summaryrefslogtreecommitdiff
path: root/include/linux/damon.h
AgeCommit message (Collapse)Author
2025-03-16mm/damon: respect core layer filters' allowance decision on ops layerSeongJae Park
Filtering decisions are made in filters evaluation order. Once a decision is made by a filter, filters that scheduled to be evaluated after the decision-made filter should just respect it. This is the intended and documented behavior. Since core layer-handled filters are evaluated before operations layer-handled filters, decisions made on core layer should respected by ops layer. In case of reject filters, the decision is respected, since core layer-rejected regions are not passed to ops layer. But in case of allow filters, ops layer filters don't know if the region has passed to them because it was allowed by core filters or just because it didn't match to any core layer. The current wrong implementation assumes it was due to not matched by any core filters. As a reuslt, the decision is not respected. Pass the missing information to ops layer using a new filed in 'struct damos', and make the ops layer filters respect it. Link: https://lkml.kernel.org/r/20250228175336.42781-1-sj@kernel.org Fixes: 491fee286e56 ("mm/damon/core: support damos_filter->allow") Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25mm/damon: explain "effective quota" on kernel-doc commentSeongJae Park
The kernel-doc comment for 'struct damos_quota' describes how "effective quota" is calculated, but does not explain what it is. Actually there was an input[1] about it. Add the explanation on the comment. Also, fix a trivial typo on the comment block: s/empt/empty/ [1] https://github.com/damonitor/damo/issues/17#issuecomment-2497525043 Link: https://lkml.kernel.org/r/20250110185232.54907-6-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Suggested-by: Honggyu Kim <honggyu.kim@sk.com> Cc: Yunjeong Mun <yunjeong.mun@sk.com> Cc: Honggyu Kim <honggyu.kim@sk.com> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25mm/damon: add 'allow' argument to damos_new_filter()SeongJae Park
DAMON API users should set damos_filter->allow manually to use a DAMOS allow-filter, since damos_new_filter() unsets the field always. It is cumbersome and easy to mistake. Add an arugment for setting the field to damos_new_filter(). Link: https://lkml.kernel.org/r/20250109175126.57878-6-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25mm/damon/core: add damos_filter->allow fieldSeongJae Park
DAMOS filters work as only exclusive (reject) filters. This makes it easy to be confused, and restrictive at combining multiple filters for covering various types of memory. Add a field named 'allow' to damos_filter. The field will be used to indicate whether the filter should work for inclusion or exclusion. To keep the old behavior, set it as 'false' (work as exclusive filter) by default, from damos_new_filter(). Following two commits will make the core and operations set layers, which handles damos_filter objects, respect the field, respectively. Link: https://lkml.kernel.org/r/20250109175126.57878-3-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25mm/damon: fixup damos_filter kernel-docSeongJae Park
Patch series "mm/damon: extend DAMOS filters for inclusion", v2. DAMOS fitlers are exclusive filters. It only excludes memory of given criterias from the DAMOS action targets. This has below limitations. First, the name is not explicitly explaining the behavior. This actually resulted in users' confusions[1]. Secondly, combined uses of multiple filters provide only restriced coverages. For example, building a DAMOS scheme that applies the action to memory that belongs to cgroup A "or" cgroup B is impossible. A workaround would be using two schemes that fitlers out memory that not belong to cgroup A and cgroup B, respectively. It is cumbersome, and difficult to control quota-like per-scheme features in an orchestration. Monitoring of filters-passed memory statistic will also be complicated. Extend DAMOS filters to support not only exclusion (rejecting), but also inclusion (allowing) behavior. For this, add a new damos_filter struct field called 'allow' for DAMON kernel API users. The filter works as an inclusion or exclusion filter when it is set or unset, respectively. For DAMON user-space ABI users, add a DAMON sysfs file of same name under DAMOS filter sysfs directory. To prevent exposing a behavioral change to old users, set rejecting as the default behavior. Note that allow-filters work for only inclusion, not exclusion of memory that not satisfying the criteria. And the default behavior of DAMOS for memory that no filter has involved is that the action can be applied to those memory. Also, filters-passed memory statistics are for any memory that passed through the DAMOS filters check stage. These implies installing allow-filters at the endof the filter list is useless. Refer to the design doc change of this series for more details. [1] https://lore.kernel.org/20240320165619.71478-1-sj@kernel.org This patch (of 10): The comment is slightly wrong. DAMOS filters are not only for pages, but general bytes of memory. Also the description of 'matching' is bit confusing, since DAMOS filters do only filtering out. Update the comments to be less confusing. Link: https://lkml.kernel.org/r/20250109175126.57878-1-sj@kernel.org Link: https://lkml.kernel.org/r/20250109175126.57878-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25mm/damon/core: pass per-region filter-passed bytes to ↵SeongJae Park
damos_walk_control->walk_fn() Total size of memory that passed DAMON operations set layer-handled DAMOS filters per scheme is provided to DAMON core API and ABI (sysfs interface) users. Having it per-region in non-accumulated way can provide it in finer granularity. Provide it to damos_walk() core API users, by passing the data to damos_walk_control->walk_fn(). Link: https://lkml.kernel.org/r/20250106193401.109161-13-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25mm/damon/core: implement per-scheme ops-handled filter-passed bytes statSeongJae Park
Implement a new per-DAMOS scheme statistic field, namely sz_ops_filter_passed, using the changed damon_operations->apply_scheme() interface. It counts total bytes of memory that given DAMOS action tried to be applied, and passed the operations layer handled region-internal filters of the scheme. DAMON API users can access it using DAMON-internal safe access features such as damon_call() and/or damos_walk(). Link: https://lkml.kernel.org/r/20250106193401.109161-8-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25mm/damon: ask apply_scheme() to report filter-passed region-internal bytesSeongJae Park
Some DAMOS filter types including those for young page, anon page, and belonging memcg are handled by underlying DAMON operations set implementation, via damon_operations->apply_scheme() interface. How many bytes of the region have passed the filter can be useful for DAMOS scheme tuning and access pattern monitoring. Modify the interface to let the callback implementation reports back the number if possible. Link: https://lkml.kernel.org/r/20250106193401.109161-5-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25mm/damon: clarify trying vs applying on damos_stat kernel-doc commentSeongJae Park
Patch series "mm/damon: enable page level properties based monitoring". TL; DR ====== This patch series enables access monitoring based on page level properties including their anonymousness, belonging cgroups and young-ness, by extending DAMOS stats and regions walk features with region-internal DAMOS filters. Background ========== DAMOS has initially developed for only access-aware system operations. But, efficient acces monitoring results querying is yet another major usage of today's DAMOS. DAMOS stats and regions walk, which exposes accumulated counts and per-region monitoring results that filtered by DAMOS parameters including target access pattern, quotas and DAMOS filters, are the key features for that usage. For tunings and investigations, it can be more useful if only the information can be exposed without making real system operational change. Special DAMOS action, DAMOS_STAT, was introduced for the purpose. DAMOS fundametally works with only access pattern information in region granularity. For some use cases, fixed and fine granularity information based on non access pattern properties can be useful, though. For example, on systems having swap devices that much faster than storage devices for files, DAMOS-based proactive reclaim need to be applied differently for anonymous pages and file-backed pages. DAMOS filters is a feature that makes it possible. It supports non access pattern information including page level properties such as anonymousness, belonging cgroups, and young-ness (whether the page has accessed since the last access check of it). The information can be useful for tuning and investigations. DAMOS stat exposes some of it via {nr,sz}_applied, but it is mixed with operation failures. Also, exposing the information without making system operation change is impossible, since DAMOS_STAT simply ignores the page level properties based DAMOS filters. Design ====== Expose the exact information for every DAMOS action including DAMOS_STAT by implementing below changes. Extend the interface for DAMON operations set layer, which contains the implementation of the page level filters, to report back the amount of memory that passed the region-internal DAMOS filters to the core layer. On the core layer, account the operations set layer reported stat with DAMOS stat for per-scheme monitoring. Also, pass the information to regions walk for per-region monitoring. In this way, DAMON API users can efficiently get the fine-grained information. For the user-space, make DAMON sysfs interface collects the information using the updated DAMON core API, and expose those to new per-scheme stats file and per-DAMOS-tried region properties file. Practical Usages ================ With this patch series, DAMON users can query how many bytes of regions of specific access temperature is backed by pages of specific type. The type can be any of DAMOS filter-supporting one, including anonymousness, belonging cgroups, and young-ness. For example, users can visualize access hotness-based page granulairty histogram for different cgroups, backing content type, or youngness. In future, it could be extended to more types such as whether it is THP, position on LRU lists, etc. This can be useful for estimating benefits of a new or an existing access-aware system optimizations without really committing the changes. Patches Sequence ================ The patches are constructed in four sub-sequences. First three patches (patches 1-3) update documents to have missing background knowledges and better structures for easily introducing followup changes. Following three patches (patches 4-6) change the operations set layer interface to report back the region-internal filter passed memory size, and make the operations set implementations support the changed symantic. Following five patches (patches 7-11) implement per-scheme accumulated stat for region-internal filter-passed memory size on core API (damos_stat) and DAMON sysfs interface. First two patches of those are for code change, and following three patches are for documentation. Finally, five patches (patches 12-16) implementing per-region region-internal filter-passed memory size follows. Similar to that for per-scheme stat, first two patches implement core-API and sysfs interface change. Then three patches for documentation update follow. This patch (of 16): DAMOS stat kernel-doc documentation is using terms that bit ambiguous. Without reading the code, understanding it correctly is not that easy. Add the clarification on the kernel-doc comment. Link: https://lkml.kernel.org/r/20250106193401.109161-1-sj@kernel.org Link: https://lkml.kernel.org/r/20250106193401.109161-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25mm/damon/core: implement damos_walk()SeongJae Park
Introduce a new core layer interface, damos_walk(). It aims to replace some damon_callback usages that access DAMOS schemes applied regions of ongoing kdamond with additional synchronizations. It receives a function pointer and asks kdamond to invoke it for any region that it tried to apply any DAMOS action within one scheme apply interval for every scheme of it. The function further waits until the kdamond finishes the invocations for every scheme, or cancels the request, and returns. The kdamond invokes the function as requested within the main loop. If it is deactivated by DAMOS watermarks or going out of the main loop, it marks the request as canceled, so that damos_walk() can wakeup and return. Link: https://lkml.kernel.org/r/20250103174400.54890-8-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25mm/damon/core: introduce damon_call()SeongJae Park
Introduce a new DAMON core API function, damon_call(). It aims to replace some damon_callback usages that access damon_ctx of ongoing kdamond with additional synchronizations. It receives a function pointer, let the parallel kdamond invokes the function, and returns after the invocation is finished, or canceled due to some races. kdamond invokes the function inside the main loop after sampling is done. If it is deactivated by DAMOS watermarks or already out of the main loop, mark the request as canceled so that damon_call() can wakeup and return. Link: https://lkml.kernel.org/r/20250103174400.54890-4-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-09mm/damon/core: remove per-scheme region priority histogram bufferSeongJae Park
Nobody is reading from or writing to the per-scheme region priorities histogram buffer. It is only wasting memory. Remove it. Link: https://lkml.kernel.org/r/20240826042323.87025-4-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-09mm/damon/core: introduce per-context region priorities histogram bufferSeongJae Park
Patch series "replace per-quota region priorities histogram buffer with per-context one". Each DAMOS quota (struct damos_quota) maintains a histogram for total regions size per its prioritization score. DAMOS calcultes minimum prioritization score of regions that are ok to apply the DAMOS action to while respecting the quota. The histogram is constructed only for the calculation of the minimum score in damos_adjust_quota() for each quota which called by kdamond_fn(). Hence, there is no real reason to have per-quota histogram. Only per-kdamond histogram is needed, since parallel kdamonds could have races otherwise. The current implementation is only wasting the memory, and can easily cause unintended stack usage[1]. So, introducing a per-kdamond histogram and replacing the per-quota one with it would be the right solution for the issue. However, supporting multiple DAMON contexts per kdamond is still an ongoing work[2] without a clear estimated time of arrival. Meanwhile, per-context histogram could be an effective and straightforward solution having no blocker. Let's fix the problem first in the way. This patch (of 4): Introduce per-context buffer for region priority scores-total size histogram. Same to the per-quota one (->histogram of struct damos_quota), the new buffer is hidden from DAMON API users by being defined as a private field of DAMON context structure. It is dynamically allocated and de-allocated at the beginning and ending of the execution of the kdamond by kdamond_fn() itself. [1] commit 0742cadf5e4c ("mm/damon/lru_sort: adjust local variable to dynamic allocation") [2] https://lore.kernel.org/20240531122320.909060-1-yorha.op@gmail.com Link: https://lkml.kernel.org/r/20240826042323.87025-1-sj@kernel.org Link: https://lkml.kernel.org/r/20240826042323.87025-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03mm/damon/core: implement DAMON context commit functionSeongJae Park
Implement functions for supporting online DAMON context level parameters update. The function receives two DAMON context structs. One is the struct that currently being used by a kdamond and therefore to be updated. The other one contains the parameters to be applied to the first one. The function applies the new parameters to the destination struct while keeping/updating the internal status and operation results. The function should be called from DAMON context-update-safe place, like DAMON callbacks. Link: https://lkml.kernel.org/r/20240618181809.82078-3-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03mm/damon/core: implement DAMOS quota goals online commit functionSeongJae Park
Patch series "mm/damon: introduce DAMON parameters online commit function". DAMON context struct (damon_ctx) contains user requests (parameters), internal status, and operation results. For flexible usages, DAMON API users are encouraged to manually manipulate the struct. That works well for simple use cases. However, it has turned out that it is not that simple at least for online parameters udpate. It is easy to forget properly maintaining internal status and operation results. Also, such manual manipulation for online tuning is implemented multiple times on DAMON API users including DAMON sysfs interface, DAMON_RECLAIM and DAMON_LRU_SORT. As a result, we have multiple sources of bugs for same problem. Actually we found and fixed a few bugs from online parameter updating of DAMON API users. Implement a function for online DAMON parameters update in core layer, and replace DAMON API users' manual manipulation code for the use case. The core layer function could still have bugs, but this change reduces the source of bugs for the problem to one place. This patch (of 12): Implement functions for supporting online DAMOS quota goals parameters update. The function receives two DAMOS quota structs. One is the struct that currently being used by a kdamond and therefore to be updated. The other one contains the parameters to be applied to the first one. The function applies the new parameters to the destination struct while keeping/updating the internal status. The function should be called from parameters-update safe place, like DAMON callbacks. Link: https://lkml.kernel.org/r/20240618181809.82078-1-sj@kernel.org Link: https://lkml.kernel.org/r/20240618181809.82078-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03mm/damon/paddr: introduce DAMOS_MIGRATE_HOT action for promotionHyeongtak Ji
This patch introduces DAMOS_MIGRATE_HOT action, which is similar to DAMOS_MIGRATE_COLD, but proritizes hot pages. It migrates pages inside the given region to the 'target_nid' NUMA node in the sysfs. Here is one of the example usage of this 'migrate_hot' action. $ cd /sys/kernel/mm/damon/admin/kdamonds/<N> $ cat contexts/<N>/schemes/<N>/action migrate_hot $ echo 0 > contexts/<N>/schemes/<N>/target_nid $ echo commit > state $ numactl -p 2 ./hot_cold 500M 600M & $ numastat -c -p hot_cold Per-node process memory usage (in MBs) PID Node 0 Node 1 Node 2 Total -------------- ------ ------ ------ ----- 701 (hot_cold) 501 0 601 1101 Link: https://lkml.kernel.org/r/20240614030010.751-7-honggyu.kim@sk.com Signed-off-by: Hyeongtak Ji <hyeongtak.ji@sk.com> Signed-off-by: Honggyu Kim <honggyu.kim@sk.com> Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Gregory Price <gregory.price@memverge.com> Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com> Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Rakie Kim <rakie.kim@sk.com> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03mm/damon/paddr: introduce DAMOS_MIGRATE_COLD action for demotionHonggyu Kim
This patch introduces DAMOS_MIGRATE_COLD action, which is similar to DAMOS_PAGEOUT, but migrate folios to the given 'target_nid' in the sysfs instead of swapping them out. The 'target_nid' sysfs knob informs the migration target node ID. Here is one of the example usage of this 'migrate_cold' action. $ cd /sys/kernel/mm/damon/admin/kdamonds/<N> $ cat contexts/<N>/schemes/<N>/action migrate_cold $ echo 2 > contexts/<N>/schemes/<N>/target_nid $ echo commit > state $ numactl -p 0 ./hot_cold 500M 600M & $ numastat -c -p hot_cold Per-node process memory usage (in MBs) PID Node 0 Node 1 Node 2 Total -------------- ------ ------ ------ ----- 701 (hot_cold) 501 0 601 1101 Since there are some common routines with pageout, many functions have similar logics between pageout and migrate cold. damon_pa_migrate_folio_list() is a minimized version of shrink_folio_list(). Link: https://lkml.kernel.org/r/20240614030010.751-6-honggyu.kim@sk.com Signed-off-by: Honggyu Kim <honggyu.kim@sk.com> Signed-off-by: Hyeongtak Ji <hyeongtak.ji@sk.com> Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Gregory Price <gregory.price@memverge.com> Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com> Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Rakie Kim <rakie.kim@sk.com> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03mm/damon/sysfs-schemes: add target_nid on sysfs-schemesHyeongtak Ji
This patch adds target_nid under /sys/kernel/mm/damon/admin/kdamonds/<N>/contexts/<N>/schemes/<N>/ The 'target_nid' can be used as the destination node for DAMOS actions such as DAMOS_MIGRATE_{HOT,COLD} in the follow up patches. [sj@kernel.org: document target_nid file] Link: https://lkml.kernel.org/r/20240618213630.84846-3-sj@kernel.org Link: https://lkml.kernel.org/r/20240614030010.751-4-honggyu.kim@sk.com Signed-off-by: Hyeongtak Ji <hyeongtak.ji@sk.com> Signed-off-by: Honggyu Kim <honggyu.kim@sk.com> Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Gregory Price <gregory.price@memverge.com> Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com> Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Rakie Kim <rakie.kim@sk.com> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-05-05mm/damon: add DAMOS filter type YOUNGSeongJae Park
Define yet another DAMOS filter type, YOUNG. Like anon and memcg, the type of filter will be applied to each page in the memory region, and see if the page is accessed since the last check. Based on the 'matching' parameter, the page is filtered out or in. Note that this commit is adding only the type definition. The implementation should be made by DAMON operations sets. A commit for the implementation on 'paddr' DAMON operations set will follow. Link: https://lkml.kernel.org/r/20240426195247.100306-4-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Tested-by: Honggyu Kim <honggyu.kim@sk.com> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23mm/damon/core: implement PSI metric DAMOS quota goalSeongJae Park
Extend DAMOS quota goal metric with system wide memory pressure stall time. Specifically, the system level 'some' PSI for memory is used. The target value can be set in microseconds. DAMOS measures the increased amount of the PSI metric in last quota_reset_interval and use the ratio of it versus the user-specified target PSI value as the score for the auto-tuning feedback loop. Link: https://lkml.kernel.org/r/20240219194431.159606-14-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23mm/damon/core: support multiple metrics for quota goalSeongJae Park
DAMOS quota auto-tuning asks users to assess the current tuned quota and provide the feedback in a manual and repeated way. It allows users generate the feedback from a source that the kernel cannot access, and writing a script or a function for doing the manual and repeated feeding is not a big deal. However, additional works are additional works, and it could be more efficient if DAMOS could do the fetch itself, especially in case of DAMON sysfs interface use case, since it can avoid the context switches between the user-space and the kernel-space, though the overhead would be only trivial in most cases. Also in many cases, feedbacks could be made from kernel-accessible sources, such as PSI, CPU usage, etc. Make the quota goal to support multiple types of metrics including such ones. Link: https://lkml.kernel.org/r/20240219194431.159606-13-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23mm/damon/core: let goal specified with only target and current valuesSeongJae Park
DAMOS quota auto-tuning feature let users to set the goal by providing a function for getting the current score of the tuned quota. It allows flexible goal setup, but only simple user-set quota is currently being used. As a result, the only user of the DAMOS quota auto-tuning is using a silly void pointer casting based score value passing function. Simplify the interface and the user code by letting user directly set the target and the current value. Link: https://lkml.kernel.org/r/20240219194431.159606-12-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23mm/damon/core: remove ->goal field of damos_quotaSeongJae Park
DAMOS quota auto-tuning feature supports static signle goal and dynamic multiple goals via DAMON kernel API, specifically via ->goal and ->goals fields of damos_quota struct, respectively. All in-tree DAMOS kernel API users are using only the dynamic multiple goals now. Remove the unsued static single goal interface. Link: https://lkml.kernel.org/r/20240219194431.159606-11-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23mm/damon/core: add multiple goals per damos_quota and helpers for thoseSeongJae Park
The feedback-driven DAMOS quota auto-tuning feature allows only single goal to the DAMON kernel API users. The API users could implement multiple goals for the end-users on their level, and that's what DAMON sysfs interface is doing. More DAMON kernel API users such as DAMON_RECLAIM would need to do similar work. To reduce unnecessary future duplciated efforts, support multiple goals from DAMOS core layer. To make the support in minimum non-destructive change, keep the old single goal setup interface, and add multiple goals setup. The single goal will treated as one of the multiple goals, so old API users are not required to make any change. Link: https://lkml.kernel.org/r/20240219194431.159606-9-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23mm/damon/core: split out quota goal related fields to a structSeongJae Park
'struct damos_quota' is not small now. Split out fields for quota goal to a separate struct for easier reading. Link: https://lkml.kernel.org/r/20240219194431.159606-8-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23mm/damon: move comments and fields for damos-quota-prioritization to the endSeongJae Park
The comments and definition of 'struct damos_quota' lists a few fields for effective quota generation first, fields for regions prioritization under the quota, and then remaining fields for effective quota generation. Readers' should unnecesssarily switch their context in the middle. List all the fields for the effective quota first, and then fields for the prioritization for making it easier to read. Link: https://lkml.kernel.org/r/20240219194431.159606-7-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23mm/damon/core: set damos_quota->esz as public field and documentSeongJae Park
Patch series "mm/damon: let DAMOS feeds and tame/auto-tune itself". The Aim-oriented Feedback-driven DAMOS Aggressiveness Auto-tuning patchset[1] which has merged since commit 9294a037c015 ("mm/damon/core: implement goal-oriented feedback-driven quota auto-tuning") made the mechanism and the policy separated. That is, users can set a part of DAMOS control policies without a deep understanding of the mechanism but just their demands such as SLA. However, users are still required to do some additional work of manually collecting their target metric and feeding it to DAMOS. In the case of end-users who use DAMON sysfs interface, the context switches between user-space and kernel-space could also make it inefficient. The overhead is supposed to be only trivial in common cases, though. Meanwhile, in simple use cases, the target metric could be common system metrics that the kernel can efficiently self-retrieve, such as memory pressure stall time (PSI). Extend DAMOS quota auto-tuning to support multiple types of metrics including the DAMOS self-retrievable ones, and add support for memory pressure stall time metric. Different types of metrics can be supported in future. The auto-tuning capability is currently supported for only users of DAMOS kernel API and DAMON sysfs interface. Extend the support to DAMON_RECLAIM. Patches Sequence ================ First five patches are for helping debugging and fine-tuning existing quota control features. The first one (patch 1) exposes the effective quota that is made with given user inputs to DAMOS kernel API users and kernel-doc documents. Following four patches implement (patches 1, 2 and 3) and document (patches 4 and 5) a new DAMON sysfs file that exposes the value. Following six patches cleanup and simplify the existing DAMOS quota auto-tuning code by improving layout of comments and data structures (patches 6 and 7), supporting common use cases, namely multiple goals (patches 8, 9 and 10), and simplifying the interface (patch 11). Then six patches for the main purpose of this patchset follow. The first three changes extend the core logic for various target metrics (patch 12), implement memory pressure stall time-based target metric support (patch 13), and update DAMON sysfs interface to support the new target metric (patch 14). Then, documentation updates for the features on design (patch 15), ABI (patch 16), and usage (patch 17) follow. Last three patches add auto-tuning support on DAMON_RECLAIM. The patches implement DAMON_RECLAIM parameters for user-feedback driven quota auto-tuning (patch 18), memory pressure stall time-driven quota self-tuning (patch 19), and finally update the DAMON_RECLAIM usage document for the new parameters (patch 20). [1] https://lore.kernel.org/all/20231130023652.50284-1-sj@kernel.org/ This patch (of 20): DAMOS allow users to specify the quota as they want in multiple ways including time quota, size quota, and feedback-based auto-tuning. DAMOS makes one effective quota out of the inputs and use it at the end. Knowing the current effective quota helps understanding DAMOS' internal mechanism and fine-tuning quotas. DAMON kernel API users can get the information from ->esz field of damos_quota struct, but the field is marked as private purpose, and not kernel-doc documented. Make it public and document. Link: https://lkml.kernel.org/r/20240219194431.159606-1-sj@kernel.org Link: https://lkml.kernel.org/r/20240219194431.159606-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-20mm/damon: update email of SeongJaeSeongJae Park
Patch series "mm/damon: misc updates for 6.8". Update comments, tests, and documents for DAMON. This patch (of 6): SeongJae is using his kernel.org account for DAMON development. Update the old email addresses on the comments of DAMON source files. Link: https://lkml.kernel.org/r/20231213190338.54146-1-sj@kernel.org Link: https://lkml.kernel.org/r/20231213190338.54146-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-20sync mm-stable with mm-hotfixes-stable to pick up depended-upon changesAndrew Morton
2023-12-12mm/damon/core: make damon_start() waits until kdamond_fn() startsSeongJae Park
The cleanup tasks of kdamond threads including reset of corresponding DAMON context's ->kdamond field and decrease of global nr_running_ctxs counter is supposed to be executed by kdamond_fn(). However, commit 0f91d13366a4 ("mm/damon: simplify stop mechanism") made neither damon_start() nor damon_stop() ensure the corresponding kdamond has started the execution of kdamond_fn(). As a result, the cleanup can be skipped if damon_stop() is called fast enough after the previous damon_start(). Especially the skipped reset of ->kdamond could cause a use-after-free. Fix it by waiting for start of kdamond_fn() execution from damon_start(). Link: https://lkml.kernel.org/r/20231208175018.63880-1-sj@kernel.org Fixes: 0f91d13366a4 ("mm/damon: simplify stop mechanism") Signed-off-by: SeongJae Park <sj@kernel.org> Reported-by: Jakub Acs <acsjakub@amazon.de> Cc: Changbin Du <changbin.du@intel.com> Cc: Jakub Acs <acsjakub@amazon.de> Cc: <stable@vger.kernel.org> # 5.15.x Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-12mm/damon/core: implement goal-oriented feedback-driven quota auto-tuningSeongJae Park
Patch series "mm/damon: let users feed and tame/auto-tune DAMOS". Introduce Aim-oriented Feedback-driven DAMOS Aggressiveness Auto-tuning. It makes DAMOS self-tuned with periodic simple user feedback. Background: DAMOS Control Difficulty ==================================== DAMOS helps users easily implement access pattern aware system operations. However, controlling DAMOS in the wild is not that easy. The basic way for DAMOS control is specifying the target access pattern. In this approach, the user is assumed to well understand the access pattern and the characteristics of the system and the workloads. Though there are useful tools for that, it takes time and effort depending on the complexity and the dynamicity of the system and the workloads. After all, the access pattern consists of three ranges, namely the size, the access rate, and the age of the regions. It means users need to tune six parameters, which is anyway not a simple task. One of the worst cases would be DAMOS being too aggressive like a berserker, and therefore consuming too much system resource and making unwanted radical system operations. To let users avoid such cases, DAMOS allows users to set the upper-limit of the schemes' aggressiveness, namely DAMOS quota. DAMOS further provides its best-effort under the limit by prioritizing regions based on the access pattern of the regions. For example, users can ask DAMOS to page out up to 100 MiB of memory regions per second. Then DAMOS pages out regions that are not accessed for a longer time (colder) first under the limit. This allows users to set the target access pattern a bit naive with wider ranges, and focus on tuning only one parameter, the quota. In other words, the number of parameters to tune can be reduced from six to one. Still, however, the optimum value for the quota depends on the system and the workloads' characteristics, so not that simple. The number of parameters to tune can also increase again if the user needs to run multiple schemes. Aim-oriented Feedback-driven DAMOS Aggressiveness Auto Tuning ============================================================= Users would use DAMOS since they want to achieve something with it. They will likely have measurable metrics representing the achievement and the target number of the metric like SLO, and continuously measure that anyway. While the additional cost of getting the information is nearly zero, it could be useful for DAMOS to understand how appropriate its current aggressiveness is set, and adjust it on its own to make the metric value more close to the target. Based on this idea, we introduce a new way of tuning DAMOS with nearly zero additional effort, namely Aim-oriented Feedback-driven DAMOS Aggressiveness Auto Tuning. It asks users to provide feedback representing how well DAMOS is doing relative to the users' aim. Then DAMOS adjusts its aggressiveness, specifically the quota that provides the best effort result under the limit, based on the current level of the aggressiveness and the users' feedback. Implementation ============== The implementation asks users to represent the feedback with score numbers. The scores could be anything including user-space specific metrics including latency and throughput of special user-space workloads, and system metrics including free memory ratio, memory pressure stall time (PSI), and active to inactive LRU lists size ratio. The feedback scores and the aggressiveness of the given DAMOS scheme are assumed to be positively proportional, though. Selecting metrics of the assumption is the users' responsibility. The core logic uses the below simple feedback loop algorithm to calculate the next aggressiveness level of the scheme from the current aggressiveness level and the current feedback (target_score and current_score). It calculates the compensation for next aggressiveness as a proportion of current aggressiveness and distance to the target score. As a result, it arrives at the near-goal state in a short time using big steps when it's far from the goal, but avoids making unnecessarily radical changes that could turn out to be a bad decision using small steps when its near to the goal. f(n) = max(1, f(n - 1) * ((target_score - current_score) / target_score + 1)) Note that the compensation value becomes negative when it's over achieving the goal. That's why the feedback metric and the aggressiveness of the scheme should be positively proportional. The distance-adaptive speed manipulation is simply applied. Example Use Cases ================= If users want to reduce the memory footprint of the system as much as possible as long as the time spent for handling the resulting memory pressure is within a threshold, they could use DAMOS scheme that reclaims cold memory regions aiming for a little level of memory pressure stall time. If users want the active/inactive LRU lists well balanced to reduce the performance impact due to possible future memory pressure, they could use two schemes. The first one would be set to locate hot pages in the active LRU list, aiming for a specific active-to-inactive LRU list size ratio, say, 70%. The second one would be to locate cold pages in the inactive LRU list, aiming for a specific inactive-to-active LRU list size ratio, say, 30%. Then, DAMOS will balance the two schemes based on the goal and feedback. This aim-oriented auto tuning could also be useful for general balancing-required access aware system operations such as system memory auto scaling[3] and tiered memory management[4]. These two example usages are not what current DAMOS implementation is already supporting, but require additional DAMOS action developments, though. Evaluation: subtle memory pressure aiming proactive reclamation =============================================================== To show if the implementation works as expected, we prepare four different system configurations on AWS i3.metal instances. The first setup (original) runs the workload without any DAMOS scheme. The second setup (not-tuned) runs the workload with a virtual address space-based proactive reclamation scheme that pages out memory regions that are not accessed for five seconds or more. The third setup (offline-tuned) runs the same proactive reclamation DAMOS scheme, but after making it tuned for each workload offline, using our previous user-space driven automatic tuning approach, namely DAMOOS[1]. The fourth and final setup (AFDAA) runs the scheme that is the same as that of 'not-tuned' setup, but aims to keep 0.5% of 'some' memory pressure stall time (PSI) for the last 10 seconds using the aiming-oriented auto tuning. For each setup, we run realistic workloads from PARSEC3 and SPLASH-2X benchmark suites. For each run, we measure RSS and runtime of the workload, and 'some' memory pressure stall time (PSI) of the system. We repeat the runs five times and use averaged measurements. For simple comparison of the results, we normalize the measurements to those of 'original'. In the case of the PSI, though, the measurement for 'original' was zero, so we normalize the value to that of 'not-tuned' scheme's result. The normalized results are shown below. Not-tuned Offline-tuned AFDAA RSS 0.622688178226118 0.787950678944904 0.740093483278979 runtime 1.11767826657912 1.0564674983585 1.0910833880499 PSI 1 0.727521443794069 0.308498846350299 The 'not-tuned' scheme achieves about 38.7% memory saving but incur about 11.7% runtime slowdown. The 'offline-tuned' scheme achieves about 22.2% memory saving with about 5.5% runtime slowdown. It also achieves about 28.2% memory pressure stall time saving. AFDAA achieves about 26% memory saving with about 9.1% runtime slowdown. It also achieves about 69.1% memory pressure stall time saving. We repeat this test multiple times, and get consistent results. AFDAA is now integrated in our daily DAMON performance test setup. Apparently the aggressiveness of 'AFDAA' setup is somewhere between those of 'not-tuned' and 'offline-tuned' setup, since its memory saving and runtime overhead are between those of the other two setups. Actually we set the memory pressure stall time goal aiming for this middle aggressiveness. The difference in the two metrics are not significant, though. However, it shows significant saving of the memory pressure stall time, which was the goal of the auto-tuning, over the two variants. Hence, we conclude the automatic tuning is working as expected. Please note that the AFDAA setup is only for the evaluation, and therefore intentionally set a bit aggressive. It might not be appropriate for production environments. The test code is also available[2], so you could reproduce it on your system and workloads. Patches Sequence ================ The first four patches implement the core logic and user interfaces for the auto tuning. The first patch implements the core logic for the auto tuning, and the API for DAMOS users in the kernel space. The second patch implements basic file operations of DAMON sysfs directories and files that will be used for setting the goals and providing the feedback. The third patch connects the quota goals files inputs to the DAMOS core logic. Finally the fourth patch implements a dedicated DAMOS sysfs command for efficiently committing the quota goals feedback. Two patches for simple tests of the logic and interfaces follow. The fifth patch implements the core logic unit test. The sixth patch implements a selftest for the DAMON Sysfs interface for the goals. Finally, three patches for documentation follows. The seventh patch documents the design of the feature. The eighth patch updates the API doc for the new sysfs files. The final eighth patch updates the usage document for the features. References ========== [1] DAOS paper: https://www.amazon.science/publications/daos-data-access-aware-operating-system [2] Evaluation code: https://github.com/damonitor/damon-tests/commit/3f884e61193f0166b8724554b6d06b0c449a712d [3] Memory auto scaling RFC idea: https://lore.kernel.org/damon/20231112195114.61474-1-sj@kernel.org/ [4] DAMON-based tiered memory management RFC idea: https://lore.kernel.org/damon/20231112195602.61525-1-sj@kernel.org/ This patch (of 9) Users can effectively control the upper-limit aggressiveness of DAMOS schemes using the quota feature. The quota provides best result under the limit by prioritizing regions based on the access pattern. That said, finding the best value, which could depend on dynamic characteristics of the system and the workloads, is still challenging. Implement a simple feedback-driven tuning mechanism and use it for automatic tuning of DAMOS quota. The implementation allows users to provide the feedback by setting a feedback score returning callback function. Then DAMOS periodically calls the function back and adjusts the quota based on the return value of the callback and current quota value. Note that the absolute-value based time/size quotas still work as the maximum hard limits of the scheme's aggressiveness. The feedback-driven auto-tuned quota is applied only if it is not exceeding the manually set maximum limits. Same for the scheme-target access pattern and filters like other features. [sj@kernel.org: document get_score_arg field of struct damos_quota] Link: https://lkml.kernel.org/r/20231204170106.60992-1-sj@kernel.org Link: https://lkml.kernel.org/r/20231130023652.50284-1-sj@kernel.org Link: https://lkml.kernel.org/r/20231130023652.50284-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Gow <davidgow@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25mm/damon: implement a function for max nr_accesses safe calculationSeongJae Park
Patch series "avoid divide-by-zero due to max_nr_accesses overflow". The maximum nr_accesses of given DAMON context can be calculated by dividing the aggregation interval by the sampling interval. Some logics in DAMON uses the maximum nr_accesses as a divisor. Hence, the value shouldn't be zero. Such case is avoided since DAMON avoids setting the agregation interval as samller than the sampling interval. However, since nr_accesses is unsigned int while the intervals are unsigned long, the maximum nr_accesses could be zero while casting. Avoid the divide-by-zero by implementing a function that handles the corner case (first patch), and replaces the vulnerable direct max nr_accesses calculations (remaining patches). Note that the patches for the replacements are divided for broken commits, to make backporting on required tres easier. Especially, the last patch is for a patch that not yet merged into the mainline but in mm tree. This patch (of 4): The maximum nr_accesses of given DAMON context can be calculated by dividing the aggregation interval by the sampling interval. Some logics in DAMON uses the maximum nr_accesses as a divisor. Hence, the value shouldn't be zero. Such case is avoided since DAMON avoids setting the agregation interval as samller than the sampling interval. However, since nr_accesses is unsigned int while the intervals are unsigned long, the maximum nr_accesses could be zero while casting. Implement a function that handles the corner case. Note that this commit is not fixing the real issue since this is only introducing the safe function that will replaces the problematic divisions. The replacements will be made by followup commits, to make backporting on stable series easier. Link: https://lkml.kernel.org/r/20231019194924.100347-1-sj@kernel.org Link: https://lkml.kernel.org/r/20231019194924.100347-2-sj@kernel.org Fixes: 198f0f4c58b9 ("mm/damon/vaddr,paddr: support pageout prioritization") Signed-off-by: SeongJae Park <sj@kernel.org> Reported-by: Jakub Acs <acsjakub@amazon.de> Cc: <stable@vger.kernel.org> [5.16+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-04mm/damon/core: implement scheme-specific apply intervalSeongJae Park
DAMON-based operation schemes are applied for every aggregation interval. That was mainly because schemes were using nr_accesses, which be complete to be used for every aggregation interval. However, the schemes are now using nr_accesses_bp, which is updated for each sampling interval in a way that reasonable to be used. Therefore, there is no reason to apply schemes for each aggregation interval. The unnecessary alignment with aggregation interval was also making some use cases of DAMOS tricky. Quotas setting under long aggregation interval is one such example. Suppose the aggregation interval is ten seconds, and there is a scheme having CPU quota 100ms per 1s. The scheme will actually uses 100ms per ten seconds, since it cannobe be applied before next aggregation interval. The feature is working as intended, but the results might not that intuitive for some users. This could be fixed by updating the quota to 1s per 10s. But, in the case, the CPU usage of DAMOS could look like spikes, and would actually make a bad effect to other CPU-sensitive workloads. Implement a dedicated timing interval for each DAMON-based operation scheme, namely apply_interval. The interval will be sampling interval aligned, and each scheme will be applied for its apply_interval. The interval is set to 0 by default, and it means the scheme should use the aggregation interval instead. This avoids old users getting any behavioral difference. Link: https://lkml.kernel.org/r/20230916020945.47296-5-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-04mm/damon/core: mark damon_moving_sum() as a static functionSeongJae Park
The function is used by only mm/damon/core.c. Mark it as a static function. Link: https://lkml.kernel.org/r/20230915025251.72816-9-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Brendan Higgins <brendanhiggins@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-04mm/damon/core: use pseudo-moving sum for nr_accesses_bpSeongJae Park
Let nr_accesses_bp be calculated as a pseudo-moving sum that updated for every sampling interval, using damon_moving_sum(). This is assumed to be useful for cases that the aggregation interval is set quite huge, but the monivoting results need to be collected earlier than next aggregation interval is passed. Link: https://lkml.kernel.org/r/20230915025251.72816-7-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Brendan Higgins <brendanhiggins@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-04mm/damon/core: introduce nr_accesses_bpSeongJae Park
Add yet another representation of the access rate of each region, namely nr_accesses_bp. It is just same to the nr_accesses but represents the value in basis point (1 in 10,000), and updated at once in every aggregation interval. That is, moving_accesses_bp is just nr_accesses * 10000. This may seems useless at the moment. However, it will be useful for representing less than one nr_accesses value that will be needed to make moving sum-based nr_accesses. Link: https://lkml.kernel.org/r/20230915025251.72816-6-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Brendan Higgins <brendanhiggins@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-04mm/damon/core: implement a pseudo-moving sum functionSeongJae Park
For values that continuously change, moving average or sum are good ways to provide fast updates while handling temporal and errorneous variability of the value. For example, the access rate counter (nr_accesses) is calculated as a sum of the number of positive sampled access check results that collected during a discrete time window (aggregation interval), and hence it handles temporal and errorneous access check results, but provides the update only for every aggregation interval. Using a moving sum method for that could allow providing the value for every sampling interval. That could be useful for getting monitoring results snapshot or running DAMOS in fine-grained timing. However, supporting the moving sum for cases that number of samples in the time window is arbirary could impose high overhead, since the number of past values that it needs to keep could be too high. The nr_accesses would also be one of the cases. To mitigate the overhead, implement a pseudo-moving sum function that only provides an estimated pseudo-moving sum. It assumes there was no error in last discrete time window and subtract constant portion of last discrete time window sum. Note that the function is not strictly implementing the moving sum, but it keeps a property of moving sum, which makes the value same to the dsicrete-window based sum for each time window-aligned timing. Hence, people collecting the value in the old timings would show no difference. Link: https://lkml.kernel.org/r/20230915025251.72816-4-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Brendan Higgins <brendanhiggins@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-04mm/damon/core: define and use a dedicated function for region access rate updateSeongJae Park
Patch series "mm/damon: provide pseudo-moving sum based access rate". DAMON checks the access to each region for every sampling interval, increase the access rate counter of the region, namely nr_accesses, if the access was made. For every aggregation interval, the counter is reset. The counter is exposed to users to be used as a metric showing the relative access rate (frequency) of each region. In other words, DAMON provides access rate of each region in every aggregation interval. The aggregation avoids temporal access pattern changes making things confusing. However, this also makes a few DAMON-related operations to unnecessarily need to be aligned to the aggregation interval. This can restrict the flexibility of DAMON applications, especially when the aggregation interval is huge. To provide the monitoring results in finer-grained timing while keeping handling of temporal access pattern change, this patchset implements a pseudo-moving sum based access rate metric. It is pseudo-moving sum because strict moving sum implementation would need to keep all values for last time window, and that could incur high overhead of there could be arbitrary number of values in a time window. Especially in case of the nr_accesses, since the sampling interval and aggregation interval can arbitrarily set and the past values should be maintained for every region, it could be risky. The pseudo-moving sum assumes there were no temporal access pattern change in last discrete time window to remove the needs for keeping the list of the last time window values. As a result, it beocmes not strict moving sum implementation, but provides a reasonable accuracy. Also, it keeps an important property of the moving sum. That is, the moving sum becomes same to discrete-window based sum at the time that aligns to the time window. This means using the pseudo moving sum based nr_accesses makes no change to users who shows the value for every aggregation interval. Patches Sequence ---------------- The sequence of the patches is as follows. The first four patches are for preparation of the change. The first two (patches 1 and 2) implements a helper function for nr_accesses update and eliminate corner case that skips use of the function, respectively. Following two (patches 3 and 4) respectively implement the pseudo-moving sum function and its simple unit test case. Two patches for making DAMON to use the pseudo-moving sum follow. The fifthe one (patch 5) introduces a new field for representing the pseudo-moving sum-based access rate of each region, and the sixth one makes the new representation to actually updated with the pseudo-moving sum function. Last two patches (patches 7 and 8) makes followup fixes for skipping unnecessary updates and marking the moving sum function as static, respectively. This patch (of 8): Each DAMON operarions set is updating nr_accesses field of each damon_region for each of their access check results, from the check_accesses() callback. Directly accessing the field could make things complex to manage and change in future. Define and use a dedicated function for the purpose. Link: https://lkml.kernel.org/r/20230915025251.72816-1-sj@kernel.org Link: https://lkml.kernel.org/r/20230915025251.72816-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Brendan Higgins <brendanhiggins@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-04mm/damon/core: use number of passed access sampling as a timerSeongJae Park
DAMON sleeps for sampling interval after each sampling, and check if the aggregation interval and the ops update interval have passed using ktime_get_coarse_ts64() and baseline timestamps for the intervals. That design is for making the operations occur at deterministic timing regardless of the time that spend for each work. However, it turned out it is not that useful, and incur not-that-intuitive results. After all, timer functions, and especially sleep functions that DAMON uses to wait for specific timing, are not necessarily strictly accurate. It is legal design, so no problem. However, depending on such inaccuracies, the nr_accesses can be larger than aggregation interval divided by sampling interval. For example, with the default setting (5 ms sampling interval and 100 ms aggregation interval) we frequently show regions having nr_accesses larger than 20. Also, if the execution of a DAMOS scheme takes a long time, next aggregation could happen before enough number of samples are collected. This is not what usual users would intuitively expect. Since access check sampling is the smallest unit work of DAMON, using the number of passed sampling intervals as the DAMON-internal timer can easily avoid these problems. That is, convert aggregation and ops update intervals to numbers of sampling intervals that need to be passed before those operations be executed, count the number of passed sampling intervals, and invoke the operations as soon as the specific amount of sampling intervals passed. Make the change. Note that this could make a behavioral change to settings that using intervals that not aligned by the sampling interval. For example, if the sampling interval is 5 ms and the aggregation interval is 12 ms, DAMON effectively uses 15 ms as its aggregation interval, because it checks whether the aggregation interval after sleeping the sampling interval. This change will make DAMON to effectively use 10 ms as aggregation interval, since it uses 'aggregation interval / sampling interval * sampling interval' as the effective aggregation interval, and we don't use floating point types. Usual users would have used aligned intervals, so this behavioral change is not expected to make any meaningful impact, so just make this change. Link: https://lkml.kernel.org/r/20230914021523.60649-1-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-04mm/damon/core: remove duplicated comment for watermarks-based deactivationSeongJae Park
The comment for explaining about watermarks-based monitoring part deactivation is duplicated in two paragraphs. Remove one. Link: https://lkml.kernel.org/r/20230907022929.91361-11-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-04mm/damon/core: add more comments for nr_accessesSeongJae Park
The comment on struct damon_region about nr_accesses field looks not sufficient. Many people actually used to ask what nr_accesses mean. There is more detailed explanation of the mechanism on the comment for struct damon_attrs, but it is also ambiguous, as it doesn't specify the name of the counter for aggregating the access check results. Make those more detailed. Link: https://lkml.kernel.org/r/20230907022929.91361-10-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21mm/damon/core: implement target type damos filterSeongJae Park
One DAMON context can have multiple monitoring targets, and DAMOS schemes are applied to all targets. In some cases, users need to apply different scheme to different targets. Retrieving monitoring results via DAMON sysfs interface' 'tried_regions' directory could be one good example. Also, there could be cases that cgroup DAMOS filter is not enough. All such use cases can be worked around by having multiple DAMON contexts having only single target, but it is inefficient in terms of resource usage, thogh the overhead is not estimated to be huge. Implement DAMON monitoring target based DAMOS filter for the case. Like address range target DAMOS filter, handle these filters in the DAMON core layer, since it is more efficient than doing in operations set layer. This also means that regions that filtered out by monitoring target type DAMOS filters are counted as not tried by the scheme. Hence, target granularity monitoring results retrieval via DAMON sysfs interface becomes available. Link: https://lkml.kernel.org/r/20230802214312.110532-9-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21mm/damon/core: introduce address range type damos filterSeongJae Park
Patch series "Extend DAMOS filters for address ranges and DAMON monitoring targets" There are use cases that need to apply DAMOS schemes to specific address ranges or DAMON monitoring targets. NUMA nodes in the physical address space, special memory objects in the virtual address space, and monitoring target specific efficient monitoring results snapshot retrieval could be examples of such use cases. This patchset extends DAMOS filters feature for such cases, by implementing two more filter types, namely address ranges and DAMON monitoring types. Patches sequence ---------------- The first seven patches are for the address ranges based DAMOS filter. The first patch implements the filter feature and expose it via DAMON kernel API. The second patch further expose the feature to users via DAMON sysfs interface. The third and fourth patches implement unit tests and selftests for the feature. Three patches (fifth to seventh) updating the documents follow. The following six patches are for the DAMON monitoring target based DAMOS filter. The eighth patch implements the feature in the core layer and expose it via DAMON's kernel API. The ninth patch further expose it to users via DAMON sysfs interface. Tenth patch add a selftest, and two patches (eleventh and twelfth) update documents. [1] https://lore.kernel.org/damon/20230728203444.70703-1-sj@kernel.org/ This patch (of 13): Users can know special characteristic of specific address ranges. NUMA nodes or special objects or buffers in virtual address space could be such examples. For such cases, DAMOS schemes could required to be applied to only specific address ranges. Implement yet another type of DAMOS filter for the purpose. Note that the existing filter types, namely anon pages and memcg DAMOS filters needed page level type check. Because such check can be done efficiently in the opertions set layer, those filters are handled in operations set layer. Specifically, only paddr operations set implementation supports these filters. Also, because statistics counting is done in the DAMON core layer, the regions that filtered out by these filters are counted as tried but failed to the statistics. Unlike those, address range based filters can efficiently handled in the core layer. Hence, do the handling in the layer, and count the regions that filtered out by those as the scheme has not tried for the region. This difference should clearly documented. Link: https://lkml.kernel.org/r/20230802214312.110532-1-sj@kernel.org Link: https://lkml.kernel.org/r/20230802214312.110532-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-02mm/damon: update comments in damon.h for damon_attrsSeongJae Park
Patch series "mm/damon: misc fixes". This patchset contains three miscellaneous simple fixes for DAMON online tuning. This patch (of 3): Commit cbeaa77b0449 ("mm/damon/core: use a dedicated struct for monitoring attributes") moved monitoring intervals from damon_ctx to a new struct, damon_attrs, but a comment in the header file has not updated for the change. Update it. Link: https://lkml.kernel.org/r/20230119013831.1911-1-sj@kernel.org Link: https://lkml.kernel.org/r/20230119013831.1911-2-sj@kernel.org Fixes: cbeaa77b0449 ("mm/damon/core: use a dedicated struct for monitoring attributes") Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Brendan Higgins <brendanhiggins@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-02mm/damon/core: update kernel-doc comments for DAMOS filters supports of each ↵SeongJae Park
DAMON operations set Supports of each DAMOS filter type are up to DAMON operations set implementation in use, but not well mentioned on the kernel-doc comments. Add the comment. Link: https://lkml.kernel.org/r/20230110190400.119388-3-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-02mm/damon/core: update kernel-doc comments for DAMOS action supports of each ↵SeongJae Park
DAMON operations set Patch series "mm/damon: trivial fixups". This patchset contains patches for trivial fixups of DAMON's documentation, MAINTAINERS section, and selftests. This patch (of 8): Supports of each DAMOS action are up to DAMON operations set implementation in use, but not well mentioned on the kernel-doc comments. Add the comment. Link: https://lkml.kernel.org/r/20230110190400.119388-1-sj@kernel.org Link: https://lkml.kernel.org/r/20230110190400.119388-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-01-18mm/damon/core: implement damos filterSeongJae Park
Patch series "implement DAMOS filtering for anon pages and/or specific memory cgroups" DAMOS let users do system operations in a data access pattern oriented way. The data access pattern, which is extracted by DAMON, is somewhat accurate more than what user space could know in many cases. However, in some situation, users could know something more than the kernel about the pattern or some special requirements for some types of memory or processes. For example, some users would have slow swap devices and knows latency-ciritical processes and therefore want to use DAMON-based proactive reclamation (DAMON_RECLAIM) for only non-anonymous pages of non-latency-critical processes. For such restriction, users could exclude the memory regions from the initial monitoring regions and use non-dynamic monitoring regions update monitoring operations set including fvaddr and paddr. They could also adjust the DAMOS target access pattern. For dynamically changing memory layout and access pattern, those would be not enough. To help the case, add an interface, namely DAMOS filters, which can be used to avoid the DAMOS actions be applied to specific types of memory, to DAMON kernel API (damon.h). At the moment, it supports filtering anonymous pages and/or specific memory cgroups in or out for each DAMOS scheme. This patchset adds the support for all DAMOS actions that 'paddr' monitoring operations set supports ('pageout', 'lru_prio', and 'lru_deprio'), and the functionality is exposed via DAMON kernel API (damon.h) the DAMON sysfs interface (/sys/kernel/mm/damon/admins/), and DAMON_RECLAIM module parameters. Patches Sequence ---------------- First patch implements DAMOS filter interface to DAMON kernel API. Second patch makes the physical address space monitoring operations set to support the filters from all supporting DAMOS actions. Third patch adds anonymous pages filter support to DAMON_RECLAIM, and the fourth patch documents the DAMON_RECLAIM's new feature. Fifth to seventh patches implement DAMON sysfs files for support of the filters, and eighth patch connects the file to use DAMOS filters feature. Ninth patch adds simple self test cases for DAMOS filters of the sysfs interface. Finally, following two patches (tenth and eleventh) document the new features and interfaces. This patch (of 11): DAMOS lets users do system operation in a data access pattern oriented way. The data access pattern, which is extracted by DAMON, is somewhat accurate more than what user space could know in many cases. However, in some situation, users could know something more than the kernel about the pattern or some special requirements for some types of memory or processes. For example, some users would have slow swap devices and knows latency-ciritical processes and therefore want to use DAMON-based proactive reclamation (DAMON_RECLAIM) for only non-anonymous pages of non-latency-critical processes. For such restriction, users could exclude the memory regions from the initial monitoring regions and use non-dynamic monitoring regions update monitoring operations set including fvaddr and paddr. They could also adjust the DAMOS target access pattern. For dynamically changing memory layout and access pattern, those would be not enough. To help the case, add an interface, namely DAMOS filters, which can be used to avoid the DAMOS actions be applied to specific types of memory, to DAMON kernel API (damon.h). At the moment, it supports filtering anonymous pages and/or specific memory cgroups in or out for each DAMOS scheme. Note that this commit adds only the interface to the DAMON kernel API. The impelmentation should be made in the monitoring operations sets, and following commits will add that. Link: https://lkml.kernel.org/r/20221205230830.144349-1-sj@kernel.org Link: https://lkml.kernel.org/r/20221205230830.144349-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-13Merge tag 'mm-stable-2022-12-13' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - More userfaultfs work from Peter Xu - Several convert-to-folios series from Sidhartha Kumar and Huang Ying - Some filemap cleanups from Vishal Moola - David Hildenbrand added the ability to selftest anon memory COW handling - Some cpuset simplifications from Liu Shixin - Addition of vmalloc tracing support by Uladzislau Rezki - Some pagecache folioifications and simplifications from Matthew Wilcox - A pagemap cleanup from Kefeng Wang: we have VM_ACCESS_FLAGS, so use it - Miguel Ojeda contributed some cleanups for our use of the __no_sanitize_thread__ gcc keyword. This series should have been in the non-MM tree, my bad - Naoya Horiguchi improved the interaction between memory poisoning and memory section removal for huge pages - DAMON cleanups and tuneups from SeongJae Park - Tony Luck fixed the handling of COW faults against poisoned pages - Peter Xu utilized the PTE marker code for handling swapin errors - Hugh Dickins reworked compound page mapcount handling, simplifying it and making it more efficient - Removal of the autonuma savedwrite infrastructure from Nadav Amit and David Hildenbrand - zram support for multiple compression streams from Sergey Senozhatsky - David Hildenbrand reworked the GUP code's R/O long-term pinning so that drivers no longer need to use the FOLL_FORCE workaround which didn't work very well anyway - Mel Gorman altered the page allocator so that local IRQs can remnain enabled during per-cpu page allocations - Vishal Moola removed the try_to_release_page() wrapper - Stefan Roesch added some per-BDI sysfs tunables which are used to prevent network block devices from dirtying excessive amounts of pagecache - David Hildenbrand did some cleanup and repair work on KSM COW breaking - Nhat Pham and Johannes Weiner have implemented writeback in zswap's zsmalloc backend - Brian Foster has fixed a longstanding corner-case oddity in file[map]_write_and_wait_range() - sparse-vmemmap changes for MIPS, LoongArch and NIOS2 from Feiyang Chen - Shiyang Ruan has done some work on fsdax, to make its reflink mode work better under xfstests. Better, but still not perfect - Christoph Hellwig has removed the .writepage() method from several filesystems. They only need .writepages() - Yosry Ahmed wrote a series which fixes the memcg reclaim target beancounting - David Hildenbrand has fixed some of our MM selftests for 32-bit machines - Many singleton patches, as usual * tag 'mm-stable-2022-12-13' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (313 commits) mm/hugetlb: set head flag before setting compound_order in __prep_compound_gigantic_folio mm: mmu_gather: allow more than one batch of delayed rmaps mm: fix typo in struct pglist_data code comment kmsan: fix memcpy tests mm: add cond_resched() in swapin_walk_pmd_entry() mm: do not show fs mm pc for VM_LOCKONFAULT pages selftests/vm: ksm_functional_tests: fixes for 32bit selftests/vm: cow: fix compile warning on 32bit selftests/vm: madv_populate: fix missing MADV_POPULATE_(READ|WRITE) definitions mm/gup_test: fix PIN_LONGTERM_TEST_READ with highmem mm,thp,rmap: fix races between updates of subpages_mapcount mm: memcg: fix swapcached stat accounting mm: add nodes= arg to memory.reclaim mm: disable top-tier fallback to reclaim on proactive reclaim selftests: cgroup: make sure reclaim target memcg is unprotected selftests: cgroup: refactor proactive reclaim code to reclaim_until() mm: memcg: fix stale protection of reclaim target memcg mm/mmap: properly unaccount memory on mas_preallocate() failure omfs: remove ->writepage jfs: remove ->writepage ...
2022-11-30mm/damon/core: add a callback for scheme target regions checkSeongJae Park
Patch series "efficiently expose damos action tried regions information". DAMON users can retrieve the monitoring results via 'after_aggregation' callbacks if the user is using the kernel API, or 'damon_aggregated' tracepoint if the user is in the user space. Those are useful if full monitoring results are necessary. However, if the user has interest in only a snapshot of the results for some regions having specific access pattern, the interfaces could be inefficient. For example, some users only want to know which memory regions are not accessed for more than a specific time at the moment. Also, some DAMOS users would want to know exactly to what memory regions the schemes' actions tried to be applied, for a debugging or a tuning. As DAMOS has its internal mechanism for quota and regions prioritization, the users would need to simulate DAMOS' mechanism against the monitoring results. That's unnecessarily complex. This patchset implements DAMON kernel API callbacks and sysfs directory for efficient exposure of the information for the use cases. The new callback will be called for each region when a DAMOS action is gonna tried to be applied to it. The sysfs directory will be called 'tried_regions' and placed under each scheme sysfs directory. Users can write a special keyworkd, 'update_schemes_regions', to the 'state' file of a kdamond sysfs directory. Then, DAMON sysfs interface will fill the directory with the information of regions that corresponding scheme action was tried to be applied for next one aggregation interval. Patches Sequence ---------------- The first one (patch 1) implements the callback for the kernel space users. Following two patches (patches 2 and 3) implements sysfs directories for the information and its sub directories. Two patches (patches 4 and 5) for implementing the special keywords for filling the data to and cleaning up the directories follow. Patch 6 adds a selftest for the new sysfs directory. Finally, two patches (patches 7 and 8) document the new feature in the administrator guide and the ABI document. This patch (of 8): Getting DAMON monitoring results of only specific access pattern (e.g., getting address ranges of memory that not accessed at all for two minutes) can be useful for efficient monitoring of the system. The information can also be helpful for deep level investigation of DAMON-based operation schemes. For that, users need to record (in case of the user space users) or iterate (in case of the kernel space users) full monitoring results and filter it out for the specific access pattern. In case of the DAMOS investigation, users will even need to simulate DAMOS' quota and prioritization mechanisms. It's inefficient and complex. Add a new DAMON callback that will be called before each scheme is applied to each region. DAMON kernel API users will be able to do the query-like monitoring results collection, or DAMOS investigation in an efficient and simple way using it. Commits for providing the capability to the user space users will follow. Link: https://lkml.kernel.org/r/20221101220328.95765-1-sj@kernel.org Link: https://lkml.kernel.org/r/20221101220328.95765-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-18treewide: use get_random_u32_below() instead of deprecated functionJason A. Donenfeld
This is a simple mechanical transformation done by: @@ expression E; @@ - prandom_u32_max + get_random_u32_below (E) Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Darrick J. Wong <djwong@kernel.org> # for xfs Reviewed-by: SeongJae Park <sj@kernel.org> # for damon Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> # for infiniband Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> # for arm Acked-by: Ulf Hansson <ulf.hansson@linaro.org> # for mmc Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>