcu+0x1f5/0x200
percpu ref (dax_pmem_percpu_release [dax_pmem]) <= 0 (0) after switching to atomic
... and bisected it to this commit, which suggests possible memory corruption
caused by the x86 fast-GUP conversion.
He also pointed out:
"
This is similar to the backtrace when we were not properly handling
pud faults and was fixed with this commit: 220ced1676c4 "mm: fix
get_user_pages() vs device-dax pud mappings"
I've found some missing _devmap checks in the generic
get_user_pages_fast() path, but this does not fix the regression
[...]
"
So given that there are known bugs, and a pretty robust looking bisection
points to this commit suggesting that are unknown bugs in the conversion
as well, revert it for the time being - we'll re-try in v4.13.
Reported-by: Dan Williams <dan.j.williams@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: aneesh.kumar@linux.vnet.ibm.com
Cc: dann.frazier@canonical.com
Cc: dave.hansen@intel.com
Cc: steve.capper@linaro.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The disablement of interrupts at KVM_SET_CLOCK/KVM_GET_CLOCK
attempts to disable software suspend from causing "non atomic behaviour" of
the operation:
Add a helper function to compute the kernel time and convert nanoseconds
back to CPU specific cycles. Note that these must not be called in preemptible
context, as that would mean the kernel could enter software suspend state,
which would cause non-atomic operation.
However, assume the kernel can enter software suspend at the following 2 points:
ktime_get_ts(&ts);
1.
hypothetical_ktime_get_ts(&ts)
monotonic_to_bootbased(&ts);
2.
monotonic_to_bootbased() should be correct relative to a ktime_get_ts(&ts)
performed after point 1 (that is after resuming from software suspend),
hypothetical_ktime_get_ts()
Therefore it is also correct for the ktime_get_ts(&ts) before point 1,
which is
ktime_get_ts(&ts) = hypothetical_ktime_get_ts(&ts) + time-to-execute-suspend-code
Note CLOCK_MONOTONIC does not count during suspension.
So remove the irq disablement, which causes the following warning on
-RT kernels:
With this reasoning, and the -RT bug that the irq disablement causes
(because spin_lock is now a sleeping lock), remove the IRQ protection as it
causes:
[ 1064.668109] in_atomic(): 0, irqs_disabled(): 1, pid: 15296, name:m
[ 1064.668110] INFO: lockdep is turned off.
[ 1064.668110] irq event stamp: 0
[ 1064.668112] hardirqs last enabled at (0): [< (null)>] )
[ 1064.668116] hardirqs last disabled at (0): [] c0
[ 1064.668118] softirqs last enabled at (0): [] c0
[ 1064.668118] softirqs last disabled at (0): [< (null)>] )
[ 1064.668121] CPU: 13 PID: 15296 Comm: qemu-kvm Not tainted 3.10.0-1
[ 1064.668121] Hardware name: Dell Inc. PowerEdge R730/0H21J3, BIOS 5
[ 1064.668123] ffff8c1796b88000 00000000afe7344c ffff8c179abf3c68 f3
[ 1064.668125] ffff8c179abf3c90 ffffffff930ccb3d ffff8c1b992b3610 f0
[ 1064.668126] 00007ffc1a26fbc0 ffff8c179abf3cb0 ffffffff9375f694 f0
[ 1064.668126] Call Trace:
[ 1064.668132] [] dump_stack+0x19/0x1b
[ 1064.668135] [] __might_sleep+0x12d/0x1f0
[ 1064.668138] [] rt_spin_lock+0x24/0x60
[ 1064.668155] [] __get_kvmclock_ns+0x36/0x110 [k]
[ 1064.668159] [] ? futex_wait_queue_me+0x103/0x10
[ 1064.668171] [] kvm_arch_vm_ioctl+0xa2/0xd70 [k]
[ 1064.668173] [] ? futex_wait+0x1ac/0x2a0
v2: notice get_kvmclock_ns with the same problem (Pankaj).
v3: remove useless helper function (Pankaj).
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Guests that are heavy on futexes end up IPI'ing each other a lot. That
can lead to significant slowdowns and latency increase for those guests
when running within KVM.
If only a single guest is needed on a host, we have a lot of spare host
CPU time we can throw at the problem. Modern CPUs implement a feature
called "MWAIT" which allows guests to wake up sleeping remote CPUs without
an IPI - thus without an exit - at the expense of never going out of guest
context.
The decision whether this is something sensible to use should be up to the
VM admin, so to user space. We can however allow MWAIT execution on systems
that support it properly hardware wise.
This patch adds a CAP to user space and a KVM cpuid leaf to indicate
availability of native MWAIT execution. With that enabled, the worst a
guest can do is waste as many cycles as a "jmp ." would do, so it's not
a privilege problem.
We consciously do *not* expose the feature in our CPUID bitmap, as most
people will want to benefit from sleeping vCPUs to allow for over commit.
Reported-by: "Gabriel L. Somlo" <gsomlo@gmail.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
[agraf: fix amd, change commit message]
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Hardware support for faulting on the cpuid instruction is not required to
emulate it, because cpuid triggers a VM exit anyways. KVM handles the relevant
MSRs (MSR_PLATFORM_INFO and MSR_MISC_FEATURES_ENABLE) and upon a
cpuid-induced VM exit checks the cpuid faulting state and the CPL.
kvm_require_cpl is even kind enough to inject the GP fault for us.
Signed-off-by: Kyle Huey <khuey@kylehuey.com>
Reviewed-by: David Matlack <dmatlack@google.com>
[Return "1" from kvm_emulate_cpuid, it's not void. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip into HEAD
Required for KVM support of the CPUID faulting feature.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
vmm_exclusive=0 leads to KVM setting X86_CR4_VMXE always and calling
VMXON only when the vcpu is loaded. X86_CR4_VMXE is used as an
indication in cpu_emergency_vmxoff() (called on kdump) if VMXOFF has to be
called. This is obviously not the case if both are used independtly.
Calling VMXOFF without a previous VMXON will result in an exception.
In addition, X86_CR4_VMXE is used as a mean to test if VMX is already in
use by another VMM in hardware_enable(). So there can't really be
co-existance. If the other VMM is prepared for co-existance and does a
similar check, only one VMM can exist. If the other VMM is not prepared
and blindly sets/clears X86_CR4_VMXE, we will get inconsistencies with
X86_CR4_VMXE.
As we also had bug reports related to clearing of vmcs with vmm_exclusive=0
this seems to be pretty much untested. So let's better drop it.
While at it, directly move setting/clearing X86_CR4_VMXE into
kvm_cpu_vmxon/off.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Fengguang Wu's zero day bot triggered a stack unwinder dump. This can
be easily triggered when CONFIG_FRAME_POINTERS is enabled and -mfentry
is in use on x86_32.
># cd /sys/kernel/debug/tracing
># echo 'p:schedule schedule' > kprobe_events
># echo stacktrace > events/kprobes/schedule/trigger
This is because the code that implemented fentry in the ftrace_regs_caller
tried to use the least amount of #ifdefs, and modified ebp when
CC_USE_FENTRY was defined to point to the parent ip as it does when
CC_USE_FENTRY is not defined. But when CONFIG_FRAME_POINTERS is set, it
corrupts the ebp register for this frame while doing the tracing.
NOTE, it does not corrupt ebp in any other way. It is just a bad frame
pointer when calling into the tracing infrastructure. The original ebp is
restored before returning from the fentry call. But if a stack trace is
performed inside the tracing, the unwinder will notice the bad ebp.
Instead of toying with ebp with CC_USING_FENTRY, just slap the parent ip
into the second parameter (%edx), and have an #else that does it the
original way.
The unwinder will unfortunately miss the function being traced, as the
stack frame is not set up yet for it, as it is for x86_64. But fixing that
is a bit more complex and did not work before anyway.
This has been tested with and without FRAME_POINTERS being set while using
-mfentry, as well as using an older compiler that uses mcount.
Analyzed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Fixes: 644e0e8dc76b ("x86/ftrace: Add -mfentry support to x86_32 with DYNAMIC_FTRACE set")
Reported-by: kernel test robot <fengguang.wu@intel.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lists.01.org/pipermail/lkp/2017-April/006165.html
Link: http://lkml.kernel.org/r/20170420172236.7af7f6e5@gandalf.local.home
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
When schemata parses the resource names it does not return an error if it
detects incorrect resource names and fails quietly.
This happens because for_each_enabled_rdt_resource(r) leaves "r" pointing
beyond the end of the rdt_resources_all[] array, and the check for !r->name
results in an out of bounds access.
Split the resource parsing part into a helper function to avoid the issue.
[ tglx: Made it readable by splitting the parser loop out into a function ]
Reported-by: Prakhya, Sai Praneeth <sai.praneeth.prakhya@intel.com>
Signed-off-by: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Tested-by: Prakhya, Sai Praneeth <sai.praneeth.prakhya@intel.com>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: ravi.v.shankar@intel.com
Cc: vikas.shivappa@intel.com
Link: http://lkml.kernel.org/r/1492645804-17465-4-git-send-email-vikas.shivappa@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Schemata is displayed in tabular format which introduces some whitespace
to show data in a tabular format.
Writing back the same data fails as the parser does not handle the
whitespace.
Trim the leading and trailing whitespace before parsing.
Reported-by: Prakhya, Sai Praneeth <sai.praneeth.prakhya@intel.com>
Signed-off-by: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Tested-by: Prakhya, Sai Praneeth <sai.praneeth.prakhya@intel.com>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: ravi.v.shankar@intel.com
Cc: vikas.shivappa@intel.com
Link: http://lkml.kernel.org/r/1492645804-17465-3-git-send-email-vikas.shivappa@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Currently max width of 'resource name' and 'resource data' is being
initialized based on 'enabled resources' during boot. But the mount can
enable different capable resources at a later time which upsets the
tabular format of schemata. Fix this to be based on 'all capable'
resources.
Signed-off-by: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Tested-by: Prakhya, Sai Praneeth <sai.praneeth.prakhya@intel.com>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: ravi.v.shankar@intel.com
Cc: vikas.shivappa@intel.com
Link: http://lkml.kernel.org/r/1492645804-17465-2-git-send-email-vikas.shivappa@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
In all cases we know which BAR it is. Passing it in means that arch code
(or generic code; watch this space) won't have to go looking for it again.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
Before offlining a CPU its required to check whether there are enough free
irq vectors available so interrupts can be migrated away from the CPU.
This check is executed whether its required or not and neither stops
searching when the number of required free vectors are reached.
Bypass the free vector check if the current CPU has no irq to migrate and
leave the for_each_online_cpu() loop when the free vector count reaches the
number of required vectors.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Len Brown <lenb@kernel.orq>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Link: http://lkml.kernel.org/r/1492357410-510-1-git-send-email-yu.c.chen@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Modify the reschedule warning to output the offline CPU number and
use a better debug message.
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Link: http://lkml.kernel.org/r/1492518305-3808-1-git-send-email-prarit@redhat.com
[ Tweaked the warning message. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
|
|
A CPU in VMX root mode will ignore INIT signals and will fail to bring
up the APs after reboot. Therefore, on a panic we disable VMX on all
CPUs before rebooting or triggering kdump.
Do this when halting the machine as well, in case a firmware-level reboot
does not perform a cold reset for all processors. Without doing this,
rebooting the host may hang.
Signed-off-by: Tiantian Feng <fengtiantian@huawei.com>
Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
[ Rewritten commit message. ]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm@vger.kernel.org
Link: http://lkml.kernel.org/r/20170419161839.30550-1-pbonzini@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The minimum size for a new stack (512 bytes) setup for arch/x86/boot components
when the bootloader does not setup/provide a stack for the early boot components
is not "enough".
The setup code executing as part of early kernel startup code, uses the stack
beyond 512 bytes and accidentally overwrites and corrupts part of the BSS
section. This is exposed mostly in the early video setup code, where
it was corrupting BSS variables like force_x, force_y, which in-turn affected
kernel parameters such as screen_info (screen_info.orig_video_cols) and
later caused an exception/panic in console_init().
Most recent boot loaders setup the stack for early boot components, so this
stack overwriting into BSS section issue has not been exposed.
Signed-off-by: Ashish Kalra <ashish@bluestacks.com>
Cc: <stable@vger.kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170419152015.10011-1-ashishkalra@Ashishs-MacBook-Pro.local
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
mce_usable_address() does a bunch of basic sanity checks to verify
whether the address reported with the error is usable for further
processing. However, we do check MCi_STATUS[MISCV] and that is not
needed on AMD as that bit says that there's additional information about
the logged error in the MCi_MISCj banks.
But we don't need that to know whether the address is usable - we only
need to know whether the physical address is valid - i.e., ADDRV.
On Intel the MISCV bit is needed to perform additional checks to determine
whether the reported address is a physical one, etc.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Yazen Ghannam <yazen.ghannam@amd.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20170418183924.6agjkebilwqj26or@pd.tnic
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
The 'sp' parameter to unwind_dump() is unused. Remove it.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/08cb36b004629f6bbcf44c267ae4a609242ebd0b.1492520933.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
In unwind_dump(), the stack mask value is printed in hex, but is
confusingly not prepended with '0x'.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/e7fe41be19d73c9f99f53082486473febfe08ffa.1492520933.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
On x86-32, 32-bit stack values printed by unwind_dump() are confusingly
zero-padded to 16 characters (64 bits):
unwind stack type:0 next_sp: (null) mask:a graph_idx:0
f50cdebc: 00000000f50cdec4 (0xf50cdec4)
f50cdec0: 00000000c40489b7 (irq_exit+0x87/0xa0)
...
Instead, base the field width on the size of a long integer so that it
looks right on both x86-32 and x86-64.
x86-32:
unwind stack type:1 next_sp: (null) mask:0x2 graph_idx:0
c0ee9d98: c0ee9de0 (init_thread_union+0x1de0/0x2000)
c0ee9d9c: c043fd90 (__save_stack_trace+0x50/0xe0)
...
x86-64:
unwind stack type:1 next_sp: (null) mask:0x2 graph_idx:0
ffffffff81e03b88: ffffffff81e03c10 (init_thread_union+0x3c10/0x4000)
ffffffff81e03b90: ffffffff81048f8e (__save_stack_trace+0x5e/0x100)
...
Reported-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/36b743812e7eb291d74af4e5067736736622daad.1492520933.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
For pre-4.6.0 versions of GCC, which don't have '-mfentry', the
'-maccumulate-outgoing-args' option is required for function graph
tracing in order to avoid GCC bug 42109.
However, GCC ignores '-maccumulate-outgoing-args' when '-Os' is
also set.
Currently we force a build error to prevent that scenario, but that
breaks randconfigs. So change the error to a warning which also
disables CONFIG_CC_OPTIMIZE_FOR_SIZE.
Reported-by: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kbuild test robot <fengguang.wu@intel.com>
Cc: kbuild-all@01.org
Link: http://lkml.kernel.org/r/20170418214429.o7fbwbmf4nqosezy@treble
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Backmerge Linux 4.11-rc7 from Linus tree, to fix some
conflicts that were causing problems with the rerere cache
in drm-tip.
|
|
The NFIT MCE handler callback (for handling media errors on NVDIMMs)
takes a mutex to add the location of a memory error to a list. But since
the notifier call chain for machine checks (x86_mce_decoder_chain) is
atomic, we get a lockdep splat like:
BUG: sleeping function called from invalid context at kernel/locking/mutex.c:620
in_atomic(): 1, irqs_disabled(): 0, pid: 4, name: kworker/0:0
[..]
Call Trace:
dump_stack
___might_sleep
__might_sleep
mutex_lock_nested
? __lock_acquire
nfit_handle_mce
notifier_call_chain
atomic_notifier_call_chain
? atomic_notifier_call_chain
mce_gen_pool_process
Convert the notifier to a blocking one which gets to run only in process
context.
Boris: remove the notifier call in atomic context in print_mce(). For
now, let's print the MCE on the atomic path so that we can make sure
they go out and get logged at least.
Fixes: 6839a6d96f4e ("nfit: do an ARS scrub on hitting a latent media error")
Reported-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Acked-by: Tony Luck <tony.luck@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: x86-ml <x86@kernel.org>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20170411224457.24777-1-vishal.l.verma@intel.com
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
We can declare it <linux/pci.h> even on platforms where it isn't going to
be defined. There's no need to have it littered through the various
<asm/pci.h> files.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
Most of the almost-identical versions of pci_mmap_page_range() silently
ignore the 'write_combine' argument and give uncached mappings.
Yet we allow the PCIIOC_WRITE_COMBINE ioctl in /proc/bus/pci, expose the
'resourceX_wc' file in sysfs, and allow an attempted mapping to apparently
succeed.
To fix this, introduce a macro arch_can_pci_mmap_wc() which indicates
whether the platform can do a write-combining mapping. On x86 this ends up
being pat_enabled(), while the few other platforms that support it can just
set it to a literal '1'.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
KASLR is mature (and important) enough to be enabled by default on x86.
Also enable it by default in the defconfigs.
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: dan.j.williams@intel.com
Cc: dave.jiang@intel.com
Cc: dyoung@redhat.com
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
With frame pointers disabled, on some older versions of GCC (like
4.8.3), it's possible for the stack pointer to get aligned at a
half-word boundary:
00000000000004d0 <fib_table_lookup>:
4d0: 41 57 push %r15
4d2: 41 56 push %r14
4d4: 41 55 push %r13
4d6: 41 54 push %r12
4d8: 55 push %rbp
4d9: 53 push %rbx
4da: 48 83 ec 24 sub $0x24,%rsp
In such a case, the unwinder ends up reading the entire stack at the
wrong alignment. Then the last read goes past the end of the stack,
hitting the stack guard page:
BUG: stack guard page was hit at ffffc900217c4000 (stack is ffffc900217c0000..ffffc900217c3fff)
kernel stack overflow (page fault): 0000 [#1] SMP
...
Fix it by ensuring the stack pointer is properly aligned before
unwinding.
Reported-by: Jirka Hladky <jhladky@redhat.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Fixes: 7c7900f89770 ("x86/unwind: Add new unwind interface and implementations")
Link: http://lkml.kernel.org/r/cff33847cc9b02fa548625aa23268ac574460d8d.1492436590.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Update the check which enforces the registration of MCE decoder notifier
callbacks with valid priority only, to include mcelog's priority.
Reported-by: kernel test robot <xiaolong.ye@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: lkp@01.org
Link: http://lkml.kernel.org/r/20170418073820.i6kl5tggcntwlisa@pd.tnic
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Merge branch 'i2c/for-INT33FE' of
git://git.kernel.org/pub/scm/linux/kernel/git/wsa/linux.git
to prepare for an incoming INT33FE driver.
Signed-off-by: Darren Hart (VMware) <dvhart@infradead.org>
|
|
Unlike normal compat syscall variants, it is needed only for
biarch architectures that have different alignement requirements for
u64 in 32bit and 64bit ABI *and* have __put_user() that won't handle
a store of 64bit value at 32bit-aligned address. We used to have one
such (ia64), but its biarch support has been gone since 2010 (after
being broken in 2008, which went unnoticed since nobody had been using
it).
It had escaped removal at the same time only because back in 2004
a patch that switched several syscalls on amd64 from private wrappers to
generic compat ones had switched to use of compat_sys_getdents64(), which
hadn't needed (or used) a compat wrapper on amd64.
Let's bury it - it's at least 7 years overdue.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
clang currently does not support these optimizations, only enable them
when they are available.
Signed-off-by: Matthias Kaehlcke <mka@chromium.org>
Cc: Greg Hackmann <ghackmann@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Michael Davidson <md@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: grundler@chromium.org
Link: http://lkml.kernel.org/r/20170413172609.118122-1-mka@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|