summaryrefslogtreecommitdiff
path: root/fs
AgeCommit message (Collapse)Author
2020-10-07xfs: expose the log push thresholdDarrick J. Wong
Separate the computation of the log push threshold and the push logic in xlog_grant_push_ail. This enables higher level code to determine (for example) that it is holding on to a logged intent item and the log is so busy that it is more than 75% full. In that case, it would be desirable to move the log item towards the head to release the tail, which we will cover in the next patch. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com>
2020-10-07xfs: periodically relog deferred intent itemsDarrick J. Wong
There's a subtle design flaw in the deferred log item code that can lead to pinning the log tail. Taking up the defer ops chain examples from the previous commit, we can get trapped in sequences like this: Caller hands us a transaction t0 with D0-D3 attached. The defer ops chain will look like the following if the transaction rolls succeed: t1: D0(t0), D1(t0), D2(t0), D3(t0) t2: d4(t1), d5(t1), D1(t0), D2(t0), D3(t0) t3: d5(t1), D1(t0), D2(t0), D3(t0) ... t9: d9(t7), D3(t0) t10: D3(t0) t11: d10(t10), d11(t10) t12: d11(t10) In transaction 9, we finish d9 and try to roll to t10 while holding onto an intent item for D3 that we logged in t0. The previous commit changed the order in which we place new defer ops in the defer ops processing chain to reduce the maximum chain length. Now make xfs_defer_finish_noroll capable of relogging the entire chain periodically so that we can always move the log tail forward. Most chains will never get relogged, except for operations that generate very long chains (large extents containing many blocks with different sharing levels) or are on filesystems with small logs and a lot of ongoing metadata updates. Callers are now required to ensure that the transaction reservation is large enough to handle logging done items and new intent items for the maximum possible chain length. Most callers are careful to keep the chain lengths low, so the overhead should be minimal. The decision to relog an intent item is made based on whether the intent was logged in a previous checkpoint, since there's no point in relogging an intent into the same checkpoint. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com>
2020-10-07xfs: change the order in which child and parent defer ops are finishedDarrick J. Wong
The defer ops code has been finishing items in the wrong order -- if a top level defer op creates items A and B, and finishing item A creates more defer ops A1 and A2, we'll put the new items on the end of the chain and process them in the order A B A1 A2. This is kind of weird, since it's convenient for programmers to be able to think of A and B as an ordered sequence where all the sub-tasks for A must finish before we move on to B, e.g. A A1 A2 D. Right now, our log intent items are not so complex that this matters, but this will become important for the atomic extent swapping patchset. In order to maintain correct reference counting of extents, we have to unmap and remap extents in that order, and we want to complete that work before moving on to the next range that the user wants to swap. This patch fixes defer ops to satsify that requirement. The primary symptom of the incorrect order was noticed in an early performance analysis of the atomic extent swap code. An astonishingly large number of deferred work items accumulated when userspace requested an atomic update of two very fragmented files. The cause of this was traced to the same ordering bug in the inner loop of xfs_defer_finish_noroll. If the ->finish_item method of a deferred operation queues new deferred operations, those new deferred ops are appended to the tail of the pending work list. To illustrate, say that a caller creates a transaction t0 with four deferred operations D0-D3. The first thing defer ops does is roll the transaction to t1, leaving us with: t1: D0(t0), D1(t0), D2(t0), D3(t0) Let's say that finishing each of D0-D3 will create two new deferred ops. After finish D0 and roll, we'll have the following chain: t2: D1(t0), D2(t0), D3(t0), d4(t1), d5(t1) d4 and d5 were logged to t1. Notice that while we're about to start work on D1, we haven't actually completed all the work implied by D0 being finished. So far we've been careful (or lucky) to structure the dfops callers such that D1 doesn't depend on d4 or d5 being finished, but this is a potential logic bomb. There's a second problem lurking. Let's see what happens as we finish D1-D3: t3: D2(t0), D3(t0), d4(t1), d5(t1), d6(t2), d7(t2) t4: D3(t0), d4(t1), d5(t1), d6(t2), d7(t2), d8(t3), d9(t3) t5: d4(t1), d5(t1), d6(t2), d7(t2), d8(t3), d9(t3), d10(t4), d11(t4) Let's say that d4-d11 are simple work items that don't queue any other operations, which means that we can complete each d4 and roll to t6: t6: d5(t1), d6(t2), d7(t2), d8(t3), d9(t3), d10(t4), d11(t4) t7: d6(t2), d7(t2), d8(t3), d9(t3), d10(t4), d11(t4) ... t11: d10(t4), d11(t4) t12: d11(t4) <done> When we try to roll to transaction #12, we're holding defer op d11, which we logged way back in t4. This means that the tail of the log is pinned at t4. If the log is very small or there are a lot of other threads updating metadata, this means that we might have wrapped the log and cannot get roll to t11 because there isn't enough space left before we'd run into t4. Let's shift back to the original failure. I mentioned before that I discovered this flaw while developing the atomic file update code. In that scenario, we have a defer op (D0) that finds a range of file blocks to remap, creates a handful of new defer ops to do that, and then asks to be continued with however much work remains. So, D0 is the original swapext deferred op. The first thing defer ops does is rolls to t1: t1: D0(t0) We try to finish D0, logging d1 and d2 in the process, but can't get all the work done. We log a done item and a new intent item for the work that D0 still has to do, and roll to t2: t2: D0'(t1), d1(t1), d2(t1) We roll and try to finish D0', but still can't get all the work done, so we log a done item and a new intent item for it, requeue D0 a second time, and roll to t3: t3: D0''(t2), d1(t1), d2(t1), d3(t2), d4(t2) If it takes 48 more rolls to complete D0, then we'll finally dispense with D0 in t50: t50: D<fifty primes>(t49), d1(t1), ..., d102(t50) We then try to roll again to get a chain like this: t51: d1(t1), d2(t1), ..., d101(t50), d102(t50) ... t152: d102(t50) <done> Notice that in rolling to transaction #51, we're holding on to a log intent item for d1 that was logged in transaction #1. This means that the tail of the log is pinned at t1. If the log is very small or there are a lot of other threads updating metadata, this means that we might have wrapped the log and cannot roll to t51 because there isn't enough space left before we'd run into t1. This is of course problem #2 again. But notice the third problem with this scenario: we have 102 defer ops tied to this transaction! Each of these items are backed by pinned kernel memory, which means that we risk OOM if the chains get too long. Yikes. Problem #1 is a subtle logic bomb that could hit someone in the future; problem #2 applies (rarely) to the current upstream, and problem #3 applies to work under development. This is not how incremental deferred operations were supposed to work. The dfops design of logging in the same transaction an intent-done item and a new intent item for the work remaining was to make it so that we only have to juggle enough deferred work items to finish that one small piece of work. Deferred log item recovery will find that first unfinished work item and restart it, no matter how many other intent items might follow it in the log. Therefore, it's ok to put the new intents at the start of the dfops chain. For the first example, the chains look like this: t2: d4(t1), d5(t1), D1(t0), D2(t0), D3(t0) t3: d5(t1), D1(t0), D2(t0), D3(t0) ... t9: d9(t7), D3(t0) t10: D3(t0) t11: d10(t10), d11(t10) t12: d11(t10) For the second example, the chains look like this: t1: D0(t0) t2: d1(t1), d2(t1), D0'(t1) t3: d2(t1), D0'(t1) t4: D0'(t1) t5: d1(t4), d2(t4), D0''(t4) ... t148: D0<50 primes>(t147) t149: d101(t148), d102(t148) t150: d102(t148) <done> This actually sucks more for pinning the log tail (we try to roll to t10 while holding an intent item that was logged in t1) but we've solved problem #1. We've also reduced the maximum chain length from: sum(all the new items) + nr_original_items to: max(new items that each original item creates) + nr_original_items This solves problem #3 by sharply reducing the number of defer ops that can be attached to a transaction at any given time. The change makes the problem of log tail pinning worse, but is improvement we need to solve problem #2. Actually solving #2, however, is left to the next patch. Note that a subsequent analysis of some hard-to-trigger reflink and COW livelocks on extremely fragmented filesystems (or systems running a lot of IO threads) showed the same symptoms -- uncomfortably large numbers of incore deferred work items and occasional stalls in the transaction grant code while waiting for log reservations. I think this patch and the next one will also solve these problems. As originally written, the code used list_splice_tail_init instead of list_splice_init, so change that, and leave a short comment explaining our actions. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com>
2020-10-07xfs: fix an incore inode UAF in xfs_bui_recoverDarrick J. Wong
In xfs_bui_item_recover, there exists a use-after-free bug with regards to the inode that is involved in the bmap replay operation. If the mapping operation does not complete, we call xfs_bmap_unmap_extent to create a deferred op to finish the unmapping work, and we retain a pointer to the incore inode. Unfortunately, the very next thing we do is commit the transaction and drop the inode. If reclaim tears down the inode before we try to finish the defer ops, we dereference garbage and blow up. Therefore, create a way to join inodes to the defer ops freezer so that we can maintain the xfs_inode reference until we're done with the inode. Note: This imposes the requirement that there be enough memory to keep every incore inode in memory throughout recovery. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-10-07xfs: clean up xfs_bui_item_recover iget/trans_alloc/ilock orderingDarrick J. Wong
In most places in XFS, we have a specific order in which we gather resources: grab the inode, allocate a transaction, then lock the inode. xfs_bui_item_recover doesn't do it in that order, so fix it to be more consistent. This also makes the error bailout code a bit less weird. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com>
2020-10-07xfs: clean up bmap intent item recovery checkingDarrick J. Wong
The bmap intent item checking code in xfs_bui_item_recover is spread all over the function. We should check the recovered log item at the top before we allocate any resources or do anything else, so do that. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-10-07xfs: xfs_defer_capture should absorb remaining transaction reservationDarrick J. Wong
When xfs_defer_capture extracts the deferred ops and transaction state from a transaction, it should record the transaction reservation type from the old transaction so that when we continue the dfops chain, we still use the same reservation parameters. Doing this means that the log item recovery functions get to determine the transaction reservation instead of abusing tr_itruncate in yet another part of xfs. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-10-07xfs: xfs_defer_capture should absorb remaining block reservationsDarrick J. Wong
When xfs_defer_capture extracts the deferred ops and transaction state from a transaction, it should record the remaining block reservations so that when we continue the dfops chain, we can reserve the same number of blocks to use. We capture the reservations for both data and realtime volumes. This adds the requirement that every log intent item recovery function must be careful to reserve enough blocks to handle both itself and all defer ops that it can queue. On the other hand, this enables us to do away with the handwaving block estimation nonsense that was going on in xlog_finish_defer_ops. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com>
2020-10-07xfs: proper replay of deferred ops queued during log recoveryDarrick J. Wong
When we replay unfinished intent items that have been recovered from the log, it's possible that the replay will cause the creation of more deferred work items. As outlined in commit 509955823cc9c ("xfs: log recovery should replay deferred ops in order"), later work items have an implicit ordering dependency on earlier work items. Therefore, recovery must replay the items (both recovered and created) in the same order that they would have been during normal operation. For log recovery, we enforce this ordering by using an empty transaction to collect deferred ops that get created in the process of recovering a log intent item to prevent them from being committed before the rest of the recovered intent items. After we finish committing all the recovered log items, we allocate a transaction with an enormous block reservation, splice our huge list of created deferred ops into that transaction, and commit it, thereby finishing all those ops. This is /really/ hokey -- it's the one place in XFS where we allow nested transactions; the splicing of the defer ops list is is inelegant and has to be done twice per recovery function; and the broken way we handle inode pointers and block reservations cause subtle use-after-free and allocator problems that will be fixed by this patch and the two patches after it. Therefore, replace the hokey empty transaction with a structure designed to capture each chain of deferred ops that are created as part of recovering a single unfinished log intent. Finally, refactor the loop that replays those chains to do so using one transaction per chain. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-10-07xfs: remove XFS_LI_RECOVEREDDarrick J. Wong
The ->iop_recover method of a log intent item removes the recovered intent item from the AIL by logging an intent done item and committing the transaction, so it's superfluous to have this flag check. Nothing else uses it, so get rid of the flag entirely. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-10-07xfs: remove xfs_defer_resetDarrick J. Wong
Remove this one-line helper since the assert is trivially true in one call site and the rest obscures a bitmask operation. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com>
2020-10-07btrfs: rename BTRFS_INODE_ORDERED_DATA_CLOSE flagNikolay Borisov
Commit 8d875f95da43 ("btrfs: disable strict file flushes for renames and truncates") eliminated the notion of ordered operations and instead BTRFS_INODE_ORDERED_DATA_CLOSE only remained as a flag indicating that a file's content should be synced to disk in case a file is truncated and any writes happen to it concurrently. In fact this intendend behavior was broken until it was fixed in f6dc45c7a93a ("Btrfs: fix filemap_flush call in btrfs_file_release"). All things considered let's give the flag a more descriptive name. Also slightly reword comments. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: annotate device name rcu_string with __rcuMadhuparna Bhowmik
This patch fixes the following sparse errors in fs/btrfs/super.c in function btrfs_show_devname() fs/btrfs/super.c: error: incompatible types in comparison expression (different address spaces): fs/btrfs/super.c: struct rcu_string [noderef] <asn:4> * fs/btrfs/super.c: struct rcu_string * The error was because of the following line in function btrfs_show_devname(): if (first_dev) seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\"); Annotating the btrfs_device::name member with __rcu fixes the sparse error. Acked-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Madhuparna Bhowmik <madhuparnabhowmik04@gmail.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: skip devices without magic signature when mountingAnand Jain
Many things can happen after the device is scanned and before the device is mounted. One such thing is losing the BTRFS_MAGIC on the device. If it happens we still won't free that device from the memory and cause the userland confusion. For example: As the BTRFS_IOC_DEV_INFO still carries the device path which does not have the BTRFS_MAGIC, 'btrfs fi show' still lists device which does not belong to the filesystem anymore: $ mkfs.btrfs -fq -draid1 -mraid1 /dev/sda /dev/sdb $ wipefs -a /dev/sdb # /dev/sdb does not contain magic signature $ mount -o degraded /dev/sda /btrfs $ btrfs fi show -m Label: none uuid: 470ec6fb-646b-4464-b3cb-df1b26c527bd Total devices 2 FS bytes used 128.00KiB devid 1 size 3.00GiB used 571.19MiB path /dev/sda devid 2 size 3.00GiB used 571.19MiB path /dev/sdb We need to distinguish the missing signature and invalid superblock, so add a specific error code ENODATA for that. This also fixes failure of fstest btrfs/198. CC: stable@vger.kernel.org # 4.19+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: cleanup cow block on errorJosef Bacik
In fstest btrfs/064 a transaction abort in __btrfs_cow_block could lead to a system lockup. It gets stuck trying to write back inodes, and the write back thread was trying to lock an extent buffer: $ cat /proc/2143497/stack [<0>] __btrfs_tree_lock+0x108/0x250 [<0>] lock_extent_buffer_for_io+0x35e/0x3a0 [<0>] btree_write_cache_pages+0x15a/0x3b0 [<0>] do_writepages+0x28/0xb0 [<0>] __writeback_single_inode+0x54/0x5c0 [<0>] writeback_sb_inodes+0x1e8/0x510 [<0>] wb_writeback+0xcc/0x440 [<0>] wb_workfn+0xd7/0x650 [<0>] process_one_work+0x236/0x560 [<0>] worker_thread+0x55/0x3c0 [<0>] kthread+0x13a/0x150 [<0>] ret_from_fork+0x1f/0x30 This is because we got an error while COWing a block, specifically here if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { ret = btrfs_reloc_cow_block(trans, root, buf, cow); if (ret) { btrfs_abort_transaction(trans, ret); return ret; } } [16402.241552] BTRFS: Transaction aborted (error -2) [16402.242362] WARNING: CPU: 1 PID: 2563188 at fs/btrfs/ctree.c:1074 __btrfs_cow_block+0x376/0x540 [16402.249469] CPU: 1 PID: 2563188 Comm: fsstress Not tainted 5.9.0-rc6+ #8 [16402.249936] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 [16402.250525] RIP: 0010:__btrfs_cow_block+0x376/0x540 [16402.252417] RSP: 0018:ffff9cca40e578b0 EFLAGS: 00010282 [16402.252787] RAX: 0000000000000025 RBX: 0000000000000002 RCX: ffff9132bbd19388 [16402.253278] RDX: 00000000ffffffd8 RSI: 0000000000000027 RDI: ffff9132bbd19380 [16402.254063] RBP: ffff9132b41a49c0 R08: 0000000000000000 R09: 0000000000000000 [16402.254887] R10: 0000000000000000 R11: ffff91324758b080 R12: ffff91326ef17ce0 [16402.255694] R13: ffff91325fc0f000 R14: ffff91326ef176b0 R15: ffff9132815e2000 [16402.256321] FS: 00007f542c6d7b80(0000) GS:ffff9132bbd00000(0000) knlGS:0000000000000000 [16402.256973] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [16402.257374] CR2: 00007f127b83f250 CR3: 0000000133480002 CR4: 0000000000370ee0 [16402.257867] Call Trace: [16402.258072] btrfs_cow_block+0x109/0x230 [16402.258356] btrfs_search_slot+0x530/0x9d0 [16402.258655] btrfs_lookup_file_extent+0x37/0x40 [16402.259155] __btrfs_drop_extents+0x13c/0xd60 [16402.259628] ? btrfs_block_rsv_migrate+0x4f/0xb0 [16402.259949] btrfs_replace_file_extents+0x190/0x820 [16402.260873] btrfs_clone+0x9ae/0xc00 [16402.261139] btrfs_extent_same_range+0x66/0x90 [16402.261771] btrfs_remap_file_range+0x353/0x3b1 [16402.262333] vfs_dedupe_file_range_one.part.0+0xd5/0x140 [16402.262821] vfs_dedupe_file_range+0x189/0x220 [16402.263150] do_vfs_ioctl+0x552/0x700 [16402.263662] __x64_sys_ioctl+0x62/0xb0 [16402.264023] do_syscall_64+0x33/0x40 [16402.264364] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [16402.264862] RIP: 0033:0x7f542c7d15cb [16402.266901] RSP: 002b:00007ffd35944ea8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 [16402.267627] RAX: ffffffffffffffda RBX: 00000000009d1968 RCX: 00007f542c7d15cb [16402.268298] RDX: 00000000009d2490 RSI: 00000000c0189436 RDI: 0000000000000003 [16402.268958] RBP: 00000000009d2520 R08: 0000000000000036 R09: 00000000009d2e64 [16402.269726] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000002 [16402.270659] R13: 000000000001f000 R14: 00000000009d1970 R15: 00000000009d2e80 [16402.271498] irq event stamp: 0 [16402.271846] hardirqs last enabled at (0): [<0000000000000000>] 0x0 [16402.272497] hardirqs last disabled at (0): [<ffffffff910dbf59>] copy_process+0x6b9/0x1ba0 [16402.273343] softirqs last enabled at (0): [<ffffffff910dbf59>] copy_process+0x6b9/0x1ba0 [16402.273905] softirqs last disabled at (0): [<0000000000000000>] 0x0 [16402.274338] ---[ end trace 737874a5a41a8236 ]--- [16402.274669] BTRFS: error (device dm-9) in __btrfs_cow_block:1074: errno=-2 No such entry [16402.276179] BTRFS info (device dm-9): forced readonly [16402.277046] BTRFS: error (device dm-9) in btrfs_replace_file_extents:2723: errno=-2 No such entry [16402.278744] BTRFS: error (device dm-9) in __btrfs_cow_block:1074: errno=-2 No such entry [16402.279968] BTRFS: error (device dm-9) in __btrfs_cow_block:1074: errno=-2 No such entry [16402.280582] BTRFS info (device dm-9): balance: ended with status: -30 The problem here is that as soon as we allocate the new block it is locked and marked dirty in the btree inode. This means that we could attempt to writeback this block and need to lock the extent buffer. However we're not unlocking it here and thus we deadlock. Fix this by unlocking the cow block if we have any errors inside of __btrfs_cow_block, and also free it so we do not leak it. CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: remove BTRFS_INODE_READDIO_NEED_LOCKGoldwyn Rodrigues
Since we now perform direct reads using i_rwsem, we can remove this inode flag used to co-ordinate unlocked reads. The truncate call takes i_rwsem. This means it is correctly synchronized with concurrent direct reads. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Johannes Thumshirn <jth@kernel.org> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07fs: remove no longer used dio_end_io()Goldwyn Rodrigues
Since we removed the last user of dio_end_io() when btrfs got converted to iomap infrastructure ("btrfs: switch to iomap for direct IO"), remove the helper function dio_end_io(). Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: return error if we're unable to read device statsJosef Bacik
I noticed when fixing device stats for seed devices that we simply threw away the return value from btrfs_search_slot(). This is because we may not have stat items, but we could very well get an error, and thus miss reporting the error up the chain. Fix this by returning ret if it's an actual error, and then stop trying to init the rest of the devices stats and return the error up the chain. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: init device stats for seed devicesJosef Bacik
We recently started recording device stats across the fleet, and noticed a large increase in messages such as this BTRFS warning (device dm-0): get dev_stats failed, not yet valid on our tiers that use seed devices for their root devices. This is because we do not initialize the device stats for any seed devices if we have a sprout device and mount using that sprout device. The basic steps for reproducing are: $ mkfs seed device $ mount seed device # fill seed device $ umount seed device $ btrfstune -S 1 seed device $ mount seed device $ btrfs device add -f sprout device /mnt/wherever $ umount /mnt/wherever $ mount sprout device /mnt/wherever $ btrfs device stats /mnt/wherever This will fail with the above message in dmesg. Fix this by iterating over the fs_devices->seed if they exist in btrfs_init_dev_stats. This fixed the problem and properly reports the stats for both devices. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> [ rename to btrfs_device_init_dev_stats ] Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: remove struct extent_io_opsNikolay Borisov
It's no longer used just remove the function and any related code which was initialising it for inodes. No functional changes. Removing 8 bytes from extent_io_tree in turn reduces size of other structures where it is embedded, notably btrfs_inode where it reduces size by 24 bytes. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: call submit_bio_hook directly for metadata pagesNikolay Borisov
No need to go through a function pointer indirection simply call submit_bio_hook directly by exporting and renaming the helper to btrfs_submit_metadata_bio. This makes the code more readable and should result in somewhat faster code due to no longer paying the price for specualtive attack mitigations that come with indirect function calls. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: stop calling submit_bio_hook for data inodesNikolay Borisov
Instead export and rename the function to btrfs_submit_data_bio and call it directly in submit_one_bio. This avoids paying the cost for speculative attacks mitigations and improves code readability. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: don't opencode is_data_inode in end_bio_extent_readpageNikolay Borisov
Use the is_data_inode helper. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: call submit_bio_hook directly in submit_one_bioNikolay Borisov
BTRFS has 2 inode types (for the purposes of the code in submit_one_bio) - ordinary data inodes (including the freespace inode) and the btree inode. Both of these implement submit_bio_hook so btrfsic_submit_bio can never be called from submit_one_bio so just remove it. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: remove extent_io_ops::readpage_end_io_hookNikolay Borisov
It's no longer used so let's remove it. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: replace readpage_end_io_hook with direct callsNikolay Borisov
Don't call readpage_end_io_hook for the btree inode. Instead of relying on indirect calls to implement metadata buffer validation simply check if the inode whose page we are processing equals the btree inode. If it does call the necessary function. This is an improvement in 2 directions: 1. We aren't paying the penalty of indirect calls in a post-speculation attacks world. 2. The function is now named more explicitly so it's obvious what's going on This is in preparation to removing struct extent_io_ops altogether. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: send, recompute reference path after orphanization of a directoryFilipe Manana
During an incremental send, when an inode has multiple new references we might end up emitting rename operations for orphanizations that have a source path that is no longer valid due to a previous orphanization of some directory inode. This causes the receiver to fail since it tries to rename a path that does not exists. Example reproducer: $ cat reproducer.sh #!/bin/bash mkfs.btrfs -f /dev/sdi >/dev/null mount /dev/sdi /mnt/sdi touch /mnt/sdi/f1 touch /mnt/sdi/f2 mkdir /mnt/sdi/d1 mkdir /mnt/sdi/d1/d2 # Filesystem looks like: # # . (ino 256) # |----- f1 (ino 257) # |----- f2 (ino 258) # |----- d1/ (ino 259) # |----- d2/ (ino 260) btrfs subvolume snapshot -r /mnt/sdi /mnt/sdi/snap1 btrfs send -f /tmp/snap1.send /mnt/sdi/snap1 # Now do a series of changes such that: # # *) inode 258 has one new hardlink and the previous name changed # # *) both names conflict with the old names of two other inodes: # # 1) the new name "d1" conflicts with the old name of inode 259, # under directory inode 256 (root) # # 2) the new name "d2" conflicts with the old name of inode 260 # under directory inode 259 # # *) inodes 259 and 260 now have the old names of inode 258 # # *) inode 257 is now located under inode 260 - an inode with a number # smaller than the inode (258) for which we created a second hard # link and swapped its names with inodes 259 and 260 # ln /mnt/sdi/f2 /mnt/sdi/d1/f2_link mv /mnt/sdi/f1 /mnt/sdi/d1/d2/f1 # Swap d1 and f2. mv /mnt/sdi/d1 /mnt/sdi/tmp mv /mnt/sdi/f2 /mnt/sdi/d1 mv /mnt/sdi/tmp /mnt/sdi/f2 # Swap d2 and f2_link mv /mnt/sdi/f2/d2 /mnt/sdi/tmp mv /mnt/sdi/f2/f2_link /mnt/sdi/f2/d2 mv /mnt/sdi/tmp /mnt/sdi/f2/f2_link # Filesystem now looks like: # # . (ino 256) # |----- d1 (ino 258) # |----- f2/ (ino 259) # |----- f2_link/ (ino 260) # | |----- f1 (ino 257) # | # |----- d2 (ino 258) btrfs subvolume snapshot -r /mnt/sdi /mnt/sdi/snap2 btrfs send -f /tmp/snap2.send -p /mnt/sdi/snap1 /mnt/sdi/snap2 mkfs.btrfs -f /dev/sdj >/dev/null mount /dev/sdj /mnt/sdj btrfs receive -f /tmp/snap1.send /mnt/sdj btrfs receive -f /tmp/snap2.send /mnt/sdj umount /mnt/sdi umount /mnt/sdj When executed the receive of the incremental stream fails: $ ./reproducer.sh Create a readonly snapshot of '/mnt/sdi' in '/mnt/sdi/snap1' At subvol /mnt/sdi/snap1 Create a readonly snapshot of '/mnt/sdi' in '/mnt/sdi/snap2' At subvol /mnt/sdi/snap2 At subvol snap1 At snapshot snap2 ERROR: rename d1/d2 -> o260-6-0 failed: No such file or directory This happens because: 1) When processing inode 257 we end up computing the name for inode 259 because it is an ancestor in the send snapshot, and at that point it still has its old name, "d1", from the parent snapshot because inode 259 was not yet processed. We then cache that name, which is valid until we start processing inode 259 (or set the progress to 260 after processing its references); 2) Later we start processing inode 258 and collecting all its new references into the list sctx->new_refs. The first reference in the list happens to be the reference for name "d1" while the reference for name "d2" is next (the last element of the list). We compute the full path "d1/d2" for this second reference and store it in the reference (its ->full_path member). The path used for the new parent directory was "d1" and not "f2" because inode 259, the new parent, was not yet processed; 3) When we start processing the new references at process_recorded_refs() we start with the first reference in the list, for the new name "d1". Because there is a conflicting inode that was not yet processed, which is directory inode 259, we orphanize it, renaming it from "d1" to "o259-6-0"; 4) Then we start processing the new reference for name "d2", and we realize it conflicts with the reference of inode 260 in the parent snapshot. So we issue an orphanization operation for inode 260 by emitting a rename operation with a destination path of "o260-6-0" and a source path of "d1/d2" - this source path is the value we stored in the reference earlier at step 2), corresponding to the ->full_path member of the reference, however that path is no longer valid due to the orphanization of the directory inode 259 in step 3). This makes the receiver fail since the path does not exists, it should have been "o259-6-0/d2". Fix this by recomputing the full path of a reference before emitting an orphanization if we previously orphanized any directory, since that directory could be a parent in the new path. This is a rare scenario so keeping it simple and not checking if that previously orphanized directory is in fact an ancestor of the inode we are trying to orphanize. A test case for fstests follows soon. CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: send, orphanize first all conflicting inodes when processing referencesFilipe Manana
When doing an incremental send it is possible that when processing the new references for an inode we end up issuing rename or link operations that have an invalid path, which contains the orphanized name of a directory before we actually orphanized it, causing the receiver to fail. The following reproducer triggers such scenario: $ cat reproducer.sh #!/bin/bash mkfs.btrfs -f /dev/sdi >/dev/null mount /dev/sdi /mnt/sdi touch /mnt/sdi/a touch /mnt/sdi/b mkdir /mnt/sdi/testdir # We want "a" to have a lower inode number then "testdir" (257 vs 259). mv /mnt/sdi/a /mnt/sdi/testdir/a # Filesystem looks like: # # . (ino 256) # |----- testdir/ (ino 259) # | |----- a (ino 257) # | # |----- b (ino 258) btrfs subvolume snapshot -r /mnt/sdi /mnt/sdi/snap1 btrfs send -f /tmp/snap1.send /mnt/sdi/snap1 # Now rename 259 to "testdir_2", then change the name of 257 to # "testdir" and make it a direct descendant of the root inode (256). # Also create a new link for inode 257 with the old name of inode 258. # By swapping the names and location of several inodes and create a # nasty dependency chain of rename and link operations. mv /mnt/sdi/testdir/a /mnt/sdi/a2 touch /mnt/sdi/testdir/a mv /mnt/sdi/b /mnt/sdi/b2 ln /mnt/sdi/a2 /mnt/sdi/b mv /mnt/sdi/testdir /mnt/sdi/testdir_2 mv /mnt/sdi/a2 /mnt/sdi/testdir # Filesystem now looks like: # # . (ino 256) # |----- testdir_2/ (ino 259) # | |----- a (ino 260) # | # |----- testdir (ino 257) # |----- b (ino 257) # |----- b2 (ino 258) btrfs subvolume snapshot -r /mnt/sdi /mnt/sdi/snap2 btrfs send -f /tmp/snap2.send -p /mnt/sdi/snap1 /mnt/sdi/snap2 mkfs.btrfs -f /dev/sdj >/dev/null mount /dev/sdj /mnt/sdj btrfs receive -f /tmp/snap1.send /mnt/sdj btrfs receive -f /tmp/snap2.send /mnt/sdj umount /mnt/sdi umount /mnt/sdj When running the reproducer, the receive of the incremental send stream fails: $ ./reproducer.sh Create a readonly snapshot of '/mnt/sdi' in '/mnt/sdi/snap1' At subvol /mnt/sdi/snap1 Create a readonly snapshot of '/mnt/sdi' in '/mnt/sdi/snap2' At subvol /mnt/sdi/snap2 At subvol snap1 At snapshot snap2 ERROR: link b -> o259-6-0/a failed: No such file or directory The problem happens because of the following: 1) Before we start iterating the list of new references for inode 257, we generate its current path and store it at @valid_path, done at the very beginning of process_recorded_refs(). The generated path is "o259-6-0/a", containing the orphanized name for inode 259; 2) Then we iterate over the list of new references, which has the references "b" and "testdir" in that specific order; 3) We process reference "b" first, because it is in the list before reference "testdir". We then issue a link operation to create the new reference "b" using a target path corresponding to the content at @valid_path, which corresponds to "o259-6-0/a". However we haven't yet orphanized inode 259, its name is still "testdir", and not "o259-6-0". The orphanization of 259 did not happen yet because we will process the reference named "testdir" for inode 257 only in the next iteration of the loop that goes over the list of new references. Fix the issue by having a preliminar iteration over all the new references at process_recorded_refs(). This iteration is responsible only for doing the orphanization of other inodes that have and old reference that conflicts with one of the new references of the inode we are currently processing. The emission of rename and link operations happen now in the next iteration of the new references. A test case for fstests will follow soon. CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: tree-checker: fix false alert caused by legacy btrfs root itemQu Wenruo
Commit 259ee7754b67 ("btrfs: tree-checker: Add ROOT_ITEM check") introduced btrfs root item size check, however btrfs root item has two versions, the legacy one which just ends before generation_v2 member, is smaller than current btrfs root item size. This caused btrfs kernel to reject valid but old tree root leaves. Fix this problem by also allowing legacy root item, since kernel can already handle them pretty well and upgrade to newer root item format when needed. Reported-by: Martin Steigerwald <martin@lichtvoll.de> Fixes: 259ee7754b67 ("btrfs: tree-checker: Add ROOT_ITEM check") CC: stable@vger.kernel.org # 5.4+ Tested-By: Martin Steigerwald <martin@lichtvoll.de> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: use unaligned helpers for stack and header set/get helpersDavid Sterba
In the definitions generated by BTRFS_SETGET_HEADER_FUNCS there's direct pointer assignment but we should use the helpers for unaligned access for clarity. It hasn't been a problem so far because of the natural alignment. Similarly for BTRFS_SETGET_STACK_FUNCS, that usually get a structure from stack that has an aligned start but some members may not be aligned due to packing. This as well hasn't caused problems so far. Move the put/get_unaligned_le8 stubs to ctree.h so we can use them. Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: free-space-cache: use unaligned helpers to access dataDavid Sterba
The free space inode stores the tracking data, checksums etc, using the io_ctl structure and moving the pointers. The data are generally aligned to at least 4 bytes (u32 for CRC) so it's not completely unaligned but for clarity we should use the proper helpers whenever a struct is initialized from io_ctl->cur pointer. Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: send: use helpers for unaligned access to header membersDavid Sterba
The header is mapped onto the send buffer and thus its members may be potentially unaligned so use the helpers instead of directly assigning the pointers. This has worked so far but let's use the helpers to make that clear. Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: use own btree inode io_tree owner idQu Wenruo
Btree inode is special compared to all other inode extent io_trees, although it has a btrfs inode, it doesn't have the track_uptodate bit at all. This means a lot of things like extent locking doesn't even need to be applied to btree io tree. Since it's so special, adds a new owner value for it to make debuging a little easier. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: reschedule when cloning lots of extentsJohannes Thumshirn
We have several occurrences of a soft lockup from fstest's generic/175 testcase, which look more or less like this one: watchdog: BUG: soft lockup - CPU#0 stuck for 22s! [xfs_io:10030] Kernel panic - not syncing: softlockup: hung tasks CPU: 0 PID: 10030 Comm: xfs_io Tainted: G L 5.9.0-rc5+ #768 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4-rebuilt.opensuse.org 04/01/2014 Call Trace: <IRQ> dump_stack+0x77/0xa0 panic+0xfa/0x2cb watchdog_timer_fn.cold+0x85/0xa5 ? lockup_detector_update_enable+0x50/0x50 __hrtimer_run_queues+0x99/0x4c0 ? recalibrate_cpu_khz+0x10/0x10 hrtimer_run_queues+0x9f/0xb0 update_process_times+0x28/0x80 tick_handle_periodic+0x1b/0x60 __sysvec_apic_timer_interrupt+0x76/0x210 asm_call_on_stack+0x12/0x20 </IRQ> sysvec_apic_timer_interrupt+0x7f/0x90 asm_sysvec_apic_timer_interrupt+0x12/0x20 RIP: 0010:btrfs_tree_unlock+0x91/0x1a0 [btrfs] RSP: 0018:ffffc90007123a58 EFLAGS: 00000282 RAX: ffff8881cea2fbe0 RBX: ffff8881cea2fbe0 RCX: 0000000000000000 RDX: ffff8881d23fd200 RSI: ffffffff82045220 RDI: ffff8881cea2fba0 RBP: 0000000000000001 R08: 0000000000000000 R09: 0000000000000032 R10: 0000160000000000 R11: 0000000000001000 R12: 0000000000001000 R13: ffff8882357fd5b0 R14: ffff88816fa76e70 R15: ffff8881cea2fad0 ? btrfs_tree_unlock+0x15b/0x1a0 [btrfs] btrfs_release_path+0x67/0x80 [btrfs] btrfs_insert_replace_extent+0x177/0x2c0 [btrfs] btrfs_replace_file_extents+0x472/0x7c0 [btrfs] btrfs_clone+0x9ba/0xbd0 [btrfs] btrfs_clone_files.isra.0+0xeb/0x140 [btrfs] ? file_update_time+0xcd/0x120 btrfs_remap_file_range+0x322/0x3b0 [btrfs] do_clone_file_range+0xb7/0x1e0 vfs_clone_file_range+0x30/0xa0 ioctl_file_clone+0x8a/0xc0 do_vfs_ioctl+0x5b2/0x6f0 __x64_sys_ioctl+0x37/0xa0 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f87977fc247 RSP: 002b:00007ffd51a2f6d8 EFLAGS: 00000206 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f87977fc247 RDX: 00007ffd51a2f710 RSI: 000000004020940d RDI: 0000000000000003 RBP: 0000000000000004 R08: 00007ffd51a79080 R09: 0000000000000000 R10: 00005621f11352f2 R11: 0000000000000206 R12: 0000000000000000 R13: 0000000000000000 R14: 00005621f128b958 R15: 0000000080000000 Kernel Offset: disabled ---[ end Kernel panic - not syncing: softlockup: hung tasks ]--- All of these lockup reports have the call chain btrfs_clone_files() -> btrfs_clone() in common. btrfs_clone_files() calls btrfs_clone() with both source and destination extents locked and loops over the source extent to create the clones. Conditionally reschedule in the btrfs_clone() loop, to give some time back to other processes. CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: use kvcalloc for allocation in btrfs_ioctl_send()Denis Efremov
Replace kvzalloc() call with kvcalloc() that also checks the size internally. There's a standalone overflow check in the function so we can return invalid parameter combination. Use array_size() helper to compute the memory size for clone_sources_tmp. Cc: Kees Cook <keescook@chromium.org> Signed-off-by: Denis Efremov <efremov@linux.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: use kvzalloc() to allocate clone_roots in btrfs_ioctl_send()Denis Efremov
btrfs_ioctl_send() used open-coded kvzalloc implementation earlier. The code was accidentally replaced with kzalloc() call [1]. Restore the original code by using kvzalloc() to allocate sctx->clone_roots. [1] https://patchwork.kernel.org/patch/9757891/#20529627 Fixes: 818e010bf9d0 ("btrfs: replace opencoded kvzalloc with the helper") CC: stable@vger.kernel.org # 4.14+ Signed-off-by: Denis Efremov <efremov@linux.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: remove inode argument from btrfs_start_ordered_extentNikolay Borisov
The passed in ordered_extent struct is always well-formed and contains the inode making the explicit argument redundant. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: remove inode argument from add_pending_csumsNikolay Borisov
It's used to reference the csum root which can be done from the trans handle as well. Simplify the signature and while at it also remove the noinline attribute as the function uses only at most 16 bytes of stack space. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: sink inode argument in insert_ordered_extent_file_extentNikolay Borisov
Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: switch btrfs_remove_ordered_extent to btrfs_inodeNikolay Borisov
Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: clean BTRFS_I usage in btrfs_destroy_inodeNikolay Borisov
Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: open code extent_read_full_page to its sole callerNikolay Borisov
This makes reading the code a tad easier by decreasing the level of indirection by one. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: sink mirror_num argument in __do_readpageNikolay Borisov
It's always set to 0 by the 2 callers so move it inside __do_readpage. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: sink read_flags argument into extent_read_full_pageNikolay Borisov
It's always set to 0 by its sole caller - btrfs_readpage. Simply remove it. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: sink mirror_num argument in extent_read_full_pageNikolay Borisov
It's always set to 0 from the sole caller - btrfs_readpage. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: promote extent_read_full_page to btrfs_readpageNikolay Borisov
Now that btrfs_readpage is the only caller of extent_read_full_page the latter can be open coded in the former. Use the occassion to rename __extent_read_full_page to extent_read_full_page. To facillitate this change submit_one_bio has to be exported as well. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: remove mirror_num argument from extent_read_full_pageNikolay Borisov
It's called only from btrfs_readpage which always passes 0 so just sink the argument into extent_read_full_page. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: remove btrfs_get_extent indirection from __do_readpageNikolay Borisov
Now that this function is only responsible for reading data pages it's no longer necessary to pass get_extent_t parameter across several layers of functions. This patch removes this parameter from multiple functions: __get_extent_map/__do_readpage/__extent_read_full_page/ extent_read_full_page and simply calls btrfs_get_extent directly in __get_extent_map. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: remove btree_get_extentNikolay Borisov
The sole purpose of this function was to satisfy the requirements of __do_readpage. Since that function is no longer used to read metadata pages the need to keep btree_get_extent around has also disappeared. Simply remove it. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: simplify metadata pages readingNikolay Borisov
Metadata pages currently use __do_readpage to read metadata pages, unfortunately this function is also used to deal with ordinary data pages. This makes the metadata pages reading code to go through multiple hoops in order to adhere to __do_readpage invariants. Most of these are necessary for data pages which could be compressed. For metadata it's enough to simply build a bio and submit it. To this effect simply call submit_extent_page directly from read_extent_buffer_pages which is the only callpath used to populate extent_buffers with data. This in turn enables further cleanups. Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>