Age | Commit message (Collapse) | Author |
|
Patch series "fork: do not expose incomplete mm on fork".
During fork we may place the virtual memory address space into an
inconsistent state before the fork operation is complete.
In addition, we may encounter an error during the fork operation that
indicates that the virtual memory address space is invalidated.
As a result, we should not be exposing it in any way to external machinery
that might interact with the mm or VMAs, machinery that is not designed to
deal with incomplete state.
We specifically update the fork logic to defer khugepaged and ksm to the
end of the operation and only to be invoked if no error arose, and
disallow uffd from observing fork events should an error have occurred.
This patch (of 2):
Currently on fork we expose the virtual address space of a process to
userland unconditionally if uffd is registered in VMAs, regardless of
whether an error arose in the fork.
This is performed in dup_userfaultfd_complete() which is invoked
unconditionally, and performs two duties - invoking registered handlers
for the UFFD_EVENT_FORK event via dup_fctx(), and clearing down
userfaultfd_fork_ctx objects established in dup_userfaultfd().
This is problematic, because the virtual address space may not yet be
correctly initialised if an error arose.
The change in commit d24062914837 ("fork: use __mt_dup() to duplicate
maple tree in dup_mmap()") makes this more pertinent as we may be in a
state where entries in the maple tree are not yet consistent.
We address this by, on fork error, ensuring that we roll back state that
we would otherwise expect to clean up through the event being handled by
userland and perform the memory freeing duty otherwise performed by
dup_userfaultfd_complete().
We do this by implementing a new function, dup_userfaultfd_fail(), which
performs the same loop, only decrementing reference counts.
Note that we perform mmgrab() on the parent and child mm's, however
userfaultfd_ctx_put() will mmdrop() this once the reference count drops to
zero, so we will avoid memory leaks correctly here.
Link: https://lkml.kernel.org/r/cover.1729014377.git.lorenzo.stoakes@oracle.com
Link: https://lkml.kernel.org/r/d3691d58bb58712b6fb3df2be441d175bd3cdf07.1729014377.git.lorenzo.stoakes@oracle.com
Fixes: d24062914837 ("fork: use __mt_dup() to duplicate maple tree in dup_mmap()")
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Reported-by: Jann Horn <jannh@google.com>
Reviewed-by: Jann Horn <jannh@google.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Linus Torvalds <torvalds@linuxfoundation.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Commit 0aaa8977acbf ("configs: introduce debug.config for CI-like setup")
added CONFIG_PROVE_RCU_LIST=y to the common CI config,
but RCU_EXPERT is not set, and it's a dependency for
CONFIG_PROVE_RCU_LIST=y. Make sure CIs take advantage
of CONFIG_PROVE_RCU_LIST=y, recent fixes in networking
indicate that it does catch bugs.
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Acked-by: Matthieu Baerts (NGI0) <matttbe@kernel.org>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Simon Horman <horms@kernel.org>
Link: https://patch.msgid.link/20241016011144.3058445-1-kuba@kernel.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
Even though the open-coded expressions usually fit on one line, this
commit replaces them with a call to a new srcu_gp_is_expedited()
helper function in order to improve readability.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrii Nakryiko <andrii@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: <bpf@vger.kernel.org>
Reviewed-by: Neeraj Upadhyay <Neeraj.Upadhyay@amd.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
|
|
SRCU auto-expedites grace periods that follow a sufficiently long idle
period, and the srcu_might_be_idle() function is used to make this
decision. However, the upcoming light-weight SRCU readers will not do
auto-expediting because doing so would cause the grace-period machinery
to invoke synchronize_rcu_expedited() twice, with IPIs all around.
However, software-engineering considerations force this determination
to remain in srcu_might_be_idle().
This commit therefore changes the name of srcu_might_be_idle() to
srcu_should_expedite(), thus moving from what it currently does to why
it does it, this latter being more future-proof.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrii Nakryiko <andrii@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: <bpf@vger.kernel.org>
Reviewed-by: Neeraj Upadhyay <Neeraj.Upadhyay@amd.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull ftrace fixes from Steven Rostedt:
- Fix missing mutex unlock in error path of register_ftrace_graph()
A previous fix added a return on an error path and forgot to unlock
the mutex. Instead of dealing with error paths, use guard(mutex) as
the mutex is just released at the exit of the function anyway. Other
functions in this file should be updated with this, but that's a
cleanup and not a fix.
- Change cpuhp setup name to be consistent with other cpuhp states
The same fix that the above patch fixes added a cpuhp_setup_state()
call with the name of "fgraph_idle_init". I was informed that it
should instead be something like: "fgraph:online". Update that too.
* tag 'ftrace-v6.12-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
fgraph: Change the name of cpuhp state to "fgraph:online"
fgraph: Fix missing unlock in register_ftrace_graph()
|
|
Remove hard-coded strings by using the str_enabled_disabled() helper
function.
Signed-off-by: Thorsten Blum <thorsten.blum@linux.dev>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241026154029.158977-2-thorsten.blum@linux.dev
|
|
The error path in msi_domain_alloc(), frees the already allocated MSI
interrupts in a loop, but the loop condition terminates when the index
reaches zero, which fails to free the first allocated MSI interrupt at
index zero.
Check for >= 0 so that msi[0] is freed as well.
Fixes: f3cf8bb0d6c3 ("genirq: Add generic msi irq domain support")
Signed-off-by: Jinjie Ruan <ruanjinjie@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241026063639.10711-1-ruanjinjie@huawei.com
|
|
When cloning a new thread, its posix_cputimers are not inherited, and
are cleared by posix_cputimers_init(). However, this does not clear the
tick dependency it creates in tsk->tick_dep_mask, and the handler does
not reach the code to clear the dependency if there were no timers to
begin with.
Thus if a thread has a cputimer running before clone/fork, all
descendants will prevent nohz_full unless they create a cputimer of
their own.
Fix this by entirely clearing the tick_dep_mask in copy_process().
(There is currently no inherited state that needs a tick dependency)
Process-wide timers do not have this problem because fork does not copy
signal_struct as a baseline, it creates one from scratch.
Fixes: b78783000d5c ("posix-cpu-timers: Migrate to use new tick dependency mask model")
Signed-off-by: Ben Segall <bsegall@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/xm26o737bq8o.fsf@google.com
|
|
What psi needs to do on each enqueue and dequeue has gotten more
subtle, and the generic sched code trying to distill this into a bool
for the callbacks is awkward.
Pass the flags directly and let psi parse them. For that to work, the
#include "stats.h" (which has the psi callback implementations) needs
to be below the flag definitions in "sched.h". Move that section
further down, next to some of the other accounting stuff.
This also puts the ENQUEUE_SAVE/RESTORE branch behind the psi jump
label, slightly reducing overhead when PSI=y but runtime disabled.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20241014144358.GB1021@cmpxchg.org
|
|
When running stress-ng-vm-segv test, we found a null pointer dereference
error in task_numa_work(). Here is the backtrace:
[323676.066985] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000020
......
[323676.067108] CPU: 35 PID: 2694524 Comm: stress-ng-vm-se
......
[323676.067113] pstate: 23401009 (nzCv daif +PAN -UAO +TCO +DIT +SSBS BTYPE=--)
[323676.067115] pc : vma_migratable+0x1c/0xd0
[323676.067122] lr : task_numa_work+0x1ec/0x4e0
[323676.067127] sp : ffff8000ada73d20
[323676.067128] x29: ffff8000ada73d20 x28: 0000000000000000 x27: 000000003e89f010
[323676.067130] x26: 0000000000080000 x25: ffff800081b5c0d8 x24: ffff800081b27000
[323676.067133] x23: 0000000000010000 x22: 0000000104d18cc0 x21: ffff0009f7158000
[323676.067135] x20: 0000000000000000 x19: 0000000000000000 x18: ffff8000ada73db8
[323676.067138] x17: 0001400000000000 x16: ffff800080df40b0 x15: 0000000000000035
[323676.067140] x14: ffff8000ada73cc8 x13: 1fffe0017cc72001 x12: ffff8000ada73cc8
[323676.067142] x11: ffff80008001160c x10: ffff000be639000c x9 : ffff8000800f4ba4
[323676.067145] x8 : ffff000810375000 x7 : ffff8000ada73974 x6 : 0000000000000001
[323676.067147] x5 : 0068000b33e26707 x4 : 0000000000000001 x3 : ffff0009f7158000
[323676.067149] x2 : 0000000000000041 x1 : 0000000000004400 x0 : 0000000000000000
[323676.067152] Call trace:
[323676.067153] vma_migratable+0x1c/0xd0
[323676.067155] task_numa_work+0x1ec/0x4e0
[323676.067157] task_work_run+0x78/0xd8
[323676.067161] do_notify_resume+0x1ec/0x290
[323676.067163] el0_svc+0x150/0x160
[323676.067167] el0t_64_sync_handler+0xf8/0x128
[323676.067170] el0t_64_sync+0x17c/0x180
[323676.067173] Code: d2888001 910003fd f9000bf3 aa0003f3 (f9401000)
[323676.067177] SMP: stopping secondary CPUs
[323676.070184] Starting crashdump kernel...
stress-ng-vm-segv in stress-ng is used to stress test the SIGSEGV error
handling function of the system, which tries to cause a SIGSEGV error on
return from unmapping the whole address space of the child process.
Normally this program will not cause kernel crashes. But before the
munmap system call returns to user mode, a potential task_numa_work()
for numa balancing could be added and executed. In this scenario, since the
child process has no vma after munmap, the vma_next() in task_numa_work()
will return a null pointer even if the vma iterator restarts from 0.
Recheck the vma pointer before dereferencing it in task_numa_work().
Fixes: 214dbc428137 ("sched: convert to vma iterator")
Signed-off-by: Shawn Wang <shawnwang@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org # v6.2+
Link: https://lkml.kernel.org/r/20241025022208.125527-1-shawnwang@linux.alibaba.com
|
|
uclamp_mutex is only used for CONFIG_SYSCTL or
CONFIG_UCLAMP_TASK_GROUP so declare it __maybe_unused.
Closes: https://lore.kernel.org/oe-kbuild-all/202410060258.bPl2ZoUo-lkp@intel.com/
Closes: https://lore.kernel.org/oe-kbuild-all/202410250459.EJe6PJI5-lkp@intel.com/
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Christian Loehle <christian.loehle@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/a1e9c342-01c9-44f0-a789-2c908e57942b@arm.com
|
|
scx_ops_bypass() can currently race on the ops enable / disable path as
follows:
1. scx_ops_bypass(true) called on enable path, bypass depth is set to 1
2. An op on the init path exits, which schedules scx_ops_disable_workfn()
3. scx_ops_bypass(false) is called on the disable path, and bypass depth
is decremented to 0
4. kthread is scheduled to execute scx_ops_disable_workfn()
5. scx_ops_bypass(true) called, bypass depth set to 1
6. scx_ops_bypass() races when iterating over CPUs
While it's not safe to take any blocking locks on the bypass path, it is
safe to take a raw spinlock which cannot be preempted. This patch therefore
updates scx_ops_bypass() to use a raw spinlock to synchronize, and changes
scx_ops_bypass_depth to be a regular int.
Without this change, we observe the following warnings when running the
'exit' sched_ext selftest (sometimes requires a couple of runs):
.[root@virtme-ng sched_ext]# ./runner -t exit
===== START =====
TEST: exit
...
[ 14.935078] WARNING: CPU: 2 PID: 360 at kernel/sched/ext.c:4332 scx_ops_bypass+0x1ca/0x280
[ 14.935126] Modules linked in:
[ 14.935150] CPU: 2 UID: 0 PID: 360 Comm: sched_ext_ops_h Not tainted 6.11.0-virtme #24
[ 14.935192] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Arch Linux 1.16.3-1-1 04/01/2014
[ 14.935242] Sched_ext: exit (enabling+all)
[ 14.935244] RIP: 0010:scx_ops_bypass+0x1ca/0x280
[ 14.935300] Code: ff ff ff e8 48 96 10 00 fb e9 08 ff ff ff c6 05 7b 34 e8 01 01 90 48 c7 c7 89 86 88 87 e8 be 1d f8 ff 90 0f 0b 90 90 eb 95 90 <0f> 0b 90 41 8b 84 24 24 0a 00 00 eb 97 90 0f 0b 90 41 8b 84 24 24
[ 14.935394] RSP: 0018:ffffb706c0957ce0 EFLAGS: 00010002
[ 14.935424] RAX: 0000000000000009 RBX: 0000000000000001 RCX: 00000000e3fb8b2a
[ 14.935465] RDX: 0000000000000001 RSI: 0000000000000004 RDI: ffffffff88a4c080
[ 14.935512] RBP: 0000000000009b56 R08: 0000000000000004 R09: 00000003f12e520a
[ 14.935555] R10: ffffffff863a9795 R11: 0000000000000000 R12: ffff8fc5fec31300
[ 14.935598] R13: ffff8fc5fec31318 R14: 0000000000000286 R15: 0000000000000018
[ 14.935642] FS: 0000000000000000(0000) GS:ffff8fc5fe680000(0000) knlGS:0000000000000000
[ 14.935684] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 14.935721] CR2: 0000557d92890b88 CR3: 000000002464a000 CR4: 0000000000750ef0
[ 14.935765] PKRU: 55555554
[ 14.935782] Call Trace:
[ 14.935802] <TASK>
[ 14.935823] ? __warn+0xce/0x220
[ 14.935850] ? scx_ops_bypass+0x1ca/0x280
[ 14.935881] ? report_bug+0xc1/0x160
[ 14.935909] ? handle_bug+0x61/0x90
[ 14.935934] ? exc_invalid_op+0x1a/0x50
[ 14.935959] ? asm_exc_invalid_op+0x1a/0x20
[ 14.935984] ? raw_spin_rq_lock_nested+0x15/0x30
[ 14.936019] ? scx_ops_bypass+0x1ca/0x280
[ 14.936046] ? srso_alias_return_thunk+0x5/0xfbef5
[ 14.936081] ? __pfx_scx_ops_disable_workfn+0x10/0x10
[ 14.936111] scx_ops_disable_workfn+0x146/0xac0
[ 14.936142] ? finish_task_switch+0xa9/0x2c0
[ 14.936172] ? srso_alias_return_thunk+0x5/0xfbef5
[ 14.936211] ? __pfx_scx_ops_disable_workfn+0x10/0x10
[ 14.936244] kthread_worker_fn+0x101/0x2c0
[ 14.936268] ? __pfx_kthread_worker_fn+0x10/0x10
[ 14.936299] kthread+0xec/0x110
[ 14.936327] ? __pfx_kthread+0x10/0x10
[ 14.936351] ret_from_fork+0x37/0x50
[ 14.936374] ? __pfx_kthread+0x10/0x10
[ 14.936400] ret_from_fork_asm+0x1a/0x30
[ 14.936427] </TASK>
[ 14.936443] irq event stamp: 21002
[ 14.936467] hardirqs last enabled at (21001): [<ffffffff863aa35f>] resched_cpu+0x9f/0xd0
[ 14.936521] hardirqs last disabled at (21002): [<ffffffff863dd0ba>] scx_ops_bypass+0x11a/0x280
[ 14.936571] softirqs last enabled at (20642): [<ffffffff863683d7>] __irq_exit_rcu+0x67/0xd0
[ 14.936622] softirqs last disabled at (20637): [<ffffffff863683d7>] __irq_exit_rcu+0x67/0xd0
[ 14.936672] ---[ end trace 0000000000000000 ]---
[ 14.953282] sched_ext: BPF scheduler "exit" disabled (unregistered from BPF)
[ 14.953352] ------------[ cut here ]------------
[ 14.953383] WARNING: CPU: 2 PID: 360 at kernel/sched/ext.c:4335 scx_ops_bypass+0x1d8/0x280
[ 14.953428] Modules linked in:
[ 14.953453] CPU: 2 UID: 0 PID: 360 Comm: sched_ext_ops_h Tainted: G W 6.11.0-virtme #24
[ 14.953505] Tainted: [W]=WARN
[ 14.953527] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Arch Linux 1.16.3-1-1 04/01/2014
[ 14.953574] RIP: 0010:scx_ops_bypass+0x1d8/0x280
[ 14.953603] Code: c6 05 7b 34 e8 01 01 90 48 c7 c7 89 86 88 87 e8 be 1d f8 ff 90 0f 0b 90 90 eb 95 90 0f 0b 90 41 8b 84 24 24 0a 00 00 eb 97 90 <0f> 0b 90 41 8b 84 24 24 0a 00 00 eb 92 f3 0f 1e fa 49 8d 84 24 f0
[ 14.953693] RSP: 0018:ffffb706c0957ce0 EFLAGS: 00010046
[ 14.953722] RAX: 0000000000000001 RBX: 0000000000000000 RCX: 0000000000000001
[ 14.953763] RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff8fc5fec31318
[ 14.953804] RBP: 0000000000000000 R08: 0000000000000001 R09: 0000000000000000
[ 14.953845] R10: ffffffff863a9795 R11: 0000000000000000 R12: ffff8fc5fec31300
[ 14.953888] R13: ffff8fc5fec31318 R14: 0000000000000286 R15: 0000000000000018
[ 14.953934] FS: 0000000000000000(0000) GS:ffff8fc5fe680000(0000) knlGS:0000000000000000
[ 14.953974] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 14.954009] CR2: 0000557d92890b88 CR3: 000000002464a000 CR4: 0000000000750ef0
[ 14.954052] PKRU: 55555554
[ 14.954068] Call Trace:
[ 14.954085] <TASK>
[ 14.954102] ? __warn+0xce/0x220
[ 14.954126] ? scx_ops_bypass+0x1d8/0x280
[ 14.954150] ? report_bug+0xc1/0x160
[ 14.954178] ? handle_bug+0x61/0x90
[ 14.954203] ? exc_invalid_op+0x1a/0x50
[ 14.954226] ? asm_exc_invalid_op+0x1a/0x20
[ 14.954250] ? raw_spin_rq_lock_nested+0x15/0x30
[ 14.954285] ? scx_ops_bypass+0x1d8/0x280
[ 14.954311] ? __mutex_unlock_slowpath+0x3a/0x260
[ 14.954343] scx_ops_disable_workfn+0xa3e/0xac0
[ 14.954381] ? __pfx_scx_ops_disable_workfn+0x10/0x10
[ 14.954413] kthread_worker_fn+0x101/0x2c0
[ 14.954442] ? __pfx_kthread_worker_fn+0x10/0x10
[ 14.954479] kthread+0xec/0x110
[ 14.954507] ? __pfx_kthread+0x10/0x10
[ 14.954530] ret_from_fork+0x37/0x50
[ 14.954553] ? __pfx_kthread+0x10/0x10
[ 14.954576] ret_from_fork_asm+0x1a/0x30
[ 14.954603] </TASK>
[ 14.954621] irq event stamp: 21002
[ 14.954644] hardirqs last enabled at (21001): [<ffffffff863aa35f>] resched_cpu+0x9f/0xd0
[ 14.954686] hardirqs last disabled at (21002): [<ffffffff863dd0ba>] scx_ops_bypass+0x11a/0x280
[ 14.954735] softirqs last enabled at (20642): [<ffffffff863683d7>] __irq_exit_rcu+0x67/0xd0
[ 14.954782] softirqs last disabled at (20637): [<ffffffff863683d7>] __irq_exit_rcu+0x67/0xd0
[ 14.954829] ---[ end trace 0000000000000000 ]---
[ 15.022283] sched_ext: BPF scheduler "exit" disabled (unregistered from BPF)
[ 15.092282] sched_ext: BPF scheduler "exit" disabled (unregistered from BPF)
[ 15.149282] sched_ext: BPF scheduler "exit" disabled (unregistered from BPF)
ok 1 exit #
===== END =====
And with it, the test passes without issue after 1000s of runs:
.[root@virtme-ng sched_ext]# ./runner -t exit
===== START =====
TEST: exit
DESCRIPTION: Verify we can cleanly exit a scheduler in multiple places
OUTPUT:
[ 7.412856] sched_ext: BPF scheduler "exit" enabled
[ 7.427924] sched_ext: BPF scheduler "exit" disabled (unregistered from BPF)
[ 7.466677] sched_ext: BPF scheduler "exit" enabled
[ 7.475923] sched_ext: BPF scheduler "exit" disabled (unregistered from BPF)
[ 7.512803] sched_ext: BPF scheduler "exit" enabled
[ 7.532924] sched_ext: BPF scheduler "exit" disabled (unregistered from BPF)
[ 7.586809] sched_ext: BPF scheduler "exit" enabled
[ 7.595926] sched_ext: BPF scheduler "exit" disabled (unregistered from BPF)
[ 7.661923] sched_ext: BPF scheduler "exit" disabled (unregistered from BPF)
[ 7.723923] sched_ext: BPF scheduler "exit" disabled (unregistered from BPF)
ok 1 exit #
===== END =====
=============================
RESULTS:
PASSED: 1
SKIPPED: 0
FAILED: 0
Fixes: f0e1a0643a59 ("sched_ext: Implement BPF extensible scheduler class")
Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
The details about the handling of the "normal" values were moved
to the _msecs_to_jiffies() helpers in commit ca42aaf0c861 ("time:
Refactor msecs_to_jiffies"). However, the same commit still mentioned
__msecs_to_jiffies() in the added documentation.
Thus point to _msecs_to_jiffies() instead.
Fixes: ca42aaf0c861 ("time: Refactor msecs_to_jiffies")
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241025110141.157205-2-ojeda@kernel.org
|
|
The documentation's intention is to compare msecs_to_jiffies() (first
sentence) with __msecs_to_jiffies() (second sentence), which is what the
original documentation did. One of the cleanups in commit f3cb80804b82
("time: Fix various kernel-doc problems") may have thought the paragraph
was talking about the latter since that is what it is being documented.
Thus revert that part of the change.
Fixes: f3cb80804b82 ("time: Fix various kernel-doc problems")
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241025110141.157205-1-ojeda@kernel.org
|
|
timekeeping_update_staged() is the only call site of timekeeping_update().
Merge those functions. No functional change.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/all/20241009-devel-anna-maria-b4-timers-ptp-timekeeping-v2-25-554456a44a15@linutronix.de
|
|
All call sites of using TK_MIRROR flag in timekeeping_update() are
gone. The TK_MIRROR dependent code path is therefore dead code.
Remove it along with the TK_MIRROR define.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/all/20241009-devel-anna-maria-b4-timers-ptp-timekeeping-v2-24-554456a44a15@linutronix.de
|
|
Updates of the timekeeper can be done by operating on the shadow timekeeper
and afterwards copying the result into the real timekeeper. This has the
advantage, that the sequence count write protected region is kept as small
as possible.
Convert do_adjtimex() to use this scheme and take the opportunity to use a
scoped_guard() for locking.
That requires to have a separate function for updating the leap state so
that the update is protected by the sequence count. This also brings the
timekeeper and the shadow timekeeper in sync for this state, which was not
the case so far. That's not a correctness problem as the state is only used
at the read sides which use the real timekeeper, but it's inconsistent
nevertheless.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/all/20241009-devel-anna-maria-b4-timers-ptp-timekeeping-v2-23-554456a44a15@linutronix.de
|
|
Updates of the timekeeper can be done by operating on the shadow timekeeper
and afterwards copying the result into the real timekeeper. This has the
advantage, that the sequence count write protected region is kept as small
as possible.
While the sequence count held time is not relevant for the resume path as
there is no concurrency, there is no reason to have this function
different than all the other update sites.
Convert timekeeping_inject_offset() to use this scheme and cleanup the
variable declarations while at it.
As halt_fast_timekeeper() does not need protection sequence counter, it is
no problem to move it with this change outside of the sequence counter
protected area. But it still needs to be executed while holding the lock.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/all/20241009-devel-anna-maria-b4-timers-ptp-timekeeping-v2-22-554456a44a15@linutronix.de
|
|
Updates of the timekeeper can be done by operating on the shadow timekeeper
and afterwards copying the result into the real timekeeper. This has the
advantage, that the sequence count write protected region is kept as small
as possible.
While the sequence count held time is not relevant for the resume path as
there is no concurrency, there is no reason to have this function
different than all the other update sites.
Convert timekeeping_inject_offset() to use this scheme and cleanup the
variable declaration while at it.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/all/20241009-devel-anna-maria-b4-timers-ptp-timekeeping-v2-21-554456a44a15@linutronix.de
|
|
Updates of the timekeeper can be done by operating on the shadow timekeeper
and afterwards copying the result into the real timekeeper. This has the
advantage, that the sequence count write protected region is kept as small
as possible.
Convert timekeeping_inject_sleeptime64() to use this scheme.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/all/20241009-devel-anna-maria-b4-timers-ptp-timekeeping-v2-20-554456a44a15@linutronix.de
|
|
For timekeeping_init() the sequence count write held time is not relevant
and it could keep working on the real timekeeper, but there is no reason to
make it different from other timekeeper updates.
Convert it to operate on the shadow timekeeper.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/all/20241009-devel-anna-maria-b4-timers-ptp-timekeeping-v2-19-554456a44a15@linutronix.de
|
|
Updates of the timekeeper can be done by operating on the shadow timekeeper
and afterwards copying the result into the real timekeeper. This has the
advantage, that the sequence count write protected region is kept as small
as possible.
Convert change_clocksource() to use this scheme.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/all/20241009-devel-anna-maria-b4-timers-ptp-timekeeping-v2-18-554456a44a15@linutronix.de
|
|
Updates of the timekeeper can be done by operating on the shadow timekeeper
and afterwards copying the result into the real timekeeper. This has the
advantage, that the sequence count write protected region is kept as small
as possible.
Convert timekeeping_inject_offset() to use this scheme.
That allows to use a scoped_guard() for locking the timekeeper lock as the
usage of the shadow timekeeper allows a rollback in the error case instead
of the full timekeeper update of the original code.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/all/20241009-devel-anna-maria-b4-timers-ptp-timekeeping-v2-17-554456a44a15@linutronix.de
|
|
Updates of the timekeeper can be done by operating on the shadow timekeeper
and afterwards copying the result into the real timekeeper. This has the
advantage, that the sequence count write protected region is kept as small
as possible.
Convert do_settimeofday64() to use this scheme.
That allows to use a scoped_guard() for locking the timekeeper lock as the
usage of the shadow timekeeper allows a rollback in the error case instead
of the full timekeeper update of the original code.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/all/20241009-devel-anna-maria-b4-timers-ptp-timekeeping-v2-16-554456a44a15@linutronix.de
|
|
Functions which operate on the real timekeeper, e.g. do_settimeofday(),
have error conditions. If they are hit a full timekeeping update is still
required because the already committed operations modified the timekeeper.
When switching these functions to operate on the shadow timekeeper then the
full update can be avoided in the error case, but the modified shadow
timekeeper has to be restored.
Provide a helper function for that.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/all/20241009-devel-anna-maria-b4-timers-ptp-timekeeping-v2-15-554456a44a15@linutronix.de
|
|
Instead of explicitly listing all the separate timekeeping actions flags,
introduce a new one which covers all actions except TK_MIRROR action.
No functional change.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/all/20241009-devel-anna-maria-b4-timers-ptp-timekeeping-v2-14-554456a44a15@linutronix.de
|
|
timekeeping_advance() is the only optimized function which uses
shadow_timekeeper for updating the real timekeeper to keep the sequence
counter protected region as small as possible.
To be able to transform timekeeper updates in other functions to use the
same logic, split out functionality into a separate function
timekeeper_update_staged().
While at it, document the reason why the sequence counter must be write
held over the call to timekeeping_update() and the copying to the real
timekeeper and why using a pointer based update is suboptimal.
No functional change.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/all/20241009-devel-anna-maria-b4-timers-ptp-timekeeping-v2-13-554456a44a15@linutronix.de
|
|
Updates of the timekeeper are done in two ways:
1. Updating timekeeper and afterwards memcpy()'ing the result into
shadow_timekeeper using timekeeping_update(). Used everywhere for
updates except in timekeeping_advance(); the sequence counter protected
region starts before the first change to the timekeeper is done.
2. Updating shadow_timekeeper and then memcpy()'ing the result into
timekeeper. Used only by in timekeeping_advance(); The seqence counter
protected region is only around timekeeping_update() and the memcpy for
copy from shadow to timekeeper.
The second option is fast path optimized. The sequence counter protected
region is as short as possible.
As this behaviour is mainly documented by commit messages, but not in code,
it makes the not easy timekeeping code more complicated to read.
There is no reason why updates to the timekeeper can't use the optimized
version everywhere. With this, the code will be cleaner, as code is reused
instead of duplicated.
To be able to access tk_data which contains all required information, add a
pointer to tk_data as an argument to timekeeping_update(). With that
convert the comment about holding the lock into a lockdep assert.
No functional change.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/all/20241009-devel-anna-maria-b4-timers-ptp-timekeeping-v2-12-554456a44a15@linutronix.de
|
|
Initialization of lock and seqcount needs to be done for every instance of
timekeeper struct. To be able to easily reuse it, create a separate
function for it.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/all/20241009-devel-anna-maria-b4-timers-ptp-timekeeping-v2-11-554456a44a15@linutronix.de
|
|
The struct tk_core uses is not reusable. As long as there is only a single
timekeeper, this is not a problem. But when the timekeeper infrastructure
will be reused for per ptp clock timekeepers, an explicit struct type is
required.
Define struct tk_data as explicit struct type for tk_core.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/all/20241009-devel-anna-maria-b4-timers-ptp-timekeeping-v2-10-554456a44a15@linutronix.de
|
|
timekeeper_lock protects updates to struct tk_core but is not part of
struct tk_core. As long as there is only a single timekeeper, this is not a
problem. But when the timekeeper infrastructure will be reused for per ptp
clock timekeepers, timekeeper_lock needs to be part of tk_core.
Move the lock into tk_core, move initialisation of the lock and sequence
counter into timekeeping_init() and update all users of timekeeper_lock.
As this is touching all lock sites, convert them to use:
guard(raw_spinlock_irqsave)(&tk_core.lock);
instead of lock/unlock functions whenever possible.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/all/20241009-devel-anna-maria-b4-timers-ptp-timekeeping-v2-9-554456a44a15@linutronix.de
|
|
timekeeper_lock protects updates of timekeeper (tk_core). It is also used
by vdso_update_begin/end() and not only internally by the timekeeper code.
As long as there is only a single timekeeper, this works fine. But when
the timekeeper infrastructure will be reused for per ptp clock timekeepers,
timekeeper_lock needs to be part of tk_core..
Therefore encapuslate locking/unlocking of timekeeper_lock and make the
lock static.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/all/20241009-devel-anna-maria-b4-timers-ptp-timekeeping-v2-8-554456a44a15@linutronix.de
|
|
tk_core requires shadow_timekeeper to allow timekeeping_advance() updating
without holding the timekeeper sequence count write locked. This allows the
readers to make progress up to the actual update where the shadow
timekeeper is copied over to the real timekeeper.
As long as there is only a single timekeeper, having them separate is
fine. But when the timekeeper infrastructure will be reused for per ptp
clock timekeepers, shadow_timekeeper needs to be part of tk_core.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/all/20241009-devel-anna-maria-b4-timers-ptp-timekeeping-v2-7-554456a44a15@linutronix.de
|
|
timekeeping_advance() takes the timekeeper_lock and releases it before
returning. When an early return is required, goto statements are used to
make sure the lock is realeased properly. When the code was written the
locking guard() was not yet available.
Use the guard() to simplify the code and while at it cleanup ordering of
function variables. No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/all/20241009-devel-anna-maria-b4-timers-ptp-timekeeping-v2-5-554456a44a15@linutronix.de
|
|
There is no point to go through a full timekeeping update when acquiring a
module reference or enabling the new clocksource fails.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/all/20241009-devel-anna-maria-b4-timers-ptp-timekeeping-v2-4-554456a44a15@linutronix.de
|
|
do_adjtimex() invokes tk_update_leap_state() unconditionally even when a
previous invocation of timekeeping_update() already did that update.
Put it into the else path which is invoked when timekeeping_update() is not
called.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/all/20241009-devel-anna-maria-b4-timers-ptp-timekeeping-v2-3-554456a44a15@linutronix.de
|
|
hard_pps() update does not modify anything which might be required by time
readers so forcing readers out of the way during the update is a pointless
exercise.
The interaction with adjtimex() and timekeeper updates which call into the
NTP code is properly serialized by timekeeper_lock.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241009-devel-anna-maria-b4-timers-ptp-timekeeping-v2-2-554456a44a15@linutronix.de
|
|
No point in reading it a second time when the comparison fails.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/all/20241009-devel-anna-maria-b4-timers-ptp-timekeeping-v2-1-554456a44a15@linutronix.de
|
|
Replace this pattern in osq_unlock():
atomic_cmpxchg(*ptr, old, new) == old
... with the simpler and faster:
atomic_try_cmpxchg(*ptr, &old, new)
The x86 CMPXCHG instruction returns success in the ZF flag,
so this change saves a compare after the CMPXCHG. The code
in the fast path of osq_unlock() improves from:
11b: 31 c9 xor %ecx,%ecx
11d: 8d 50 01 lea 0x1(%rax),%edx
120: 89 d0 mov %edx,%eax
122: f0 0f b1 0f lock cmpxchg %ecx,(%rdi)
126: 39 c2 cmp %eax,%edx
128: 75 05 jne 12f <...>
to:
12b: 31 d2 xor %edx,%edx
12d: 83 c0 01 add $0x1,%eax
130: f0 0f b1 17 lock cmpxchg %edx,(%rdi)
134: 75 05 jne 13b <...>
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Waiman Long <longman@redhat.com>
Link: https://lore.kernel.org/r/20241001114606.820277-1-ubizjak@gmail.com
|
|
The cpuhp state name given to cpuhp_setup_state() is "fgraph_idle_init"
which doesn't really conform to the names that are used for cpu hotplug
setups. Instead rename it to "fgraph:online" to be in line with other
states.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/20241024222944.473d88c5@rorschach.local.home
Suggested-by: Masami Hiramatsu <mhiramat@kernel.org>
Fixes: 2c02f7375e658 ("fgraph: Use CPU hotplug mechanism to initialize idle shadow stacks")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Use guard(mutex)() to acquire and automatically release ftrace_lock,
fixing the issue of not unlocking when calling cpuhp_setup_state()
fails.
Fixes smatch warning:
kernel/trace/fgraph.c:1317 register_ftrace_graph() warn: inconsistent returns '&ftrace_lock'.
Link: https://lore.kernel.org/20241024155917.1019580-1-lihuafei1@huawei.com
Fixes: 2c02f7375e65 ("fgraph: Use CPU hotplug mechanism to initialize idle shadow stacks")
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Dan Carpenter <dan.carpenter@linaro.org>
Closes: https://lore.kernel.org/r/202410220121.wxg0olfd-lkp@intel.com/
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Li Huafei <lihuafei1@huawei.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Cross-merge bpf fixes after downstream PR.
No conflicts.
Adjacent changes in:
include/linux/bpf.h
include/uapi/linux/bpf.h
kernel/bpf/btf.c
kernel/bpf/helpers.c
kernel/bpf/syscall.c
kernel/bpf/verifier.c
kernel/trace/bpf_trace.c
mm/slab_common.c
tools/include/uapi/linux/bpf.h
tools/testing/selftests/bpf/Makefile
Link: https://lore.kernel.org/all/20241024215724.60017-1-daniel@iogearbox.net/
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Pull bpf fixes from Daniel Borkmann:
- Fix an out-of-bounds read in bpf_link_show_fdinfo for BPF sockmap
link file descriptors (Hou Tao)
- Fix BPF arm64 JIT's address emission with tag-based KASAN enabled
reserving not enough size (Peter Collingbourne)
- Fix BPF verifier do_misc_fixups patching for inlining of the
bpf_get_branch_snapshot BPF helper (Andrii Nakryiko)
- Fix a BPF verifier bug and reject BPF program write attempts into
read-only marked BPF maps (Daniel Borkmann)
- Fix perf_event_detach_bpf_prog error handling by removing an invalid
check which would skip BPF program release (Jiri Olsa)
- Fix memory leak when parsing mount options for the BPF filesystem
(Hou Tao)
* tag 'bpf-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf:
bpf: Check validity of link->type in bpf_link_show_fdinfo()
bpf: Add the missing BPF_LINK_TYPE invocation for sockmap
bpf: fix do_misc_fixups() for bpf_get_branch_snapshot()
bpf,perf: Fix perf_event_detach_bpf_prog error handling
selftests/bpf: Add test for passing in uninit mtu_len
selftests/bpf: Add test for writes to .rodata
bpf: Remove MEM_UNINIT from skb/xdp MTU helpers
bpf: Fix overloading of MEM_UNINIT's meaning
bpf: Add MEM_WRITE attribute
bpf: Preserve param->string when parsing mount options
bpf, arm64: Fix address emission with tag-based KASAN enabled
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Pull networking fixes from Paolo Abeni:
"Including fixes from netfiler, xfrm and bluetooth.
Oddly this includes a fix for a posix clock regression; in our
previous PR we included a change there as a pre-requisite for
networking one. That fix proved to be buggy and requires the follow-up
included here. Thomas suggested we should send it, given we sent the
buggy patch.
Current release - regressions:
- posix-clock: Fix unbalanced locking in pc_clock_settime()
- netfilter: fix typo causing some targets not to load on IPv6
Current release - new code bugs:
- xfrm: policy: remove last remnants of pernet inexact list
Previous releases - regressions:
- core: fix races in netdev_tx_sent_queue()/dev_watchdog()
- bluetooth: fix UAF on sco_sock_timeout
- eth: hv_netvsc: fix VF namespace also in synthetic NIC
NETDEV_REGISTER event
- eth: usbnet: fix name regression
- eth: be2net: fix potential memory leak in be_xmit()
- eth: plip: fix transmit path breakage
Previous releases - always broken:
- sched: deny mismatched skip_sw/skip_hw flags for actions created by
classifiers
- netfilter: bpf: must hold reference on net namespace
- eth: virtio_net: fix integer overflow in stats
- eth: bnxt_en: replace ptp_lock with irqsave variant
- eth: octeon_ep: add SKB allocation failures handling in
__octep_oq_process_rx()
Misc:
- MAINTAINERS: add Simon as an official reviewer"
* tag 'net-6.12-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (40 commits)
net: dsa: mv88e6xxx: support 4000ps cycle counter period
net: dsa: mv88e6xxx: read cycle counter period from hardware
net: dsa: mv88e6xxx: group cycle counter coefficients
net: usb: qmi_wwan: add Fibocom FG132 0x0112 composition
hv_netvsc: Fix VF namespace also in synthetic NIC NETDEV_REGISTER event
net: dsa: microchip: disable EEE for KSZ879x/KSZ877x/KSZ876x
Bluetooth: ISO: Fix UAF on iso_sock_timeout
Bluetooth: SCO: Fix UAF on sco_sock_timeout
Bluetooth: hci_core: Disable works on hci_unregister_dev
posix-clock: posix-clock: Fix unbalanced locking in pc_clock_settime()
r8169: avoid unsolicited interrupts
net: sched: use RCU read-side critical section in taprio_dump()
net: sched: fix use-after-free in taprio_change()
net/sched: act_api: deny mismatched skip_sw/skip_hw flags for actions created by classifiers
net: usb: usbnet: fix name regression
mlxsw: spectrum_router: fix xa_store() error checking
virtio_net: fix integer overflow in stats
net: fix races in netdev_tx_sent_queue()/dev_watchdog()
net: wwan: fix global oob in wwan_rtnl_policy
netfilter: xtables: fix typo causing some targets not to load on IPv6
...
|
|
Going through the RCU-boost and rtmutex code, I ran into this utterly
confusing comment. Fix it to avoid confusing future readers.
[ tglx: Wordsmithed the comment ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Link: https://lore.kernel.org/all/20241008092606.GJ33184@noisy.programming.kicks-ass.net
|
|
This patch adds uptr support in the map_value of the task local storage.
struct map_value {
struct user_data __uptr *uptr;
};
struct {
__uint(type, BPF_MAP_TYPE_TASK_STORAGE);
__uint(map_flags, BPF_F_NO_PREALLOC);
__type(key, int);
__type(value, struct value_type);
} datamap SEC(".maps");
A new bpf_obj_pin_uptrs() is added to pin the user page and
also stores the kernel address back to the uptr for the
bpf prog to use later. It currently does not support
the uptr pointing to a user struct across two pages.
It also excludes PageHighMem support to keep it simple.
As of now, the 32bit bpf jit is missing other more crucial bpf
features. For example, many important bpf features depend on
bpf kfunc now but so far only one arch (x86-32) supports it
which was added by me as an example when kfunc was first
introduced to bpf.
The uptr can only be stored to the task local storage by the
syscall update_elem. Meaning the uptr will not be considered
if it is provided by the bpf prog through
bpf_task_storage_get(BPF_LOCAL_STORAGE_GET_F_CREATE).
This is enforced by only calling
bpf_local_storage_update(swap_uptrs==true) in
bpf_pid_task_storage_update_elem. Everywhere else will
have swap_uptrs==false.
This will pump down to bpf_selem_alloc(swap_uptrs==true). It is
the only case that bpf_selem_alloc() will take the uptr value when
updating the newly allocated selem. bpf_obj_swap_uptrs() is added
to swap the uptr between the SDATA(selem)->data and the user provided
map_value in "void *value". bpf_obj_swap_uptrs() makes the
SDATA(selem)->data takes the ownership of the uptr and the user space
provided map_value will have NULL in the uptr.
The bpf_obj_unpin_uptrs() is called after map->ops->map_update_elem()
returning error. If the map->ops->map_update_elem has reached
a state that the local storage has taken the uptr ownership,
the bpf_obj_unpin_uptrs() will be a no op because the uptr
is NULL. A "__"bpf_obj_unpin_uptrs is added to make this
error path unpin easier such that it does not have to check
the map->record is NULL or not.
BPF_F_LOCK is not supported when the map_value has uptr.
This can be revisited later if there is a use case. A similar
swap_uptrs idea can be considered.
The final bit is to do unpin_user_page in the bpf_obj_free_fields().
The earlier patch has ensured that the bpf_obj_free_fields() has
gone through the rcu gp when needed.
Cc: linux-mm@kvack.org
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Link: https://lore.kernel.org/r/20241023234759.860539-7-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
A later patch will enable the uptr usage in the task_local_storage map.
This will require the unpin_user_page() to be done after the rcu
task trace gp for the cases that the uptr may still be used by
a bpf prog. The bpf_obj_free_fields() will be the one doing
unpin_user_page(), so this patch is to postpone calling
bpf_obj_free_fields() to the rcu callback.
The bpf_obj_free_fields() is only required to be done in
the rcu callback when bpf->bpf_ma==true and reuse_now==false.
bpf->bpf_ma==true case is because uptr will only be enabled
in task storage which has already been moved to bpf_mem_alloc.
The bpf->bpf_ma==false case can be supported in the future
also if there is a need.
reuse_now==false when the selem (aka storage) is deleted
by bpf prog (bpf_task_storage_delete) or by syscall delete_elem().
In both cases, bpf_obj_free_fields() needs to wait for
rcu gp.
A few words on reuse_now==true. reuse_now==true when the
storage's owner (i.e. the task_struct) is destructing or the map
itself is doing map_free(). In both cases, no bpf prog should
have a hold on the selem and its uptrs, so there is no need to
postpone bpf_obj_free_fields(). reuse_now==true should be the
common case for local storage usage where the storage exists
throughout the lifetime of its owner (task_struct).
The bpf_obj_free_fields() needs to use the map->record. Doing
bpf_obj_free_fields() in a rcu callback will require the
bpf_local_storage_map_free() to wait for rcu_barrier. An optimization
could be only waiting for rcu_barrier when the map has uptr in
its map_value. This will require either yet another rcu callback
function or adding a bool in the selem to flag if the SDATA(selem)->smap
is still valid. This patch chooses to keep it simple and wait for
rcu_barrier for maps that use bpf_mem_alloc.
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20241023234759.860539-6-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
In a later patch, bpf_selem_free() will call unpin_user_page()
through bpf_obj_free_fields(). unpin_user_page() may take spin_lock.
However, some bpf_selem_free() call paths have held a raw_spin_lock.
Like this:
raw_spin_lock_irqsave()
bpf_selem_unlink_storage_nolock()
bpf_selem_free()
unpin_user_page()
spin_lock()
To avoid spinlock nested in raw_spinlock, bpf_selem_free() should be
done after releasing the raw_spinlock. The "bool reuse_now" arg is
replaced with "struct hlist_head *free_selem_list" in
bpf_selem_unlink_storage_nolock(). The bpf_selem_unlink_storage_nolock()
will append the to-be-free selem at the free_selem_list. The caller of
bpf_selem_unlink_storage_nolock() will need to call the new
bpf_selem_free_list(free_selem_list, reuse_now) to free the selem
after releasing the raw_spinlock.
Note that the selem->snode cannot be reused for linking to
the free_selem_list because the selem->snode is protected by the
raw_spinlock that we want to avoid holding. A new
"struct hlist_node free_node;" is union-ized with
the rcu_head. Only the first one successfully
hlist_del_init_rcu(&selem->snode) will be able
to use the free_node. After succeeding hlist_del_init_rcu(&selem->snode),
the free_node and rcu_head usage is serialized such that they
can share the 16 bytes in a union.
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20241023234759.860539-5-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
bpf_selem_alloc()
In a later patch, the task local storage will only accept uptr
from the syscall update_elem and will not accept uptr from
the bpf prog. The reason is the bpf prog does not have a way
to provide a valid user space address.
bpf_local_storage_update() and bpf_selem_alloc() are used by
both bpf prog bpf_task_storage_get(BPF_LOCAL_STORAGE_GET_F_CREATE)
and bpf syscall update_elem. "bool swap_uptrs" arg is added
to bpf_local_storage_update() and bpf_selem_alloc() to tell if
it is called by the bpf prog or by the bpf syscall. When
swap_uptrs==true, it is called by the syscall.
The arg is named (swap_)uptrs because the later patch will swap
the uptrs between the newly allocated selem and the user space
provided map_value. It will make error handling easier in case
map->ops->map_update_elem() fails and the caller can decide
if it needs to unpin the uptr in the user space provided
map_value or the bpf_local_storage_update() has already
taken the uptr ownership and will take care of unpinning it also.
Only swap_uptrs==false is passed now. The logic to handle
the true case will be added in a later patch.
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20241023234759.860539-4-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
This patch adds BPF_UPTR support to the verifier. Not that only the
map_value will support the "__uptr" type tag.
This patch enforces only BPF_LDX is allowed to the value of an uptr.
After BPF_LDX, it will mark the dst_reg as PTR_TO_MEM | PTR_MAYBE_NULL
with size deduced from the field.kptr.btf_id. This will make the
dst_reg pointed memory to be readable and writable as scalar.
There is a redundant "val_reg = reg_state(env, value_regno);" statement
in the check_map_kptr_access(). This patch takes this chance to remove
it also.
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20241023234759.860539-3-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|