summaryrefslogtreecommitdiff
path: root/arch/x86
AgeCommit message (Collapse)Author
2019-09-11x86: KVM: svm: Fix a check in nested_svm_vmrun()Dan Carpenter
We refactored this code a bit and accidentally deleted the "-" character from "-EINVAL". The kvm_vcpu_map() function never returns positive EINVAL. Fixes: c8e16b78c614 ("x86: KVM: svm: eliminate hardcoded RIP advancement from vmrun_interception()") Cc: stable@vger.kernel.org Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com> Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-11KVM: x86: Return to userspace with internal error on unexpected exit reasonLiran Alon
Receiving an unexpected exit reason from hardware should be considered as a severe bug in KVM. Therefore, instead of just injecting #UD to guest and ignore it, exit to userspace on internal error so that it could handle it properly (probably by terminating guest). In addition, prefer to use vcpu_unimpl() instead of WARN_ONCE() as handling unexpected exit reason should be a rare unexpected event (that was expected to never happen) and we prefer to print a message on it every time it occurs to guest. Furthermore, dump VMCS/VMCB to dmesg to assist diagnosing such cases. Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com> Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com> Reviewed-by: Joao Martins <joao.m.martins@oracle.com> Signed-off-by: Liran Alon <liran.alon@oracle.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-10KVM: x86: Add kvm_emulate_{rd,wr}msr() to consolidate VXM/SVM codeSean Christopherson
Move RDMSR and WRMSR emulation into common x86 code to consolidate nearly identical SVM and VMX code. Note, consolidating RDMSR introduces an extra indirect call, i.e. retpoline, due to reaching {svm,vmx}_get_msr() via kvm_x86_ops, but a guest kernel likely has bigger problems if increasing the latency of RDMSR VM-Exits by ~70 cycles has a measurable impact on overall VM performance. E.g. the only recurring RDMSR VM-Exits (after booting) on my system running Linux 5.2 in the guest are for MSR_IA32_TSC_ADJUST via arch_cpu_idle_enter(). No functional change intended. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-10KVM: x86: Refactor up kvm_{g,s}et_msr() to simplify callersSean Christopherson
Refactor the top-level MSR accessors to take/return the index and value directly instead of requiring the caller to dump them into a msr_data struct. No functional change intended. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-10KVM: X86: Tune PLE Window tracepointPeter Xu
The PLE window tracepoint triggers even if the window is not changed, and the wording can be a bit confusing too. One example line: kvm_ple_window: vcpu 0: ple_window 4096 (shrink 4096) It easily let people think of "the window now is 4096 which is shrinked", but the truth is the value actually didn't change (4096). Let's only dump this message if the value really changed, and we make the message even simpler like: kvm_ple_window: vcpu 4 old 4096 new 8192 (growed) Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-10KVM: VMX: Change ple_window type to unsigned intPeter Xu
The VMX ple_window is 32 bits wide, so logically it can overflow with an int. The module parameter is declared as unsigned int which is good, however the dynamic variable is not. Switching all the ple_window references to use unsigned int. The tracepoint changes will also affect SVM, but SVM is using an even smaller width (16 bits) so it's always fine. Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com> Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-10KVM: X86: Remove tailing newline for tracepointsPeter Xu
It's done by TP_printk() already. Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com> Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-10KVM: X86: Trace vcpu_id for vmexitPeter Xu
Tracing the ID helps to pair vmenters and vmexits for guests with multiple vCPUs. Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com> Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-10Merge tag 'kvmarm-5.4' of ↵Paolo Bonzini
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm updates for 5.4 - New ITS translation cache - Allow up to 512 CPUs to be supported with GICv3 (for real this time) - Now call kvm_arch_vcpu_blocking early in the blocking sequence - Tidy-up device mappings in S2 when DIC is available - Clean icache invalidation on VMID rollover - General cleanup
2019-09-10Merge tag 'kvm-ppc-next-5.4-1' of ↵Paolo Bonzini
git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc into HEAD PPC KVM update for 5.4 - Some prep for extending the uses of the rmap array - Various minor fixes - Commits from the powerpc topic/ppc-kvm branch, which fix a problem with interrupts arriving after free_irq, causing host hangs and crashes.
2019-09-10KVM: x86: Manually calculate reserved bits when loading PDPTRSSean Christopherson
Manually generate the PDPTR reserved bit mask when explicitly loading PDPTRs. The reserved bits that are being tracked by the MMU reflect the current paging mode, which is unlikely to be PAE paging in the vast majority of flows that use load_pdptrs(), e.g. CR0 and CR4 emulation, __set_sregs(), etc... This can cause KVM to incorrectly signal a bad PDPTR, or more likely, miss a reserved bit check and subsequently fail a VM-Enter due to a bad VMCS.GUEST_PDPTR. Add a one off helper to generate the reserved bits instead of sharing code across the MMU's calculations and the PDPTR emulation. The PDPTR reserved bits are basically set in stone, and pushing a helper into the MMU's calculation adds unnecessary complexity without improving readability. Oppurtunistically fix/update the comment for load_pdptrs(). Note, the buggy commit also introduced a deliberate functional change, "Also remove bit 5-6 from rsvd_bits_mask per latest SDM.", which was effectively (and correctly) reverted by commit cd9ae5fe47df ("KVM: x86: Fix page-tables reserved bits"). A bit of SDM archaeology shows that the SDM from late 2008 had a bug (likely a copy+paste error) where it listed bits 6:5 as AVL and A for PDPTEs used for 4k entries but reserved for 2mb entries. I.e. the SDM contradicted itself, and bits 6:5 are and always have been reserved. Fixes: 20c466b56168d ("KVM: Use rsvd_bits_mask in load_pdptrs()") Cc: stable@vger.kernel.org Cc: Nadav Amit <nadav.amit@gmail.com> Reported-by: Doug Reiland <doug.reiland@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Reviewed-by: Peter Xu <peterx@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-10KVM: x86: Disable posted interrupts for non-standard IRQs delivery modesAlexander Graf
We can easily route hardware interrupts directly into VM context when they target the "Fixed" or "LowPriority" delivery modes. However, on modes such as "SMI" or "Init", we need to go via KVM code to actually put the vCPU into a different mode of operation, so we can not post the interrupt Add code in the VMX and SVM PI logic to explicitly refuse to establish posted mappings for advanced IRQ deliver modes. This reflects the logic in __apic_accept_irq() which also only ever passes Fixed and LowPriority interrupts as posted interrupts into the guest. This fixes a bug I have with code which configures real hardware to inject virtual SMIs into my guest. Signed-off-by: Alexander Graf <graf@amazon.com> Reviewed-by: Liran Alon <liran.alon@oracle.com> Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Reviewed-by: Wanpeng Li <wanpengli@tencent.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-08-22KVM: VMX: Fix and tweak the comments for VM-EnterSean Christopherson
Fix an incorrect/stale comment regarding the vmx_vcpu pointer, as guest registers are now loaded using a direct pointer to the start of the register array. Opportunistically add a comment to document why the vmx_vcpu pointer is needed, its consumption via 'call vmx_update_host_rsp' is rather subtle. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Reviewed-by: Jim Mattson <jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-08-22KVM: Assert that struct kvm_vcpu is always as offset zeroSean Christopherson
KVM implementations that wrap struct kvm_vcpu with a vendor specific struct, e.g. struct vcpu_vmx, must place the vcpu member at offset 0, otherwise the usercopy region intended to encompass struct kvm_vcpu_arch will instead overlap random chunks of the vendor specific struct. E.g. padding a large number of bytes before struct kvm_vcpu triggers a usercopy warn when running with CONFIG_HARDENED_USERCOPY=y. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Reviewed-by: Jim Mattson <jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-08-22KVM: X86: Add pv tlb shootdown tracepointWanpeng Li
Add pv tlb shootdown tracepoint. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Wanpeng Li <wanpengli@tencent.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-08-22KVM: x86: Unconditionally call x86 ops that are always implementedSean Christopherson
Remove a few stale checks for non-NULL ops now that the ops in question are implemented by both VMX and SVM. Note, this is **not** stable material, the Fixes tags are there purely to show when a particular op was first supported by both VMX and SVM. Fixes: 74f169090b6f ("kvm/svm: Setup MCG_CAP on AMD properly") Fixes: b31c114b82b2 ("KVM: X86: Provide a capability to disable PAUSE intercepts") Fixes: 411b44ba80ab ("svm: Implements update_pi_irte hook to setup posted interrupt") Cc: Krish Sadhukhan <krish.sadhukhan@oracle.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-08-22KVM: x86/mmu: Consolidate "is MMIO SPTE" codeSean Christopherson
Replace the open-coded "is MMIO SPTE" checks in the MMU warnings related to software-based access/dirty tracking to make the code slightly more self-documenting. No functional change intended. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-08-22KVM: x86/mmu: Add explicit access mask for MMIO SPTEsSean Christopherson
When shadow paging is enabled, KVM tracks the allowed access type for MMIO SPTEs so that it can do a permission check on a MMIO GVA cache hit without having to walk the guest's page tables. The tracking is done by retaining the WRITE and USER bits of the access when inserting the MMIO SPTE (read access is implicitly allowed), which allows the MMIO page fault handler to retrieve and cache the WRITE/USER bits from the SPTE. Unfortunately for EPT, the mask used to retain the WRITE/USER bits is hardcoded using the x86 paging versions of the bits. This funkiness happens to work because KVM uses a completely different mask/value for MMIO SPTEs when EPT is enabled, and the EPT mask/value just happens to overlap exactly with the x86 WRITE/USER bits[*]. Explicitly define the access mask for MMIO SPTEs to accurately reflect that EPT does not want to incorporate any access bits into the SPTE, and so that KVM isn't subtly relying on EPT's WX bits always being set in MMIO SPTEs, e.g. attempting to use other bits for experimentation breaks horribly. Note, vcpu_match_mmio_gva() explicits prevents matching GVA==0, and all TDP flows explicit set mmio_gva to 0, i.e. zeroing vcpu->arch.access for EPT has no (known) functional impact. [*] Using WX to generate EPT misconfigurations (equivalent to reserved bit page fault) ensures KVM can employ its MMIO page fault tricks even platforms without reserved address bits. Fixes: ce88decffd17 ("KVM: MMU: mmio page fault support") Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-08-22KVM: x86: Rename access permissions cache member in struct kvm_vcpu_archSean Christopherson
Rename "access" to "mmio_access" to match the other MMIO cache members and to make it more obvious that it's tracking the access permissions for the MMIO cache. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-08-22x86: KVM: svm: eliminate hardcoded RIP advancement from vmrun_interception()Vitaly Kuznetsov
Just like we do with other intercepts, in vmrun_interception() we should be doing kvm_skip_emulated_instruction() and not just RIP += 3. Also, it is wrong to increment RIP before nested_svm_vmrun() as it can result in kvm_inject_gp(). We can't call kvm_skip_emulated_instruction() after nested_svm_vmrun() so move it inside. Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-08-22x86: KVM: svm: eliminate weird goto from vmrun_interception()Vitaly Kuznetsov
Regardless of whether or not nested_svm_vmrun_msrpm() fails, we return 1 from vmrun_interception() so there's no point in doing goto. Also, nested_svm_vmrun_msrpm() call can be made from nested_svm_vmrun() where other nested launch issues are handled. nested_svm_vmrun() returns a bool, however, its result is ignored in vmrun_interception() as we always return '1'. As a preparatory change to putting kvm_skip_emulated_instruction() inside nested_svm_vmrun() make nested_svm_vmrun() return an int (always '1' for now). Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-08-22x86: KVM: svm: remove hardcoded instruction length from interceptsVitaly Kuznetsov
Various intercepts hard-code the respective instruction lengths to optimize skip_emulated_instruction(): when next_rip is pre-set we skip kvm_emulate_instruction(vcpu, EMULTYPE_SKIP). The optimization is, however, incorrect: different (redundant) prefixes could be used to enlarge the instruction. We can't really avoid decoding. svm->next_rip is not used when CPU supports 'nrips' (X86_FEATURE_NRIPS) feature: next RIP is provided in VMCB. The feature is not really new (Opteron G3s had it already) and the change should have zero affect. Remove manual svm->next_rip setting with hard-coded instruction lengths. The only case where we now use svm->next_rip is EXIT_IOIO: the instruction length is provided to us by hardware. Hardcoded RIP advancement remains in vmrun_interception(), this is going to be taken care of separately. Reported-by: Jim Mattson <jmattson@google.com> Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-08-22x86: KVM: add xsetbv to the emulatorVitaly Kuznetsov
To avoid hardcoding xsetbv length to '3' we need to support decoding it in the emulator. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-08-22x86: KVM: clear interrupt shadow on EMULTYPE_SKIPVitaly Kuznetsov
When doing x86_emulate_instruction(EMULTYPE_SKIP) interrupt shadow has to be cleared if and only if the skipping is successful. There are two immediate issues: - In SVM skip_emulated_instruction() we are not zapping interrupt shadow in case kvm_emulate_instruction(EMULTYPE_SKIP) is used to advance RIP (!nrpip_save). - In VMX handle_ept_misconfig() when running as a nested hypervisor we (static_cpu_has(X86_FEATURE_HYPERVISOR) case) forget to clear interrupt shadow. Note that we intentionally don't handle the case when the skipped instruction is supposed to prolong the interrupt shadow ("MOV/POP SS") as skip-emulation of those instructions should not happen under normal circumstances. Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com> Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-08-22x86: kvm: svm: propagate errors from skip_emulated_instruction()Vitaly Kuznetsov
On AMD, kvm_x86_ops->skip_emulated_instruction(vcpu) can, in theory, fail: in !nrips case we call kvm_emulate_instruction(EMULTYPE_SKIP). Currently, we only do printk(KERN_DEBUG) when this happens and this is not ideal. Propagate the error up the stack. On VMX, skip_emulated_instruction() doesn't fail, we have two call sites calling it explicitly: handle_exception_nmi() and handle_task_switch(), we can just ignore the result. On SVM, we also have two explicit call sites: svm_queue_exception() and it seems we don't need to do anything there as we check if RIP was advanced or not. In task_switch_interception(), however, we are better off not proceeding to kvm_task_switch() in case skip_emulated_instruction() failed. Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-08-22x86: KVM: svm: don't pretend to advance RIP in case wrmsr_interception() ↵Vitaly Kuznetsov
results in #GP svm->next_rip is only used by skip_emulated_instruction() and in case kvm_set_msr() fails we rightfully don't do that. Move svm->next_rip advancement to 'else' branch to avoid creating false impression that it's always advanced (and make it look like rdmsr_interception()). This is a preparatory change to removing hardcoded RIP advancement from instruction intercepts, no functional change. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-08-22KVM: x86: Fix x86_decode_insn() return when fetching insn bytes failsSean Christopherson
Jump to the common error handling in x86_decode_insn() if __do_insn_fetch_bytes() fails so that its error code is converted to the appropriate return type. Although the various helpers used by x86_decode_insn() return X86EMUL_* values, x86_decode_insn() itself returns EMULATION_FAILED or EMULATION_OK. This doesn't cause a functional issue as the sole caller, x86_emulate_instruction(), currently only cares about success vs. failure, and success is indicated by '0' for both types (X86EMUL_CONTINUE and EMULATION_OK). Fixes: 285ca9e948fa ("KVM: emulate: speed up do_insn_fetch") Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-08-22KVM: x86: use Intel speculation bugs and features as derived in generic x86 codePaolo Bonzini
Similar to AMD bits, set the Intel bits from the vendor-independent feature and bug flags, because KVM_GET_SUPPORTED_CPUID does not care about the vendor and they should be set on AMD processors as well. Suggested-by: Jim Mattson <jmattson@google.com> Reviewed-by: Jim Mattson <jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-08-22KVM: x86: always expose VIRT_SSBD to guestsPaolo Bonzini
Even though it is preferrable to use SPEC_CTRL (represented by X86_FEATURE_AMD_SSBD) instead of VIRT_SPEC, VIRT_SPEC is always supported anyway because otherwise it would be impossible to migrate from old to new CPUs. Make this apparent in the result of KVM_GET_SUPPORTED_CPUID as well. However, we need to hide the bit on Intel processors, so move the setting to svm_set_supported_cpuid. Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Reported-by: Eduardo Habkost <ehabkost@redhat.com> Reviewed-by: Jim Mattson <jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-08-22KVM: x86: fix reporting of AMD speculation bug CPUID leafPaolo Bonzini
The AMD_* bits have to be set from the vendor-independent feature and bug flags, because KVM_GET_SUPPORTED_CPUID does not care about the vendor and they should be set on Intel processors as well. On top of this, SSBD, STIBP and AMD_SSB_NO bit were not set, and VIRT_SSBD does not have to be added manually because it is a cpufeature that comes directly from the host's CPUID bit. Reviewed-by: Jim Mattson <jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-08-21Revert "KVM: x86/mmu: Zap only the relevant pages when removing a memslot"Paolo Bonzini
This reverts commit 4e103134b862314dc2f2f18f2fb0ab972adc3f5f. Alex Williamson reported regressions with device assignment with this patch. Even though the bug is probably elsewhere and still latent, this is needed to fix the regression. Fixes: 4e103134b862 ("KVM: x86/mmu: Zap only the relevant pages when removing a memslot", 2019-02-05) Reported-by: Alex Willamson <alex.williamson@redhat.com> Cc: stable@vger.kernel.org Cc: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-08-14KVM: x86: svm: remove redundant assignment of var new_entryMiaohe Lin
new_entry is reassigned a new value next line. So it's redundant and remove it. Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-08-14kvm: x86: skip populating logical dest map if apic is not sw enabledRadim Krcmar
recalculate_apic_map does not santize ldr and it's possible that multiple bits are set. In that case, a previous valid entry can potentially be overwritten by an invalid one. This condition is hit when booting a 32 bit, >8 CPU, RHEL6 guest and then triggering a crash to boot a kdump kernel. This is the sequence of events: 1. Linux boots in bigsmp mode and enables PhysFlat, however, it still writes to the LDR which probably will never be used. 2. However, when booting into kdump, the stale LDR values remain as they are not cleared by the guest and there isn't a apic reset. 3. kdump boots with 1 cpu, and uses Logical Destination Mode but the logical map has been overwritten and points to an inactive vcpu. Signed-off-by: Radim Krcmar <rkrcmar@redhat.com> Signed-off-by: Bandan Das <bsd@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-08-10Merge branch 'x86-urgent-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 fixes from Thomas Gleixner: "A few fixes for x86: - Don't reset the carefully adjusted build flags for the purgatory and remove the unwanted flags instead. The 'reset all' approach led to build fails under certain circumstances. - Unbreak CLANG build of the purgatory by avoiding the builtin memcpy/memset implementations. - Address missing prototype warnings by including the proper header - Fix yet more fall-through issues" * 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/lib/cpu: Address missing prototypes warning x86/purgatory: Use CFLAGS_REMOVE rather than reset KBUILD_CFLAGS x86/purgatory: Do not use __builtin_memcpy and __builtin_memset x86: mtrr: cyrix: Mark expected switch fall-through x86/ptrace: Mark expected switch fall-through
2019-08-09Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds
Pull kvm fixes from Paolo Bonzini: "Bugfixes (arm and x86) and cleanups" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: selftests: kvm: Adding config fragments KVM: selftests: Update gitignore file for latest changes kvm: remove unnecessary PageReserved check KVM: arm/arm64: vgic: Reevaluate level sensitive interrupts on enable KVM: arm: Don't write junk to CP15 registers on reset KVM: arm64: Don't write junk to sysregs on reset KVM: arm/arm64: Sync ICH_VMCR_EL2 back when about to block x86: kvm: remove useless calls to kvm_para_available KVM: no need to check return value of debugfs_create functions KVM: remove kvm_arch_has_vcpu_debugfs() KVM: Fix leak vCPU's VMCS value into other pCPU KVM: Check preempted_in_kernel for involuntary preemption KVM: LAPIC: Don't need to wakeup vCPU twice afer timer fire arm64: KVM: hyp: debug-sr: Mark expected switch fall-through KVM: arm64: Update kvm_arm_exception_class and esr_class_str for new EC KVM: arm: vgic-v3: Mark expected switch fall-through arm64: KVM: regmap: Fix unexpected switch fall-through KVM: arm/arm64: Introduce kvm_pmu_vcpu_init() to setup PMU counter index
2019-08-09Merge tag 'kvmarm-fixes-for-5.3' of ↵Paolo Bonzini
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm fixes for 5.3 - A bunch of switch/case fall-through annotation, fixing one actual bug - Fix PMU reset bug - Add missing exception class debug strings
2019-08-08x86/lib/cpu: Address missing prototypes warningValdis Klētnieks
When building with W=1, warnings about missing prototypes are emitted: CC arch/x86/lib/cpu.o arch/x86/lib/cpu.c:5:14: warning: no previous prototype for 'x86_family' [-Wmissing-prototypes] 5 | unsigned int x86_family(unsigned int sig) | ^~~~~~~~~~ arch/x86/lib/cpu.c:18:14: warning: no previous prototype for 'x86_model' [-Wmissing-prototypes] 18 | unsigned int x86_model(unsigned int sig) | ^~~~~~~~~ arch/x86/lib/cpu.c:33:14: warning: no previous prototype for 'x86_stepping' [-Wmissing-prototypes] 33 | unsigned int x86_stepping(unsigned int sig) | ^~~~~~~~~~~~ Add the proper include file so the prototypes are there. Signed-off-by: Valdis Kletnieks <valdis.kletnieks@vt.edu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/42513.1565234837@turing-police
2019-08-08x86/purgatory: Use CFLAGS_REMOVE rather than reset KBUILD_CFLAGSNick Desaulniers
KBUILD_CFLAGS is very carefully built up in the top level Makefile, particularly when cross compiling or using different build tools. Resetting KBUILD_CFLAGS via := assignment is an antipattern. The comment above the reset mentions that -pg is problematic. Other Makefiles use `CFLAGS_REMOVE_file.o = $(CC_FLAGS_FTRACE)` when CONFIG_FUNCTION_TRACER is set. Prefer that pattern to wiping out all of the important KBUILD_CFLAGS then manually having to re-add them. Seems also that __stack_chk_fail references are generated when using CONFIG_STACKPROTECTOR or CONFIG_STACKPROTECTOR_STRONG. Fixes: 8fc5b4d4121c ("purgatory: core purgatory functionality") Reported-by: Vaibhav Rustagi <vaibhavrustagi@google.com> Suggested-by: Peter Zijlstra <peterz@infradead.org> Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Nick Desaulniers <ndesaulniers@google.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Vaibhav Rustagi <vaibhavrustagi@google.com> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20190807221539.94583-2-ndesaulniers@google.com
2019-08-08x86/purgatory: Do not use __builtin_memcpy and __builtin_memsetNick Desaulniers
Implementing memcpy and memset in terms of __builtin_memcpy and __builtin_memset is problematic. GCC at -O2 will replace calls to the builtins with calls to memcpy and memset (but will generate an inline implementation at -Os). Clang will replace the builtins with these calls regardless of optimization level. $ llvm-objdump -dr arch/x86/purgatory/string.o | tail 0000000000000339 memcpy: 339: 48 b8 00 00 00 00 00 00 00 00 movabsq $0, %rax 000000000000033b: R_X86_64_64 memcpy 343: ff e0 jmpq *%rax 0000000000000345 memset: 345: 48 b8 00 00 00 00 00 00 00 00 movabsq $0, %rax 0000000000000347: R_X86_64_64 memset 34f: ff e0 Such code results in infinite recursion at runtime. This is observed when doing kexec. Instead, reuse an implementation from arch/x86/boot/compressed/string.c. This requires to implement a stub function for warn(). Also, Clang may lower memcmp's that compare against 0 to bcmp's, so add a small definition, too. See also: commit 5f074f3e192f ("lib/string.c: implement a basic bcmp") Fixes: 8fc5b4d4121c ("purgatory: core purgatory functionality") Reported-by: Vaibhav Rustagi <vaibhavrustagi@google.com> Debugged-by: Vaibhav Rustagi <vaibhavrustagi@google.com> Debugged-by: Manoj Gupta <manojgupta@google.com> Suggested-by: Alistair Delva <adelva@google.com> Signed-off-by: Nick Desaulniers <ndesaulniers@google.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Vaibhav Rustagi <vaibhavrustagi@google.com> Cc: stable@vger.kernel.org Link: https://bugs.chromium.org/p/chromium/issues/detail?id=984056 Link: https://lkml.kernel.org/r/20190807221539.94583-1-ndesaulniers@google.com
2019-08-07x86: mtrr: cyrix: Mark expected switch fall-throughGustavo A. R. Silva
Mark switch cases where we are expecting to fall through. Fix the following warning (Building: i386_defconfig i386): arch/x86/kernel/cpu/mtrr/cyrix.c:99:6: warning: this statement may fall through [-Wimplicit-fallthrough=] Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Kees Cook <keescook@chromium.org> Link: https://lkml.kernel.org/r/20190805201712.GA19927@embeddedor
2019-08-07x86/ptrace: Mark expected switch fall-throughGustavo A. R. Silva
Mark switch cases where we are expecting to fall through. Fix the following warning (Building: allnoconfig i386): arch/x86/kernel/ptrace.c:202:6: warning: this statement may fall through [-Wimplicit-fallthrough=] if (unlikely(value == 0)) ^ arch/x86/kernel/ptrace.c:206:2: note: here default: ^~~~~~~ Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Kees Cook <keescook@chromium.org> Link: https://lkml.kernel.org/r/20190805195654.GA17831@embeddedor
2019-08-06Merge branch 'x86/grand-schemozzle' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull pti updates from Thomas Gleixner: "The performance deterioration departement is not proud at all to present yet another set of speculation fences to mitigate the next chapter in the 'what could possibly go wrong' story. The new vulnerability belongs to the Spectre class and affects GS based data accesses and has therefore been dubbed 'Grand Schemozzle' for secret communication purposes. It's officially listed as CVE-2019-1125. Conditional branches in the entry paths which contain a SWAPGS instruction (interrupts and exceptions) can be mis-speculated which results in speculative accesses with a wrong GS base. This can happen on entry from user mode through a mis-speculated branch which takes the entry from kernel mode path and therefore does not execute the SWAPGS instruction. The following speculative accesses are done with user GS base. On entry from kernel mode the mis-speculated branch executes the SWAPGS instruction in the entry from user mode path which has the same effect that the following GS based accesses are done with user GS base. If there is a disclosure gadget available in these code paths the mis-speculated data access can be leaked through the usual side channels. The entry from user mode issue affects all CPUs which have speculative execution. The entry from kernel mode issue affects only Intel CPUs which can speculate through SWAPGS. On CPUs from other vendors SWAPGS has semantics which prevent that. SMAP migitates both problems but only when the CPU is not affected by the Meltdown vulnerability. The mitigation is to issue LFENCE instructions in the entry from kernel mode path for all affected CPUs and on the affected Intel CPUs also in the entry from user mode path unless PTI is enabled because the CR3 write is serializing. The fences are as usual enabled conditionally and can be completely disabled on the kernel command line. The Spectre V1 documentation is updated accordingly. A big "Thank You!" goes to Josh for doing the heavy lifting for this round of hardware misfeature 'repair'. Of course also "Thank You!" to everybody else who contributed in one way or the other" * 'x86/grand-schemozzle' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: Documentation: Add swapgs description to the Spectre v1 documentation x86/speculation/swapgs: Exclude ATOMs from speculation through SWAPGS x86/entry/64: Use JMP instead of JMPQ x86/speculation: Enable Spectre v1 swapgs mitigations x86/speculation: Prepare entry code for Spectre v1 swapgs mitigations
2019-08-05x86: kvm: remove useless calls to kvm_para_availablePaolo Bonzini
Most code in arch/x86/kernel/kvm.c is called through x86_hyper_kvm, and thus only runs if KVM has been detected. There is no need to check again for the CPUID base. Cc: Sergio Lopez <slp@redhat.com> Cc: Jan Kiszka <jan.kiszka@siemens.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-08-05KVM: no need to check return value of debugfs_create functionsGreg KH
When calling debugfs functions, there is no need to ever check the return value. The function can work or not, but the code logic should never do something different based on this. Also, when doing this, change kvm_arch_create_vcpu_debugfs() to return void instead of an integer, as we should not care at all about if this function actually does anything or not. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Radim Krčmář" <rkrcmar@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: <x86@kernel.org> Cc: <kvm@vger.kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-08-05KVM: remove kvm_arch_has_vcpu_debugfs()Paolo Bonzini
There is no need for this function as all arches have to implement kvm_arch_create_vcpu_debugfs() no matter what. A #define symbol let us actually simplify the code. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-08-05KVM: Fix leak vCPU's VMCS value into other pCPUWanpeng Li
After commit d73eb57b80b (KVM: Boost vCPUs that are delivering interrupts), a five years old bug is exposed. Running ebizzy benchmark in three 80 vCPUs VMs on one 80 pCPUs Skylake server, a lot of rcu_sched stall warning splatting in the VMs after stress testing: INFO: rcu_sched detected stalls on CPUs/tasks: { 4 41 57 62 77} (detected by 15, t=60004 jiffies, g=899, c=898, q=15073) Call Trace: flush_tlb_mm_range+0x68/0x140 tlb_flush_mmu.part.75+0x37/0xe0 tlb_finish_mmu+0x55/0x60 zap_page_range+0x142/0x190 SyS_madvise+0x3cd/0x9c0 system_call_fastpath+0x1c/0x21 swait_active() sustains to be true before finish_swait() is called in kvm_vcpu_block(), voluntarily preempted vCPUs are taken into account by kvm_vcpu_on_spin() loop greatly increases the probability condition kvm_arch_vcpu_runnable(vcpu) is checked and can be true, when APICv is enabled the yield-candidate vCPU's VMCS RVI field leaks(by vmx_sync_pir_to_irr()) into spinning-on-a-taken-lock vCPU's current VMCS. This patch fixes it by checking conservatively a subset of events. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Marc Zyngier <Marc.Zyngier@arm.com> Cc: stable@vger.kernel.org Fixes: 98f4a1467 (KVM: add kvm_arch_vcpu_runnable() test to kvm_vcpu_on_spin() loop) Signed-off-by: Wanpeng Li <wanpengli@tencent.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-08-05KVM: LAPIC: Don't need to wakeup vCPU twice afer timer fireWanpeng Li
kvm_set_pending_timer() will take care to wake up the sleeping vCPU which has pending timer, don't need to check this in apic_timer_expired() again. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Wanpeng Li <wanpengli@tencent.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-07-31x86/vdso/32: Use 32bit syscall fallbackThomas Gleixner
The generic VDSO implementation uses the Y2038 safe clock_gettime64() and clock_getres_time64() syscalls as fallback for 32bit VDSO. This breaks seccomp setups because these syscalls might be not (yet) allowed. Implement the 32bit variants which use the legacy syscalls and select the variant in the core library. The 64bit time variants are not removed because they are required for the time64 based vdso accessors. Fixes: 7ac870747988 ("x86/vdso: Switch to generic vDSO implementation") Reported-by: Sean Christopherson <sean.j.christopherson@intel.com> Reported-by: Paul Bolle <pebolle@tiscali.nl> Suggested-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Reviewed-by: Andy Lutomirski <luto@kernel.org> Link: https://lkml.kernel.org/r/20190728131648.879156507@linutronix.de
2019-07-28Merge branch master from ↵Thomas Gleixner
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git Pick up the spectre documentation so the Grand Schemozzle can be added.
2019-07-28x86/speculation/swapgs: Exclude ATOMs from speculation through SWAPGSThomas Gleixner
Intel provided the following information: On all current Atom processors, instructions that use a segment register value (e.g. a load or store) will not speculatively execute before the last writer of that segment retires. Thus they will not use a speculatively written segment value. That means on ATOMs there is no speculation through SWAPGS, so the SWAPGS entry paths can be excluded from the extra LFENCE if PTI is disabled. Create a separate bug flag for the through SWAPGS speculation and mark all out-of-order ATOMs and AMD/HYGON CPUs as not affected. The in-order ATOMs are excluded from the whole mitigation mess anyway. Reported-by: Andrew Cooper <andrew.cooper3@citrix.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Tyler Hicks <tyhicks@canonical.com> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>