summaryrefslogtreecommitdiff
path: root/include/linux/dsa/ocelot.h
AgeCommit message (Collapse)Author
2024-12-07net: mscc: ocelot: be resilient to loss of PTP packets during transmissionVladimir Oltean
The Felix DSA driver presents unique challenges that make the simplistic ocelot PTP TX timestamping procedure unreliable: any transmitted packet may be lost in hardware before it ever leaves our local system. This may happen because there is congestion on the DSA conduit, the switch CPU port or even user port (Qdiscs like taprio may delay packets indefinitely by design). The technical problem is that the kernel, i.e. ocelot_port_add_txtstamp_skb(), runs out of timestamp IDs eventually, because it never detects that packets are lost, and keeps the IDs of the lost packets on hold indefinitely. The manifestation of the issue once the entire timestamp ID range becomes busy looks like this in dmesg: mscc_felix 0000:00:00.5: port 0 delivering skb without TX timestamp mscc_felix 0000:00:00.5: port 1 delivering skb without TX timestamp At the surface level, we need a timeout timer so that the kernel knows a timestamp ID is available again. But there is a deeper problem with the implementation, which is the monotonically increasing ocelot_port->ts_id. In the presence of packet loss, it will be impossible to detect that and reuse one of the holes created in the range of free timestamp IDs. What we actually need is a bitmap of 63 timestamp IDs tracking which one is available. That is able to use up holes caused by packet loss, but also gives us a unique opportunity to not implement an actual timer_list for the timeout timer (very complicated in terms of locking). We could only declare a timestamp ID stale on demand (lazily), aka when there's no other timestamp ID available. There are pros and cons to this approach: the implementation is much more simple than per-packet timers would be, but most of the stale packets would be quasi-leaked - not really leaked, but blocked in driver memory, since this algorithm sees no reason to free them. An improved technique would be to check for stale timestamp IDs every time we allocate a new one. Assuming a constant flux of PTP packets, this avoids stale packets being blocked in memory, but of course, packets lost at the end of the flux are still blocked until the flux resumes (nobody left to kick them out). Since implementing per-packet timers is way too complicated, this should be good enough. Testing procedure: Persistently block traffic class 5 and try to run PTP on it: $ tc qdisc replace dev swp3 parent root taprio num_tc 8 \ map 0 1 2 3 4 5 6 7 queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 \ base-time 0 sched-entry S 0xdf 100000 flags 0x2 [ 126.948141] mscc_felix 0000:00:00.5: port 3 tc 5 min gate length 0 ns not enough for max frame size 1526 at 1000 Mbps, dropping frames over 1 octets including FCS $ ptp4l -i swp3 -2 -P -m --socket_priority 5 --fault_reset_interval ASAP --logSyncInterval -3 ptp4l[70.351]: port 1 (swp3): INITIALIZING to LISTENING on INIT_COMPLETE ptp4l[70.354]: port 0 (/var/run/ptp4l): INITIALIZING to LISTENING on INIT_COMPLETE ptp4l[70.358]: port 0 (/var/run/ptp4lro): INITIALIZING to LISTENING on INIT_COMPLETE [ 70.394583] mscc_felix 0000:00:00.5: port 3 timestamp id 0 ptp4l[70.406]: timed out while polling for tx timestamp ptp4l[70.406]: increasing tx_timestamp_timeout or increasing kworker priority may correct this issue, but a driver bug likely causes it ptp4l[70.406]: port 1 (swp3): send peer delay response failed ptp4l[70.407]: port 1 (swp3): clearing fault immediately ptp4l[70.952]: port 1 (swp3): new foreign master d858d7.fffe.00ca6d-1 [ 71.394858] mscc_felix 0000:00:00.5: port 3 timestamp id 1 ptp4l[71.400]: timed out while polling for tx timestamp ptp4l[71.400]: increasing tx_timestamp_timeout or increasing kworker priority may correct this issue, but a driver bug likely causes it ptp4l[71.401]: port 1 (swp3): send peer delay response failed ptp4l[71.401]: port 1 (swp3): clearing fault immediately [ 72.393616] mscc_felix 0000:00:00.5: port 3 timestamp id 2 ptp4l[72.401]: timed out while polling for tx timestamp ptp4l[72.402]: increasing tx_timestamp_timeout or increasing kworker priority may correct this issue, but a driver bug likely causes it ptp4l[72.402]: port 1 (swp3): send peer delay response failed ptp4l[72.402]: port 1 (swp3): clearing fault immediately ptp4l[72.952]: port 1 (swp3): new foreign master d858d7.fffe.00ca6d-1 [ 73.395291] mscc_felix 0000:00:00.5: port 3 timestamp id 3 ptp4l[73.400]: timed out while polling for tx timestamp ptp4l[73.400]: increasing tx_timestamp_timeout or increasing kworker priority may correct this issue, but a driver bug likely causes it ptp4l[73.400]: port 1 (swp3): send peer delay response failed ptp4l[73.400]: port 1 (swp3): clearing fault immediately [ 74.394282] mscc_felix 0000:00:00.5: port 3 timestamp id 4 ptp4l[74.400]: timed out while polling for tx timestamp ptp4l[74.401]: increasing tx_timestamp_timeout or increasing kworker priority may correct this issue, but a driver bug likely causes it ptp4l[74.401]: port 1 (swp3): send peer delay response failed ptp4l[74.401]: port 1 (swp3): clearing fault immediately ptp4l[74.953]: port 1 (swp3): new foreign master d858d7.fffe.00ca6d-1 [ 75.396830] mscc_felix 0000:00:00.5: port 3 invalidating stale timestamp ID 0 which seems lost [ 75.405760] mscc_felix 0000:00:00.5: port 3 timestamp id 0 ptp4l[75.410]: timed out while polling for tx timestamp ptp4l[75.411]: increasing tx_timestamp_timeout or increasing kworker priority may correct this issue, but a driver bug likely causes it ptp4l[75.411]: port 1 (swp3): send peer delay response failed ptp4l[75.411]: port 1 (swp3): clearing fault immediately (...) Remove the blocking condition and see that the port recovers: $ same tc command as above, but use "sched-entry S 0xff" instead $ same ptp4l command as above ptp4l[99.489]: port 1 (swp3): INITIALIZING to LISTENING on INIT_COMPLETE ptp4l[99.490]: port 0 (/var/run/ptp4l): INITIALIZING to LISTENING on INIT_COMPLETE ptp4l[99.492]: port 0 (/var/run/ptp4lro): INITIALIZING to LISTENING on INIT_COMPLETE [ 100.403768] mscc_felix 0000:00:00.5: port 3 invalidating stale timestamp ID 0 which seems lost [ 100.412545] mscc_felix 0000:00:00.5: port 3 invalidating stale timestamp ID 1 which seems lost [ 100.421283] mscc_felix 0000:00:00.5: port 3 invalidating stale timestamp ID 2 which seems lost [ 100.430015] mscc_felix 0000:00:00.5: port 3 invalidating stale timestamp ID 3 which seems lost [ 100.438744] mscc_felix 0000:00:00.5: port 3 invalidating stale timestamp ID 4 which seems lost [ 100.447470] mscc_felix 0000:00:00.5: port 3 timestamp id 0 [ 100.505919] mscc_felix 0000:00:00.5: port 3 timestamp id 0 ptp4l[100.963]: port 1 (swp3): new foreign master d858d7.fffe.00ca6d-1 [ 101.405077] mscc_felix 0000:00:00.5: port 3 timestamp id 0 [ 101.507953] mscc_felix 0000:00:00.5: port 3 timestamp id 0 [ 102.405405] mscc_felix 0000:00:00.5: port 3 timestamp id 0 [ 102.509391] mscc_felix 0000:00:00.5: port 3 timestamp id 0 [ 103.406003] mscc_felix 0000:00:00.5: port 3 timestamp id 0 [ 103.510011] mscc_felix 0000:00:00.5: port 3 timestamp id 0 [ 104.405601] mscc_felix 0000:00:00.5: port 3 timestamp id 0 [ 104.510624] mscc_felix 0000:00:00.5: port 3 timestamp id 0 ptp4l[104.965]: selected best master clock d858d7.fffe.00ca6d ptp4l[104.966]: port 1 (swp3): assuming the grand master role ptp4l[104.967]: port 1 (swp3): LISTENING to GRAND_MASTER on RS_GRAND_MASTER [ 105.106201] mscc_felix 0000:00:00.5: port 3 timestamp id 0 [ 105.232420] mscc_felix 0000:00:00.5: port 3 timestamp id 0 [ 105.359001] mscc_felix 0000:00:00.5: port 3 timestamp id 0 [ 105.405500] mscc_felix 0000:00:00.5: port 3 timestamp id 0 [ 105.485356] mscc_felix 0000:00:00.5: port 3 timestamp id 0 [ 105.511220] mscc_felix 0000:00:00.5: port 3 timestamp id 0 [ 105.610938] mscc_felix 0000:00:00.5: port 3 timestamp id 0 [ 105.737237] mscc_felix 0000:00:00.5: port 3 timestamp id 0 (...) Notice that in this new usage pattern, a non-congested port should basically use timestamp ID 0 all the time, progressing to higher numbers only if there are unacknowledged timestamps in flight. Compare this to the old usage, where the timestamp ID used to monotonically increase modulo OCELOT_MAX_PTP_ID. In terms of implementation, this simplifies the bookkeeping of the ocelot_port :: ts_id and ptp_skbs_in_flight. Since we need to traverse the list of two-step timestampable skbs for each new packet anyway, the information can already be computed and does not need to be stored. Also, ocelot_port->tx_skbs is always accessed under the switch-wide ocelot->ts_id_lock IRQ-unsafe spinlock, so we don't need the skb queue's lock and can use the unlocked primitives safely. This problem was actually detected using the tc-taprio offload, and is causing trouble in TSN scenarios, which Felix (NXP LS1028A / VSC9959) supports but Ocelot (VSC7514) does not. Thus, I've selected the commit to blame as the one adding initial timestamping support for the Felix switch. Fixes: c0bcf537667c ("net: dsa: ocelot: add hardware timestamping support for Felix") Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Link: https://patch.msgid.link/20241205145519.1236778-5-vladimir.oltean@nxp.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2024-08-16net: mscc: ocelot: use ocelot_xmit_get_vlan_info() also for FDMA and ↵Vladimir Oltean
register injection Problem description ------------------- On an NXP LS1028A (felix DSA driver) with the following configuration: - ocelot-8021q tagging protocol - VLAN-aware bridge (with STP) spanning at least swp0 and swp1 - 8021q VLAN upper interfaces on swp0 and swp1: swp0.700, swp1.700 - ptp4l on swp0.700 and swp1.700 we see that the ptp4l instances do not see each other's traffic, and they all go to the grand master state due to the ANNOUNCE_RECEIPT_TIMEOUT_EXPIRES condition. Jumping to the conclusion for the impatient ------------------------------------------- There is a zero-day bug in the ocelot switchdev driver in the way it handles VLAN-tagged packet injection. The correct logic already exists in the source code, in function ocelot_xmit_get_vlan_info() added by commit 5ca721c54d86 ("net: dsa: tag_ocelot: set the classified VLAN during xmit"). But it is used only for normal NPI-based injection with the DSA "ocelot" tagging protocol. The other injection code paths (register-based and FDMA-based) roll their own wrong logic. This affects and was noticed on the DSA "ocelot-8021q" protocol because it uses register-based injection. By moving ocelot_xmit_get_vlan_info() to a place that's common for both the DSA tagger and the ocelot switch library, it can also be called from ocelot_port_inject_frame() in ocelot.c. We need to touch the lines with ocelot_ifh_port_set()'s prototype anyway, so let's rename it to something clearer regarding what it does, and add a kernel-doc. ocelot_ifh_set_basic() should do. Investigation notes ------------------- Debugging reveals that PTP event (aka those carrying timestamps, like Sync) frames injected into swp0.700 (but also swp1.700) hit the wire with two VLAN tags: 00000000: 01 1b 19 00 00 00 00 01 02 03 04 05 81 00 02 bc ~~~~~~~~~~~ 00000010: 81 00 02 bc 88 f7 00 12 00 2c 00 00 02 00 00 00 ~~~~~~~~~~~ 00000020: 00 00 00 00 00 00 00 00 00 00 00 01 02 ff fe 03 00000030: 04 05 00 01 00 04 00 00 00 00 00 00 00 00 00 00 00000040: 00 00 The second (unexpected) VLAN tag makes felix_check_xtr_pkt() -> ptp_classify_raw() fail to see these as PTP packets at the link partner's receiving end, and return PTP_CLASS_NONE (because the BPF classifier is not written to expect 2 VLAN tags). The reason why packets have 2 VLAN tags is because the transmission code treats VLAN incorrectly. Neither ocelot switchdev, nor felix DSA, declare the NETIF_F_HW_VLAN_CTAG_TX feature. Therefore, at xmit time, all VLANs should be in the skb head, and none should be in the hwaccel area. This is done by: static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, netdev_features_t features) { if (skb_vlan_tag_present(skb) && !vlan_hw_offload_capable(features, skb->vlan_proto)) skb = __vlan_hwaccel_push_inside(skb); return skb; } But ocelot_port_inject_frame() handles things incorrectly: ocelot_ifh_port_set(ifh, port, rew_op, skb_vlan_tag_get(skb)); void ocelot_ifh_port_set(struct sk_buff *skb, void *ifh, int port, u32 rew_op) { (...) if (vlan_tag) ocelot_ifh_set_vlan_tci(ifh, vlan_tag); (...) } The way __vlan_hwaccel_push_inside() pushes the tag inside the skb head is by calling: static inline void __vlan_hwaccel_clear_tag(struct sk_buff *skb) { skb->vlan_present = 0; } which does _not_ zero out skb->vlan_tci as seen by skb_vlan_tag_get(). This means that ocelot, when it calls skb_vlan_tag_get(), sees (and uses) a residual skb->vlan_tci, while the same VLAN tag is _already_ in the skb head. The trivial fix for double VLAN headers is to replace the content of ocelot_ifh_port_set() with: if (skb_vlan_tag_present(skb)) ocelot_ifh_set_vlan_tci(ifh, skb_vlan_tag_get(skb)); but this would not be correct either, because, as mentioned, vlan_hw_offload_capable() is false for us, so we'd be inserting dead code and we'd always transmit packets with VID=0 in the injection frame header. I can't actually test the ocelot switchdev driver and rely exclusively on code inspection, but I don't think traffic from 8021q uppers has ever been injected properly, and not double-tagged. Thus I'm blaming the introduction of VLAN fields in the injection header - early driver code. As hinted at in the early conclusion, what we _want_ to happen for VLAN transmission was already described once in commit 5ca721c54d86 ("net: dsa: tag_ocelot: set the classified VLAN during xmit"). ocelot_xmit_get_vlan_info() intends to ensure that if the port through which we're transmitting is under a VLAN-aware bridge, the outer VLAN tag from the skb head is stripped from there and inserted into the injection frame header (so that the packet is processed in hardware through that actual VLAN). And in all other cases, the packet is sent with VID=0 in the injection frame header, since the port is VLAN-unaware and has logic to strip this VID on egress (making it invisible to the wire). Fixes: 08d02364b12f ("net: mscc: fix the injection header") Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-12-12net: dsa: tag_ocelot: convert to tagger-owned dataVladimir Oltean
The felix driver makes very light use of dp->priv, and the tagger is effectively stateless. dp->priv is practically only needed to set up a callback to perform deferred xmit of PTP and STP packets using the ocelot-8021q tagging protocol (the main ocelot tagging protocol makes no use of dp->priv, although this driver sets up dp->priv irrespective of actual tagging protocol in use). struct felix_port (what used to be pointed to by dp->priv) is removed and replaced with a two-sided structure. The public side of this structure, visible to the switch driver, is ocelot_8021q_tagger_data. The private side is ocelot_8021q_tagger_private, and the latter structure physically encapsulates the former. The public half of the tagger data structure can be accessed through a helper of the same name (ocelot_8021q_tagger_data) which also sanity-checks the protocol currently in use by the switch. The public/private split was requested by Andrew Lunn. Suggested-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-11-03net: dsa: felix: fix broken VLAN-tagged PTP under VLAN-aware bridgeVladimir Oltean
Normally it is expected that the dsa_device_ops :: rcv() method finishes parsing the DSA tag and consumes it, then never looks at it again. But commit c0bcf537667c ("net: dsa: ocelot: add hardware timestamping support for Felix") added support for RX timestamping in a very unconventional way. On this switch, a partial timestamp is available in the DSA header, but the driver got away with not parsing that timestamp right away, but instead delayed that parsing for a little longer: dsa_switch_rcv(): nskb = cpu_dp->rcv(skb, dev); <------------- not here -> ocelot_rcv() ... skb = nskb; skb_push(skb, ETH_HLEN); skb->pkt_type = PACKET_HOST; skb->protocol = eth_type_trans(skb, skb->dev); ... if (dsa_skb_defer_rx_timestamp(p, skb)) <--- but here -> felix_rxtstamp() return 0; When in felix_rxtstamp(), this driver accounted for the fact that eth_type_trans() happened in the meanwhile, so it got a hold of the extraction header again by subtracting (ETH_HLEN + OCELOT_TAG_LEN) bytes from the current skb->data. This worked for quite some time but was quite fragile from the very beginning. Not to mention that having DSA tag parsing split in two different files, under different folders (net/dsa/tag_ocelot.c vs drivers/net/dsa/ocelot/felix.c) made it quite non-obvious for patches to come that they might break this. Finally, the blamed commit does the following: at the end of ocelot_rcv(), it checks whether the skb payload contains a VLAN header. If it does, and this port is under a VLAN-aware bridge, that VLAN ID might not be correct in the sense that the packet might have suffered VLAN rewriting due to TCAM rules (VCAP IS1). So we consume the VLAN ID from the skb payload using __skb_vlan_pop(), and take the classified VLAN ID from the DSA tag, and construct a hwaccel VLAN tag with the classified VLAN, and the skb payload is VLAN-untagged. The big problem is that __skb_vlan_pop() does: memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); __skb_pull(skb, VLAN_HLEN); aka it moves the Ethernet header 4 bytes to the right, and pulls 4 bytes from the skb headroom (effectively also moving skb->data, by definition). So for felix_rxtstamp()'s fragile logic, all bets are off now. Instead of having the "extraction" pointer point to the DSA header, it actually points to 4 bytes _inside_ the extraction header. Corollary, the last 4 bytes of the "extraction" header are in fact 4 stale bytes of the destination MAC address from the Ethernet header, from prior to the __skb_vlan_pop() movement. So of course, RX timestamps are completely bogus when the system is configured in this way. The fix is actually very simple: just don't structure the code like that. For better or worse, the DSA PTP timestamping API does not offer a straightforward way for drivers to present their RX timestamps, but other drivers (sja1105) have established a simple mechanism to carry their RX timestamp from dsa_device_ops :: rcv() all the way to dsa_switch_ops :: port_rxtstamp() and even later. That mechanism is to simply save the partial timestamp to the skb->cb, and complete it later. Question: why don't we simply populate the skb's struct skb_shared_hwtstamps from ocelot_rcv(), and bother with this complication of propagating the timestamp to felix_rxtstamp()? Answer: dsa_switch_ops :: port_rxtstamp() answers the question whether PTP packets need sleepable context to retrieve the full RX timestamp. Currently felix_rxtstamp() answers "no, thanks" to that question, and calls ocelot_ptp_gettime64() from softirq atomic context. This is understandable, since Felix VSC9959 is a PCIe memory-mapped switch, so hardware access does not require sleeping. But the felix driver is preparing for the introduction of other switches where hardware access is over a slow bus like SPI or MDIO: https://lore.kernel.org/lkml/20210814025003.2449143-1-colin.foster@in-advantage.com/ So I would like to keep this code structure, so the rework needed when that driver will need PTP support will be minimal (answer "yes, I need deferred context for this skb's RX timestamp", then the partial timestamp will still be found in the skb->cb. Fixes: ea440cd2d9b2 ("net: dsa: tag_ocelot: use VLAN information from tagging header when available") Reported-by: Po Liu <po.liu@nxp.com> Cc: Yangbo Lu <yangbo.lu@nxp.com> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-10-14Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netJakub Kicinski
tools/testing/selftests/net/ioam6.sh 7b1700e009cc ("selftests: net: modify IOAM tests for undef bits") bf77b1400a56 ("selftests: net: Test for the IOAM encapsulation with IPv6") Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-10-12net: dsa: tag_ocelot_8021q: break circular dependency with ocelot switch libVladimir Oltean
Michael reported that when using the "ocelot-8021q" tagging protocol, the switch driver module must be manually loaded before the tagging protocol can be loaded/is available. This appears to be the same problem described here: https://lore.kernel.org/netdev/20210908220834.d7gmtnwrorhharna@skbuf/ where due to the fact that DSA tagging protocols make use of symbols exported by the switch drivers, circular dependencies appear and this breaks module autoloading. The ocelot_8021q driver needs the ocelot_can_inject() and ocelot_port_inject_frame() functions from the switch library. Previously the wrong approach was taken to solve that dependency: shims were provided for the case where the ocelot switch library was compiled out, but that turns out to be insufficient, because the dependency when the switch lib _is_ compiled is problematic too. We cannot declare ocelot_can_inject() and ocelot_port_inject_frame() as static inline functions, because these access I/O functions like __ocelot_write_ix() which is called by ocelot_write_rix(). Making those static inline basically means exposing the whole guts of the ocelot switch library, not ideal... We already have one tagging protocol driver which calls into the switch driver during xmit but not using any exported symbol: sja1105_defer_xmit. We can do the same thing here: create a kthread worker and one work item per skb, and let the switch driver itself do the register accesses to send the skb, and then consume it. Fixes: 0a6f17c6ae21 ("net: dsa: tag_ocelot_8021q: add support for PTP timestamping") Reported-by: Michael Walle <michael@walle.cc> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-10-12net: dsa: tag_ocelot: break circular dependency with ocelot switch lib driverVladimir Oltean
As explained here: https://lore.kernel.org/netdev/20210908220834.d7gmtnwrorhharna@skbuf/ DSA tagging protocol drivers cannot depend on symbols exported by switch drivers, because this creates a circular dependency that breaks module autoloading. The tag_ocelot.c file depends on the ocelot_ptp_rew_op() function exported by the common ocelot switch lib. This function looks at OCELOT_SKB_CB(skb) and computes how to populate the REW_OP field of the DSA tag, for PTP timestamping (the command: one-step/two-step, and the TX timestamp identifier). None of that requires deep insight into the driver, it is quite stateless, as it only depends upon the skb->cb. So let's make it a static inline function and put it in include/linux/dsa/ocelot.h, a file that despite its name is used by the ocelot switch driver for populating the injection header too - since commit 40d3f295b5fe ("net: mscc: ocelot: use common tag parsing code with DSA"). With that function declared as static inline, its body is expanded inside each call site, so the dependency is broken and the DSA tagger can be built without the switch library, upon which the felix driver depends. Fixes: 39e5308b3250 ("net: mscc: ocelot: support PTP Sync one-step timestamping") Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-10-02net: mscc: ocelot: write full VLAN TCI in the injection headerVladimir Oltean
The VLAN TCI contains more than the VLAN ID, it also has the VLAN PCP and Drop Eligibility Indicator. If the ocelot driver is going to write the VLAN header inside the DSA tag, it could just as well write the entire TCI. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-09-17net: update NXP copyright textVladimir Oltean
NXP Legal insists that the following are not fine: - Saying "NXP Semiconductors" instead of "NXP", since the company's registered name is "NXP" - Putting a "(c)" sign in the copyright string - Putting a comma in the copyright string The only accepted copyright string format is "Copyright <year-range> NXP". This patch changes the copyright headers in the networking files that were sent by me, or derived from code sent by me. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-03-16net: ocelot: Remove ocelot_xfh_get_cpuqHoratiu Vultur
Now when extracting frames from CPU the cpuq is not used anymore so remove it. Signed-off-by: Horatiu Vultur <horatiu.vultur@microchip.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-16net: mscc: ocelot: Add support for MRPHoratiu Vultur
Add basic support for MRP. The HW will just trap all MRP frames on the ring ports to CPU and allow the SW to process them. In this way it is possible to for this node to behave both as MRM and MRC. Current limitations are: - it doesn't support Interconnect roles. - it supports only a single ring. - the HW should be able to do forwarding of MRP Test frames so the SW will not need to do this. So it would be able to have the role MRC without SW support. Signed-off-by: Horatiu Vultur <horatiu.vultur@microchip.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-14net: dsa: tag_ocelot: create separate tagger for SevilleVladimir Oltean
The ocelot tagger is a hot mess currently, it relies on memory initialized by the attached driver for basic frame transmission. This is against all that DSA tagging protocols stand for, which is that the transmission and reception of a DSA-tagged frame, the data path, should be independent from the switch control path, because the tag protocol is in principle hot-pluggable and reusable across switches (even if in practice it wasn't until very recently). But if another driver like dsa_loop wants to make use of tag_ocelot, it couldn't. This was done to have common code between Felix and Ocelot, which have one bit difference in the frame header format. Quoting from commit 67c2404922c2 ("net: dsa: felix: create a template for the DSA tags on xmit"): Other alternatives have been analyzed, such as: - Create a separate tag_seville.c: too much code duplication for just 1 bit field difference. - Create a separate DSA_TAG_PROTO_SEVILLE under tag_ocelot.c, just like tag_brcm.c, which would have a separate .xmit function. Again, too much code duplication for just 1 bit field difference. - Allocate the template from the init function of the tag_ocelot.c module, instead of from the driver: couldn't figure out a method of accessing the correct port template corresponding to the correct tagger in the .xmit function. The really interesting part is that Seville should have had its own tagging protocol defined - it is not compatible on the wire with Ocelot, even for that single bit. In principle, a packet generated by DSA_TAG_PROTO_OCELOT when booted on NXP LS1028A would look in a certain way, but when booted on NXP T1040 it would look differently. The reverse is also true: a packet generated by a Seville switch would be interpreted incorrectly by Wireshark if it was told it was generated by an Ocelot switch. Actually things are a bit more nuanced. If we concentrate only on the DSA tag, what I said above is true, but Ocelot/Seville also support an optional DSA tag prefix, which can be short or long, and it is possible to distinguish the two taggers based on an integer constant put in that prefix. Nonetheless, creating a separate tagger is still justified, since the tag prefix is optional, and without it, there is again no way to distinguish. Claiming backwards binary compatibility is a bit more tough, since I've already changed the format of tag_ocelot once, in commit 5124197ce58b ("net: dsa: tag_ocelot: use a short prefix on both ingress and egress"). Therefore I am not very concerned with treating this as a bugfix and backporting it to stable kernels (which would be another mess due to the fact that there would be lots of conflicts with the other DSA_TAG_PROTO* definitions). It's just simpler to say that the string values of the taggers have ABI value starting with kernel 5.12, which will be when the changing of tag protocol via /sys/class/net/<dsa-master>/dsa/tagging goes live. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-14net: mscc: ocelot: use common tag parsing code with DSAVladimir Oltean
The Injection Frame Header and Extraction Frame Header that the switch prepends to frames over the NPI port is also prepended to frames delivered over the CPU port module's queues. Let's unify the handling of the frame headers by making the ocelot driver call some helpers exported by the DSA tagger. Among other things, this allows us to get rid of the strange cpu_to_be32 when transmitting the Injection Frame Header on ocelot, since the packing API uses network byte order natively (when "quirks" is 0). The comments above ocelot_gen_ifh talk about setting pop_cnt to 3, and the cpu extraction queue mask to something, but the code doesn't do it, so we don't do it either. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>