Age | Commit message (Collapse) | Author |
|
The Kunit tests for kmalloc_track_caller and kmalloc_node_track_caller
were missing in kasan_test_c.c, which check that these functions poison
the memory properly.
Add a Kunit test:
-> kmalloc_tracker_caller_oob_right(): This includes out-of-bounds
access test for kmalloc_track_caller and kmalloc_node_track_caller.
Link: https://lkml.kernel.org/r/20241014190128.442059-1-niharchaithanya@gmail.com
Link: https://bugzilla.kernel.org/show_bug.cgi?id=216509
Signed-off-by: Nihar Chaithanya <niharchaithanya@gmail.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Shuah Khan <skhan@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
When deleting a vma entry from a maple tree, it has to pass NULL to
vma_iter_prealloc() in order to calculate internal state of the tree, but
it passed a wrong argument. As a result, nommu kernels crashed upon
accessing a vma iterator, such as acct_collect() reading the size of vma
entries after do_munmap().
This commit fixes this issue by passing a right argument to the
preallocation call.
Link: https://lkml.kernel.org/r/20241108222834.3625217-1-thehajime@gmail.com
Fixes: b5df09226450 ("mm: set up vma iterator for vma_iter_prealloc() calls")
Signed-off-by: Hajime Tazaki <thehajime@gmail.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Syzbot reported a bad page state problem caused by a page being freed
using free_page() still having a mlocked flag at free_pages_prepare()
stage:
BUG: Bad page state in process syz.5.504 pfn:61f45
page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x61f45
flags: 0xfff00000080204(referenced|workingset|mlocked|node=0|zone=1|lastcpupid=0x7ff)
raw: 00fff00000080204 0000000000000000 dead000000000122 0000000000000000
raw: 0000000000000000 0000000000000000 00000000ffffffff 0000000000000000
page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set
page_owner tracks the page as allocated
page last allocated via order 0, migratetype Unmovable, gfp_mask 0x400dc0(GFP_KERNEL_ACCOUNT|__GFP_ZERO), pid 8443, tgid 8442 (syz.5.504), ts 201884660643, free_ts 201499827394
set_page_owner include/linux/page_owner.h:32 [inline]
post_alloc_hook+0x1f3/0x230 mm/page_alloc.c:1537
prep_new_page mm/page_alloc.c:1545 [inline]
get_page_from_freelist+0x303f/0x3190 mm/page_alloc.c:3457
__alloc_pages_noprof+0x292/0x710 mm/page_alloc.c:4733
alloc_pages_mpol_noprof+0x3e8/0x680 mm/mempolicy.c:2265
kvm_coalesced_mmio_init+0x1f/0xf0 virt/kvm/coalesced_mmio.c:99
kvm_create_vm virt/kvm/kvm_main.c:1235 [inline]
kvm_dev_ioctl_create_vm virt/kvm/kvm_main.c:5488 [inline]
kvm_dev_ioctl+0x12dc/0x2240 virt/kvm/kvm_main.c:5530
__do_compat_sys_ioctl fs/ioctl.c:1007 [inline]
__se_compat_sys_ioctl+0x510/0xc90 fs/ioctl.c:950
do_syscall_32_irqs_on arch/x86/entry/common.c:165 [inline]
__do_fast_syscall_32+0xb4/0x110 arch/x86/entry/common.c:386
do_fast_syscall_32+0x34/0x80 arch/x86/entry/common.c:411
entry_SYSENTER_compat_after_hwframe+0x84/0x8e
page last free pid 8399 tgid 8399 stack trace:
reset_page_owner include/linux/page_owner.h:25 [inline]
free_pages_prepare mm/page_alloc.c:1108 [inline]
free_unref_folios+0xf12/0x18d0 mm/page_alloc.c:2686
folios_put_refs+0x76c/0x860 mm/swap.c:1007
free_pages_and_swap_cache+0x5c8/0x690 mm/swap_state.c:335
__tlb_batch_free_encoded_pages mm/mmu_gather.c:136 [inline]
tlb_batch_pages_flush mm/mmu_gather.c:149 [inline]
tlb_flush_mmu_free mm/mmu_gather.c:366 [inline]
tlb_flush_mmu+0x3a3/0x680 mm/mmu_gather.c:373
tlb_finish_mmu+0xd4/0x200 mm/mmu_gather.c:465
exit_mmap+0x496/0xc40 mm/mmap.c:1926
__mmput+0x115/0x390 kernel/fork.c:1348
exit_mm+0x220/0x310 kernel/exit.c:571
do_exit+0x9b2/0x28e0 kernel/exit.c:926
do_group_exit+0x207/0x2c0 kernel/exit.c:1088
__do_sys_exit_group kernel/exit.c:1099 [inline]
__se_sys_exit_group kernel/exit.c:1097 [inline]
__x64_sys_exit_group+0x3f/0x40 kernel/exit.c:1097
x64_sys_call+0x2634/0x2640 arch/x86/include/generated/asm/syscalls_64.h:232
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Modules linked in:
CPU: 0 UID: 0 PID: 8442 Comm: syz.5.504 Not tainted 6.12.0-rc6-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
bad_page+0x176/0x1d0 mm/page_alloc.c:501
free_page_is_bad mm/page_alloc.c:918 [inline]
free_pages_prepare mm/page_alloc.c:1100 [inline]
free_unref_page+0xed0/0xf20 mm/page_alloc.c:2638
kvm_destroy_vm virt/kvm/kvm_main.c:1327 [inline]
kvm_put_kvm+0xc75/0x1350 virt/kvm/kvm_main.c:1386
kvm_vcpu_release+0x54/0x60 virt/kvm/kvm_main.c:4143
__fput+0x23f/0x880 fs/file_table.c:431
task_work_run+0x24f/0x310 kernel/task_work.c:239
exit_task_work include/linux/task_work.h:43 [inline]
do_exit+0xa2f/0x28e0 kernel/exit.c:939
do_group_exit+0x207/0x2c0 kernel/exit.c:1088
__do_sys_exit_group kernel/exit.c:1099 [inline]
__se_sys_exit_group kernel/exit.c:1097 [inline]
__ia32_sys_exit_group+0x3f/0x40 kernel/exit.c:1097
ia32_sys_call+0x2624/0x2630 arch/x86/include/generated/asm/syscalls_32.h:253
do_syscall_32_irqs_on arch/x86/entry/common.c:165 [inline]
__do_fast_syscall_32+0xb4/0x110 arch/x86/entry/common.c:386
do_fast_syscall_32+0x34/0x80 arch/x86/entry/common.c:411
entry_SYSENTER_compat_after_hwframe+0x84/0x8e
RIP: 0023:0xf745d579
Code: Unable to access opcode bytes at 0xf745d54f.
RSP: 002b:00000000f75afd6c EFLAGS: 00000206 ORIG_RAX: 00000000000000fc
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 00000000ffffff9c RDI: 00000000f744cff4
RBP: 00000000f717ae61 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000206 R12: 0000000000000000
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
</TASK>
The problem was originally introduced by commit b109b87050df ("mm/munlock:
replace clear_page_mlock() by final clearance"): it was focused on
handling pagecache and anonymous memory and wasn't suitable for lower
level get_page()/free_page() API's used for example by KVM, as with this
reproducer.
Fix it by moving the mlocked flag clearance down to free_page_prepare().
The bug itself if fairly old and harmless (aside from generating these
warnings), aside from a small memory leak - "bad" pages are stopped from
being allocated again.
Link: https://lkml.kernel.org/r/20241106195354.270757-1-roman.gushchin@linux.dev
Fixes: b109b87050df ("mm/munlock: replace clear_page_mlock() by final clearance")
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Reported-by: syzbot+e985d3026c4fd041578e@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/all/6729f475.050a0220.701a.0019.GAE@google.com
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
During running KASAN Kunit tests with CONFIG_KASAN enabled, the following
"warning" is reported by kunit framework:
# kasan_atomics: Test should be marked slow (runtime: 2.604703115s)
It took 2.6 seconds on my PC (Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz),
apparently, due to multiple atomic checks in kasan_atomics_helper().
Let's mark it with KUNIT_CASE_SLOW which reports now as:
# kasan_atomics.speed: slow
Link: https://lkml.kernel.org/r/20241101184011.3369247-3-snovitoll@gmail.com
Signed-off-by: Sabyrzhan Tasbolatov <snovitoll@gmail.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "kasan: few improvements on kunit tests".
This patch series addresses the issue [1] with KASAN symbols used in the
Kunit test, but exported as EXPORT_SYMBOL_GPL.
Also a small tweak of marking kasan_atomics() as KUNIT_CASE_SLOW to avoid
kunit report that the test should be marked as slow.
This patch (of 2):
Replace EXPORT_SYMBOL_GPL with EXPORT_SYMBOL_IF_KUNIT to mark the symbols
as visible only if CONFIG_KUNIT is enabled.
KASAN Kunit test should import the namespace EXPORTED_FOR_KUNIT_TESTING to
use these marked symbols.
Link: https://lkml.kernel.org/r/20241101184011.3369247-1-snovitoll@gmail.com
Link: https://lkml.kernel.org/r/20241101184011.3369247-2-snovitoll@gmail.com
Signed-off-by: Sabyrzhan Tasbolatov <snovitoll@gmail.com>
Reported-by: Andrey Konovalov <andreyknvl@gmail.com>
Closes: https://bugzilla.kernel.org/show_bug.cgi?id=218315
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Ever since commit 8d7071af8907 ("mm: always expand the stack with the mmap
write lock held") we have been expanding the stack with the mmap write
lock held.
This is true in all code paths:
get_arg_page()
-> expand_downwards()
setup_arg_pages()
-> expand_stack_locked()
-> expand_downwards() / expand_upwards()
lock_mm_and_find_vma()
-> expand_stack_locked()
-> expand_downwards() / expand_upwards()
create_elf_tables()
-> find_extend_vma_locked()
-> expand_stack_locked()
expand_stack()
-> vma_expand_down()
-> expand_downwards()
expand_stack()
-> vma_expand_up()
-> expand_upwards()
Each of which acquire the mmap write lock before doing so. Despite this,
we maintain code that acquires a page table lock in the expand_upwards()
and expand_downwards() code, stating that we hold a shared mmap lock and
thus this is necessary.
It is not, we do not have to worry about concurrent VMA expansions so we
can simply drop this, and update comments accordingly.
We do not even need be concerned with racing page faults, as
vma_start_write() is invoked in both cases.
Link: https://lkml.kernel.org/r/20241101184627.131391-1-lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: Jann Horn <jannh@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Replace strcpy() with strscpy() in mm/huge_memory.c
strcpy() has been deprecated because it is generally unsafe, so help to
eliminate it from the kernel source.
Link: https://github.com/KSPP/linux/issues/88
Link: https://lkml.kernel.org/r/20241101165719.1074234-7-mcanal@igalia.com
Signed-off-by: Maíra Canal <mcanal@igalia.com>
Reviewed-by: Lance Yang <ioworker0@gmail.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Barry Song <baohua@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Add the ``thp_shmem=`` kernel command line to allow specifying the default
policy of each supported shmem hugepage size. The kernel parameter
accepts the following format:
thp_shmem=<size>[KMG],<size>[KMG]:<policy>;<size>[KMG]-<size>[KMG]:<policy>
For example,
thp_shmem=16K-64K:always;128K,512K:inherit;256K:advise;1M-2M:never;4M-8M:within_size
Some GPUs may benefit from using huge pages. Since DRM GEM uses shmem to
allocate anonymous pageable memory, it's essential to control the huge
page allocation policy for the internal shmem mount. This control can be
achieved through the ``transparent_hugepage_shmem=`` parameter.
Beyond just setting the allocation policy, it's crucial to have granular
control over the size of huge pages that can be allocated. The GPU may
support only specific huge page sizes, and allocating pages larger/smaller
than those sizes would be ineffective.
Link: https://lkml.kernel.org/r/20241101165719.1074234-6-mcanal@igalia.com
Signed-off-by: Maíra Canal <mcanal@igalia.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Barry Song <baohua@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
In order to implement a kernel parameter similar to ``thp_anon=`` for
shmem, we'll need the function ``get_order_from_str()``.
Instead of duplicating the function, move the function to a shared
header, in which both mm/shmem.c and mm/huge_memory.c will be able to
use it.
Link: https://lkml.kernel.org/r/20241101165719.1074234-5-mcanal@igalia.com
Signed-off-by: Maíra Canal <mcanal@igalia.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Barry Song <baohua@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm: add more kernel parameters to control mTHP", v5.
This series introduces four patches related to the kernel parameters
controlling mTHP and a fifth patch replacing `strcpy()` for `strscpy()` in
the file `mm/huge_memory.c`.
The first patch is a straightforward documentation update, correcting the
format of the kernel parameter ``thp_anon=``.
The second, third, and fourth patches focus on controlling THP support for
shmem via the kernel command line. The second patch introduces a
parameter to control the global default huge page allocation policy for
the internal shmem mount. The third patch moves a piece of code to a
shared header to ease the implementation of the fourth patch. Finally,
the fourth patch implements a parameter similar to ``thp_anon=``, but for
shmem.
The goal of these changes is to simplify the configuration of systems that
rely on mTHP support for shmem. For instance, a platform with a GPU that
benefits from huge pages may want to enable huge pages for shmem. Having
these kernel parameters streamlines the configuration process and ensures
consistency across setups.
This patch (of 4):
Add a new kernel command line to control the hugepage allocation policy
for the internal shmem mount, ``transparent_hugepage_shmem``. The
parameter is similar to ``transparent_hugepage`` and has the following
format:
transparent_hugepage_shmem=<policy>
where ``<policy>`` is one of the seven valid policies available for
shmem.
Configuring the default huge page allocation policy for the internal
shmem mount can be beneficial for DRM GPU drivers. Just as CPU
architectures, GPUs can also take advantage of huge pages, but this is
possible only if DRM GEM objects are backed by huge pages.
Since GEM uses shmem to allocate anonymous pageable memory, having control
over the default huge page allocation policy allows for the exploration of
huge pages use on GPUs that rely on GEM objects backed by shmem.
Link: https://lkml.kernel.org/r/20241101165719.1074234-2-mcanal@igalia.com
Link: https://lkml.kernel.org/r/20241101165719.1074234-4-mcanal@igalia.com
Signed-off-by: Maíra Canal <mcanal@igalia.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Barry Song <baohua@kernel.org>
Cc: dri-devel@lists.freedesktop.org
Cc: Hugh Dickins <hughd@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: kernel-dev@igalia.com
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
There have been no reported infinite loops in the tree, but checking the
detection of an infinite loop during validation is simple enough. Add the
detection to the validate_mm() function so that error reports are clear
and don't just report stalls.
This does not protect against internal maple tree issues, but it does
detect too many vmas being returned from the tree.
The variance of +10 is to allow for the debugging output to be more useful
for nearly correct counts. In the event of more than 10 over the
map_count, the count will be set to -1 for easier identification of a
potential infinite loop.
Note that the mmap lock is held to ensure a consistent tree state during
the validation process.
[akpm@linux-foundation.org: add comment]
Link: https://lkml.kernel.org/r/20241031193608.1965366-1-Liam.Howlett@oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Jann Horn <jannh@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
It seems there is about 24Bytes binary size increase for
__page_frag_cache_refill() after refactoring in arm64 system
with 64K PAGE_SIZE. By doing the gdb disassembling, It seems
we can have more than 100Bytes decrease for the binary size
by using __alloc_pages() to replace alloc_pages_node(), as
there seems to be some unnecessary checking for nid being
NUMA_NO_NODE, especially when page_frag is part of the mm
system.
CC: Andrew Morton <akpm@linux-foundation.org>
CC: Linux-MM <linux-mm@kvack.org>
Signed-off-by: Yunsheng Lin <linyunsheng@huawei.com>
Reviewed-by: Alexander Duyck <alexanderduyck@fb.com>
Link: https://patch.msgid.link/20241028115343.3405838-8-linyunsheng@huawei.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
Currently there is one 'struct page_frag' for every 'struct
sock' and 'struct task_struct', we are about to replace the
'struct page_frag' with 'struct page_frag_cache' for them.
Before begin the replacing, we need to ensure the size of
'struct page_frag_cache' is not bigger than the size of
'struct page_frag', as there may be tens of thousands of
'struct sock' and 'struct task_struct' instances in the
system.
By or'ing the page order & pfmemalloc with lower bits of
'va' instead of using 'u16' or 'u32' for page size and 'u8'
for pfmemalloc, we are able to avoid 3 or 5 bytes space waste.
And page address & pfmemalloc & order is unchanged for the
same page in the same 'page_frag_cache' instance, it makes
sense to fit them together.
After this patch, the size of 'struct page_frag_cache' should be
the same as the size of 'struct page_frag'.
CC: Andrew Morton <akpm@linux-foundation.org>
CC: Linux-MM <linux-mm@kvack.org>
Signed-off-by: Yunsheng Lin <linyunsheng@huawei.com>
Reviewed-by: Alexander Duyck <alexanderduyck@fb.com>
Link: https://patch.msgid.link/20241028115343.3405838-7-linyunsheng@huawei.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
We are about to use page_frag_alloc_*() API to not just
allocate memory for skb->data, but also use them to do
the memory allocation for skb frag too. Currently the
implementation of page_frag in mm subsystem is running
the offset as a countdown rather than count-up value,
there may have several advantages to that as mentioned
in [1], but it may have some disadvantages, for example,
it may disable skb frag coalescing and more correct cache
prefetching
We have a trade-off to make in order to have a unified
implementation and API for page_frag, so use a initial zero
offset in this patch, and the following patch will try to
make some optimization to avoid the disadvantages as much
as possible.
1. https://lore.kernel.org/all/f4abe71b3439b39d17a6fb2d410180f367cadf5c.camel@gmail.com/
CC: Andrew Morton <akpm@linux-foundation.org>
CC: Linux-MM <linux-mm@kvack.org>
Signed-off-by: Yunsheng Lin <linyunsheng@huawei.com>
Reviewed-by: Alexander Duyck <alexanderduyck@fb.com>
Link: https://patch.msgid.link/20241028115343.3405838-4-linyunsheng@huawei.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
Inspired by [1], move the page fragment allocator from page_alloc
into its own c file and header file, as we are about to make more
change for it to replace another page_frag implementation in
sock.c
As this patchset is going to replace 'struct page_frag' with
'struct page_frag_cache' in sched.h, including page_frag_cache.h
in sched.h has a compiler error caused by interdependence between
mm_types.h and mm.h for asm-offsets.c, see [2]. So avoid the compiler
error by moving 'struct page_frag_cache' to mm_types_task.h as
suggested by Alexander, see [3].
1. https://lore.kernel.org/all/20230411160902.4134381-3-dhowells@redhat.com/
2. https://lore.kernel.org/all/15623dac-9358-4597-b3ee-3694a5956920@gmail.com/
3. https://lore.kernel.org/all/CAKgT0UdH1yD=LSCXFJ=YM_aiA4OomD-2wXykO42bizaWMt_HOA@mail.gmail.com/
CC: David Howells <dhowells@redhat.com>
CC: Linux-MM <linux-mm@kvack.org>
Signed-off-by: Yunsheng Lin <linyunsheng@huawei.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alexander Duyck <alexanderduyck@fb.com>
Link: https://patch.msgid.link/20241028115343.3405838-3-linyunsheng@huawei.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
As Documentation/filesystems/sysfs.rst suggested, show() should only use
sysfs_emit() or sysfs_emit_at() when formatting the value to be returned
to user space.
Link: https://lkml.kernel.org/r/20241029101853.37890-1-zhangguopeng@kylinos.cn
Signed-off-by: zhangguopeng <zhangguopeng@kylinos.cn>
Acked-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This tracepoint gives visibility on how often the flushing of memcg stats
occurs and contains info on whether it was forced, skipped, and the value
of stats updated. It can help with understanding how readers are affected
by having to perform the flush, and the effectiveness of the flush by
inspecting the number of stats updated. Paired with the recently added
tracepoints for tracing rstat updates, it can also help show correlation
where stats exceed thresholds frequently.
Link: https://lkml.kernel.org/r/20241029021106.25587-3-inwardvessel@gmail.com
Signed-off-by: JP Kobryn <inwardvessel@gmail.com>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "memcg: tracepoint for flushing stats", v3.
This series adds new capability for understanding frequency and circumstances
behind flushing memcg stats.
This patch (of 2):
Change the name to something more consistent with others in the file and
use double unders to signify it is associated with the
mem_cgroup_flush_stats() API call. Additionally include a new flag that
call sites use to indicate a forced flush; skipping checks and flushing
unconditionally. There are no changes in functionality.
Link: https://lkml.kernel.org/r/20241029021106.25587-1-inwardvessel@gmail.com
Link: https://lkml.kernel.org/r/20241029021106.25587-2-inwardvessel@gmail.com
Signed-off-by: JP Kobryn <inwardvessel@gmail.com>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The last user of put_pages_list() converted away from it in 6.10 commit
06c375053cef ("iommu/vt-d: add wrapper functions for page allocations"):
delete put_pages_list().
Link: https://lkml.kernel.org/r/d9985d6a-293e-176b-e63d-82fdfd28c139@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Peter Xu <peterx@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Implement a new lightweight guard page feature, that is regions of
userland virtual memory that, when accessed, cause a fatal signal to
arise.
Currently users must establish PROT_NONE ranges to achieve this.
However this is very costly memory-wise - we need a VMA for each and every
one of these regions AND they become unmergeable with surrounding VMAs.
In addition repeated mmap() calls require repeated kernel context switches
and contention of the mmap lock to install these ranges, potentially also
having to unmap memory if installed over existing ranges.
The lightweight guard approach eliminates the VMA cost altogether - rather
than establishing a PROT_NONE VMA, it operates at the level of page table
entries - establishing PTE markers such that accesses to them cause a
fault followed by a SIGSGEV signal being raised.
This is achieved through the PTE marker mechanism, which we have already
extended to provide PTE_MARKER_GUARD, which we installed via the generic
page walking logic which we have extended for this purpose.
These guard ranges are established with MADV_GUARD_INSTALL. If the range
in which they are installed contain any existing mappings, they will be
zapped, i.e. free the range and unmap memory (thus mimicking the
behaviour of MADV_DONTNEED in this respect).
Any existing guard entries will be left untouched. There is therefore no
nesting of guarded pages.
Guarded ranges are NOT cleared by MADV_DONTNEED nor MADV_FREE (in both
instances the memory range may be reused at which point a user would
expect guards to still be in place), but they are cleared via
MADV_GUARD_REMOVE, process teardown or unmapping of memory ranges.
The guard property can be removed from ranges via MADV_GUARD_REMOVE. The
ranges over which this is applied, should they contain non-guard entries,
will be untouched, with only guard entries being cleared.
We permit this operation on anonymous memory only, and only VMAs which are
non-special, non-huge and not mlock()'d (if we permitted this we'd have to
drop locked pages which would be rather counterintuitive).
Racing page faults can cause repeated attempts to install guard pages that
are interrupted, result in a zap, and this process can end up being
repeated. If this happens more than would be expected in normal
operation, we rescind locks and retry the whole thing, which avoids lock
contention in this scenario.
Link: https://lkml.kernel.org/r/6aafb5821bf209f277dfae0787abb2ef87a37542.1730123433.git.lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Suggested-by: Jann Horn <jannh@google.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Suggested-by: Jann Horn <jannh@google.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Arnd Bergmann <arnd@kernel.org>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Chris Zankel <chris@zankel.net>
Cc: Helge Deller <deller@gmx.de>
Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Jeff Xu <jeffxu@chromium.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Richard Henderson <richard.henderson@linaro.org>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Shuah Khan <skhan@linuxfoundation.org>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Add a new PTE marker that results in any access causing the accessing
process to segfault.
This is preferable to PTE_MARKER_POISONED, which results in the same
handling as hardware poisoned memory, and is thus undesirable for cases
where we simply wish to 'soft' poison a range.
This is in preparation for implementing the ability to specify guard pages
at the page table level, i.e. ranges that, when accessed, should cause
process termination.
Additionally, rename zap_drop_file_uffd_wp() to zap_drop_markers() - the
function checks the ZAP_FLAG_DROP_MARKER flag so naming it for this single
purpose was simply incorrect.
We then reuse the same logic to determine whether a zap should clear a
guard entry - this should only be performed on teardown and never on
MADV_DONTNEED or MADV_FREE.
We additionally add a WARN_ON_ONCE() in hugetlb logic should a guard
marker be encountered there, as we explicitly do not support this
operation and this should not occur.
Link: https://lkml.kernel.org/r/f47f3d5acca2dcf9bbf655b6d33f3dc713e4a4a0.1730123433.git.lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Acked-by: Vlastimil Babka <vbabkba@suse.cz>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Suggested-by: Jann Horn <jannh@google.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Cc: Arnd Bergmann <arnd@kernel.org>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Chris Zankel <chris@zankel.net>
Cc: Helge Deller <deller@gmx.de>
Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Jeff Xu <jeffxu@chromium.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Richard Henderson <richard.henderson@linaro.org>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Shuah Khan <skhan@linuxfoundation.org>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "implement lightweight guard pages", v4.
Userland library functions such as allocators and threading
implementations often require regions of memory to act as 'guard pages' -
mappings which, when accessed, result in a fatal signal being sent to the
accessing process.
The current means by which these are implemented is via a PROT_NONE mmap()
mapping, which provides the required semantics however incur an overhead
of a VMA for each such region.
With a great many processes and threads, this can rapidly add up and incur
a significant memory penalty. It also has the added problem of preventing
merges that might otherwise be permitted.
This series takes a different approach - an idea suggested by Vlastimil
Babka (and before him David Hildenbrand and Jann Horn - perhaps more - the
provenance becomes a little tricky to ascertain after this - please
forgive any omissions!) - rather than locating the guard pages at the VMA
layer, instead placing them in page tables mapping the required ranges.
Early testing of the prototype version of this code suggests a 5 times
speed up in memory mapping invocations (in conjunction with use of
process_madvise()) and a 13% reduction in VMAs on an entirely idle android
system and unoptimised code.
We expect with optimisation and a loaded system with a larger number of
guard pages this could significantly increase, but in any case these
numbers are encouraging.
This way, rather than having separate VMAs specifying which parts of a
range are guard pages, instead we have a VMA spanning the entire range of
memory a user is permitted to access and including ranges which are to be
'guarded'.
After mapping this, a user can specify which parts of the range should
result in a fatal signal when accessed.
By restricting the ability to specify guard pages to memory mapped by
existing VMAs, we can rely on the mappings being torn down when the
mappings are ultimately unmapped and everything works simply as if the
memory were not faulted in, from the point of view of the containing VMAs.
This mechanism in effect poisons memory ranges similar to hardware memory
poisoning, only it is an entirely software-controlled form of poisoning.
The mechanism is implemented via madvise() behaviour - MADV_GUARD_INSTALL
which installs page table-level guard page markers - and MADV_GUARD_REMOVE
- which clears them.
Guard markers can be installed across multiple VMAs and any existing
mappings will be cleared, that is zapped, before installing the guard page
markers in the page tables.
There is no concept of 'nested' guard markers, multiple attempts to
install guard markers in a range will, after the first attempt, have no
effect.
Importantly, removing guard markers over a range that contains both guard
markers and ordinary backed memory has no effect on anything but the guard
markers (including leaving huge pages un-split), so a user can safely
remove guard markers over a range of memory leaving the rest intact.
The actual mechanism by which the page table entries are specified makes
use of existing logic - PTE markers, which are used for the userfaultfd
UFFDIO_POISON mechanism.
Unfortunately PTE_MARKER_POISONED is not suited for the guard page
mechanism as it results in VM_FAULT_HWPOISON semantics in the fault
handler, so we add our own specific PTE_MARKER_GUARD and adapt existing
logic to handle it.
We also extend the generic page walk mechanism to allow for installation
of PTEs (carefully restricted to memory management logic only to prevent
unwanted abuse).
We ensure that zapping performed by MADV_DONTNEED and MADV_FREE do not
remove guard markers, nor does forking (except when VM_WIPEONFORK is
specified for a VMA which implies a total removal of memory
characteristics).
It's important to note that the guard page implementation is emphatically
NOT a security feature, so a user can remove the markers if they wish. We
simply implement it in such a way as to provide the least surprising
behaviour.
An extensive set of self-tests are provided which ensure behaviour is as
expected and additionally self-documents expected behaviour of guard
ranges.
This patch (of 5):
The existing generic pagewalk logic permits the walking of page tables,
invoking callbacks at individual page table levels via user-provided
mm_walk_ops callbacks.
This is useful for traversing existing page table entries, but precludes
the ability to establish new ones.
Existing mechanism for performing a walk which also installs page table
entries if necessary are heavily duplicated throughout the kernel, each
with semantic differences from one another and largely unavailable for use
elsewhere.
Rather than add yet another implementation, we extend the generic pagewalk
logic to enable the installation of page table entries by adding a new
install_pte() callback in mm_walk_ops. If this is specified, then upon
encountering a missing page table entry, we allocate and install a new one
and continue the traversal.
If a THP huge page is encountered at either the PMD or PUD level we split
it only if there are ops->pte_entry() (or ops->pmd_entry at PUD level),
otherwise if there is only an ops->install_pte(), we avoid the unnecessary
split.
We do not support hugetlb at this stage.
If this function returns an error, or an allocation fails during the
operation, we abort the operation altogether. It is up to the caller to
deal appropriately with partially populated page table ranges.
If install_pte() is defined, the semantics of pte_entry() change - this
callback is then only invoked if the entry already exists. This is a
useful property, as it allows a caller to handle existing PTEs while
installing new ones where necessary in the specified range.
If install_pte() is not defined, then there is no functional difference to
this patch, so all existing logic will work precisely as it did before.
As we only permit the installation of PTEs where a mapping does not
already exist there is no need for TLB management, however we do invoke
update_mmu_cache() for architectures which require manual maintenance of
mappings for other CPUs.
We explicitly do not allow the existing page walk API to expose this
feature as it is dangerous and intended for internal mm use only.
Therefore we provide a new walk_page_range_mm() function exposed only to
mm/internal.h.
We take the opportunity to additionally clean up the page walker logic to
be a little easier to follow.
Link: https://lkml.kernel.org/r/cover.1730123433.git.lorenzo.stoakes@oracle.com
Link: https://lkml.kernel.org/r/51b432ebef013e3fdf9f92101533435de1bffadf.1730123433.git.lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Reviewed-by: Jann Horn <jannh@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Suggested-by: Jann Horn <jannh@google.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Cc: Arnd Bergmann <arnd@kernel.org>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Chris Zankel <chris@zankel.net>
Cc: Helge Deller <deller@gmx.de>
Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Jeff Xu <jeffxu@chromium.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Richard Henderson <richard.henderson@linaro.org>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Shuah Khan <skhan@linuxfoundation.org>
Cc: Vlastimil Babka <vbabkba@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Since we've migrated all tests to the KUnit framework, we can delete
CONFIG_KASAN_MODULE_TEST and mentioning of it in the documentation as
well.
I've used the online translator to modify the non-English documentation.
[snovitoll@gmail.com: fix indentation in translation]
Link: https://lkml.kernel.org/r/20241020042813.3223449-1-snovitoll@gmail.com
Link: https://lkml.kernel.org/r/20241016131802.3115788-4-snovitoll@gmail.com
Signed-off-by: Sabyrzhan Tasbolatov <snovitoll@gmail.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Hu Haowen <2023002089@link.tyut.edu.cn>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Yanteng Si <siyanteng@loongson.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Migrate the copy_user_test to the KUnit framework to verify out-of-bound
detection via KASAN reports in copy_from_user(), copy_to_user() and their
static functions.
This is the last migrated test in kasan_test_module.c, therefore delete
the file.
[arnd@arndb.de: export copy_to_kernel_nofault]
Link: https://lkml.kernel.org/r/20241018151112.3533820-1-arnd@kernel.org
Link: https://lkml.kernel.org/r/20241016131802.3115788-3-snovitoll@gmail.com
Signed-off-by: Sabyrzhan Tasbolatov <snovitoll@gmail.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Hu Haowen <2023002089@link.tyut.edu.cn>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Yanteng Si <siyanteng@loongson.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This helps profile the sizes of folios being swapped in. Currently,
only mTHP swap-out is being counted.
The new interface can be found at:
/sys/kernel/mm/transparent_hugepage/hugepages-<size>/stats
swpin
For example,
cat /sys/kernel/mm/transparent_hugepage/hugepages-64kB/stats/swpin
12809
cat /sys/kernel/mm/transparent_hugepage/hugepages-32kB/stats/swpin
4763
[v-songbaohua@oppo.com: add a blank line in doc]
Link: https://lkml.kernel.org/r/20241030233423.80759-1-21cnbao@gmail.com
Link: https://lkml.kernel.org/r/20241026082423.26298-1-21cnbao@gmail.com
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kairui Song <kasong@tencent.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Kanchana P Sridhar <kanchana.p.sridhar@intel.com>
Cc: Usama Arif <usamaarif642@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This incorporates Yosry's suggestions in [1] for further simplifying
zswap_store_page(). If the page is successfully compressed and added to
the xarray, we get the pool/objcg refs, and initialize all the entry's
members. Only after this, we add it to the zswap LRU.
In the time between the entry's addition to the xarray and it's member
initialization, we are protected against concurrent stores/loads/swapoff
through the folio lock, and are protected against writeback because the
entry is not on the LRU yet.
This way, we don't have to drop the pool/objcg refs, now that the entry
initialization is centralized to the successful page store code path.
zswap_compress() is modified to take a zswap_pool parameter in keeping
with this simplification (as against obtaining this from entry->pool).
[1]: https://lore.kernel.org/all/CAJD7tkZh6ufHQef5HjXf_F5b5LC1EATexgseD=4WvrO+a6Ni6w@mail.gmail.com/
Link: https://lkml.kernel.org/r/20241002173329.213722-1-kanchana.p.sridhar@intel.com
Signed-off-by: Kanchana P Sridhar <kanchana.p.sridhar@intel.com>
Cc: Chengming Zhou <chengming.zhou@linux.dev>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Wajdi Feghali <wajdi.k.feghali@intel.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Added a new MTHP_STAT_ZSWPOUT entry to the sysfs transparent_hugepage
stats so that successful large folio zswap stores can be accounted under
the per-order sysfs "zswpout" stats:
/sys/kernel/mm/transparent_hugepage/hugepages-*kB/stats/zswpout
Other non-zswap swap device swap-out events will be counted under
the existing sysfs "swpout" stats:
/sys/kernel/mm/transparent_hugepage/hugepages-*kB/stats/swpout
Also, added documentation for the newly added sysfs per-order hugepage
"zswpout" stats. The documentation clarifies that only non-zswap swapouts
will be accounted in the existing "swpout" stats.
Link: https://lkml.kernel.org/r/20241001053222.6944-8-kanchana.p.sridhar@intel.com
Signed-off-by: Kanchana P Sridhar <kanchana.p.sridhar@intel.com>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Cc: Chengming Zhou <chengming.zhou@linux.dev>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Wajdi Feghali <wajdi.k.feghali@intel.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: "Zou, Nanhai" <nanhai.zou@intel.com>
Cc: Barry Song <21cnbao@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This series enables zswap_store() to accept and store large folios. The
most significant contribution in this series is from the earlier RFC
submitted by Ryan Roberts [1]. Ryan's original RFC has been migrated to
mm-unstable as of 9-30-2024 in patch 6 of this series, and adapted based
on code review comments received for the current patch-series.
[1]: [RFC PATCH v1] mm: zswap: Store large folios without splitting
https://lore.kernel.org/linux-mm/20231019110543.3284654-1-ryan.roberts@arm.com/T/#u
The first few patches do the prep work for supporting large folios in
zswap_store. Patch 6 provides the main functionality to swap-out large
folios in zswap. Patch 7 adds sysfs per-order hugepages "zswpout"
counters that get incremented upon successful zswap_store of large folios,
and also updates the documentation for this:
/sys/kernel/mm/transparent_hugepage/hugepages-*kB/stats/zswpout
This series is a pre-requisite for zswap compress batching of large folio
swap-out and decompress batching of swap-ins based on swapin_readahead(),
using Intel IAA hardware acceleration, which we would like to submit in
subsequent patch-series, with performance improvement data.
Thanks to Ying Huang for pre-posting review feedback and suggestions!
Thanks also to Nhat, Yosry, Johannes, Barry, Chengming, Usama, Ying and
Matthew for their helpful feedback, code/data reviews and suggestions!
I would like to thank Ryan Roberts for his original RFC [1].
System setup for testing:
=========================
Testing of this series was done with mm-unstable as of 9-27-2024, commit
de2fbaa6d9c3576ec7133ed02a370ec9376bf000 (without this patch-series) and
mm-unstable 9-30-2024 commit c121617e3606be6575cdacfdb63cc8d67b46a568
(with this patch-series). Data was gathered on an Intel Sapphire Rapids
server, dual-socket 56 cores per socket, 4 IAA devices per socket, 503 GiB
RAM and 525G SSD disk partition swap. Core frequency was fixed at
2500MHz.
The vm-scalability "usemem" test was run in a cgroup whose memory.high was
fixed at 150G. The is no swap limit set for the cgroup. 30 usemem
processes were run, each allocating and writing 10G of memory, and
sleeping for 10 sec before exiting:
usemem --init-time -w -O -s 10 -n 30 10g
Other kernel configuration parameters:
zswap compressors : zstd, deflate-iaa
zswap allocator : zsmalloc
vm.page-cluster : 2
In the experiments where "deflate-iaa" is used as the zswap compressor,
IAA "compression verification" is enabled by default (cat
/sys/bus/dsa/drivers/crypto/verify_compress). Hence each IAA compression
will be decompressed internally by the "iaa_crypto" driver, the crc-s
returned by the hardware will be compared and errors reported in case of
mismatches. Thus "deflate-iaa" helps ensure better data integrity as
compared to the software compressors, and the experimental data listed
below is with verify_compress set to "1".
Metrics reporting methodology:
==============================
Total and average throughput are derived from the individual 30 processes'
throughputs reported by usemem. elapsed/sys times are measured with perf.
All percentage changes are "new" vs. "old"; hence a positive value
denotes an increase in the metric, whether it is throughput or latency,
and a negative value denotes a reduction in the metric. Positive
throughput change percentages and negative latency change percentages
denote improvements.
The vm stats and sysfs hugepages stats included with the performance data
provide details on the swapout activity to zswap/swap device.
Testing labels used in data summaries:
======================================
The data refers to these test configurations and the before/after
comparisons that they do:
before-case1:
-------------
mm-unstable 9-27-2024, CONFIG_THP_SWAP=N (compares zswap 4K vs. zswap 64K)
In this scenario, CONFIG_THP_SWAP=N results in 64K/2M folios to be split
into 4K folios that get processed by zswap.
before-case2:
-------------
mm-unstable 9-27-2024, CONFIG_THP_SWAP=Y (compares SSD swap large folios vs. zswap large folios)
In this scenario, CONFIG_THP_SWAP=Y results in zswap rejecting large
folios, which will then be stored by the SSD swap device.
after:
------
v10 of this patch-series, CONFIG_THP_SWAP=Y
The "after" is CONFIG_THP_SWAP=Y and v10 of this patch-series, that results
in 64K/2M folios to not be split, and to be processed by zswap_store.
Regression Testing:
===================
I ran vm-scalability usemem without large folios, i.e., only 4K folios with
mm-unstable and this patch-series. The main goal was to make sure that
there is no functional or performance regression wrt the earlier zswap
behavior for 4K folios, now that 4K folios will be processed by the new
zswap_store() code.
The data indicates there is no significant regression.
-------------------------------------------------------------------------------
4K folios:
==========
zswap compressor zstd zstd zstd zstd v10
before-case1 before-case2 after vs. vs.
case1 case2
-------------------------------------------------------------------------------
Total throughput (KB/s) 4,793,363 4,880,978 4,853,074 1% -1%
Average throughput (KB/s) 159,778 162,699 161,769 1% -1%
elapsed time (sec) 130.14 123.17 126.29 -3% 3%
sys time (sec) 3,135.53 2,985.64 3,083.18 -2% 3%
memcg_high 446,826 444,626 452,930
memcg_swap_fail 0 0 0
zswpout 48,932,107 48,931,971 48,931,820
zswpin 383 386 397
pswpout 0 0 0
pswpin 0 0 0
thp_swpout 0 0 0
thp_swpout_fallback 0 0 0
64kB-mthp_swpout_fallback 0 0 0
pgmajfault 3,063 3,077 3,479
swap_ra 93 94 96
swap_ra_hit 47 47 50
ZSWPOUT-64kB n/a n/a 0
SWPOUT-64kB 0 0 0
-------------------------------------------------------------------------------
Performance Testing:
====================
We list the data for 64K folios with before/after data per-compressor,
followed by the same for 2M pmd-mappable folios.
-------------------------------------------------------------------------------
64K folios: zstd:
=================
zswap compressor zstd zstd zstd zstd v10
before-case1 before-case2 after vs. vs.
case1 case2
-------------------------------------------------------------------------------
Total throughput (KB/s) 5,222,213 1,076,611 6,159,776 18% 472%
Average throughput (KB/s) 174,073 35,887 205,325 18% 472%
elapsed time (sec) 120.50 347.16 108.33 -10% -69%
sys time (sec) 2,930.33 248.16 2,549.65 -13% 927%
memcg_high 416,773 552,200 465,874
memcg_swap_fail 3,192,906 1,293 1,012
zswpout 48,931,583 20,903 48,931,218
zswpin 384 363 410
pswpout 0 40,778,448 0
pswpin 0 16 0
thp_swpout 0 0 0
thp_swpout_fallback 0 0 0
64kB-mthp_swpout_fallback 3,192,906 1,293 1,012
pgmajfault 3,452 3,072 3,061
swap_ra 90 87 107
swap_ra_hit 42 43 57
ZSWPOUT-64kB n/a n/a 3,057,173
SWPOUT-64kB 0 2,548,653 0
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
64K folios: deflate-iaa:
========================
zswap compressor deflate-iaa deflate-iaa deflate-iaa deflate-iaa v10
before-case1 before-case2 after vs. vs.
case1 case2
-------------------------------------------------------------------------------
Total throughput (KB/s) 5,652,608 1,089,180 7,189,778 27% 560%
Average throughput (KB/s) 188,420 36,306 239,659 27% 560%
elapsed time (sec) 102.90 343.35 87.05 -15% -75%
sys time (sec) 2,246.86 213.53 1,864.16 -17% 773%
memcg_high 576,104 502,907 642,083
memcg_swap_fail 4,016,117 1,407 1,478
zswpout 61,163,423 22,444 57,798,716
zswpin 401 368 454
pswpout 0 40,862,080 0
pswpin 0 20 0
thp_swpout 0 0 0
thp_swpout_fallback 0 0 0
64kB-mthp_swpout_fallback 4,016,117 1,407 1,478
pgmajfault 3,063 3,153 3,122
swap_ra 96 93 156
swap_ra_hit 46 45 83
ZSWPOUT-64kB n/a n/a 3,611,032
SWPOUT-64kB 0 2,553,880 0
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
2M folios: zstd:
================
zswap compressor zstd zstd zstd zstd v10
before-case1 before-case2 after vs. vs.
case1 case2
-------------------------------------------------------------------------------
Total throughput (KB/s) 5,895,500 1,109,694 6,484,224 10% 484%
Average throughput (KB/s) 196,516 36,989 216,140 10% 484%
elapsed time (sec) 108.77 334.28 106.33 -2% -68%
sys time (sec) 2,657.14 94.88 2,376.13 -11% 2404%
memcg_high 64,200 66,316 56,898
memcg_swap_fail 101,182 70 27
zswpout 48,931,499 36,507 48,890,640
zswpin 380 379 377
pswpout 0 40,166,400 0
pswpin 0 0 0
thp_swpout 0 78,450 0
thp_swpout_fallback 101,182 70 27
2MB-mthp_swpout_fallback 0 0 27
pgmajfault 3,067 3,417 3,311
swap_ra 91 90 854
swap_ra_hit 45 45 810
ZSWPOUT-2MB n/a n/a 95,459
SWPOUT-2MB 0 78,450 0
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
2M folios: deflate-iaa:
=======================
zswap compressor deflate-iaa deflate-iaa deflate-iaa deflate-iaa v10
before-case1 before-case2 after vs. vs.
case1 case2
-------------------------------------------------------------------------------
Total throughput (KB/s) 6,286,587 1,126,785 7,073,464 13% 528%
Average throughput (KB/s) 209,552 37,559 235,782 13% 528%
elapsed time (sec) 96.19 333.03 85.79 -11% -74%
sys time (sec) 2,141.44 99.96 1,826.67 -15% 1727%
memcg_high 99,253 64,666 79,718
memcg_swap_fail 129,074 53 165
zswpout 61,312,794 28,321 56,045,120
zswpin 383 406 403
pswpout 0 40,048,128 0
pswpin 0 0 0
thp_swpout 0 78,219 0
thp_swpout_fallback 129,074 53 165
2MB-mthp_swpout_fallback 0 0 165
pgmajfault 3,430 3,077 31,468
swap_ra 91 103 84,373
swap_ra_hit 47 46 84,317
ZSWPOUT-2MB n/a n/a 109,229
SWPOUT-2MB 0 78,219 0
-------------------------------------------------------------------------------
And finally, this is a comparison of deflate-iaa vs. zstd with v10 of this
patch-series:
---------------------------------------------
zswap_store large folios v10
Impr w/ deflate-iaa vs. zstd
64K folios 2M folios
---------------------------------------------
Throughput (KB/s) 17% 9%
elapsed time (sec) -20% -19%
sys time (sec) -27% -23%
---------------------------------------------
Conclusions based on the performance results:
=============================================
v10 wrt before-case1:
---------------------
We see significant improvements in throughput, elapsed and sys time for
zstd and deflate-iaa, when comparing before-case1 (THP_SWAP=N) vs. after
(THP_SWAP=Y) with zswap_store large folios.
v10 wrt before-case2:
---------------------
We see even more significant improvements in throughput and elapsed time
for zstd and deflate-iaa, when comparing before-case2 (large-folio-SSD)
vs. after (large-folio-zswap). The sys time increases with
large-folio-zswap as expected, due to the CPU compression time
vs. asynchronous disk write times, as pointed out by Ying and Yosry.
In before-case2, when zswap does not store large folios, only allocations
and cgroup charging due to 4K folio zswap stores count towards the cgroup
memory limit. However, in the after scenario, with the introduction of
zswap_store() of large folios, there is an added component of the zswap
compressed pool usage from large folio stores from potentially all 30
processes, that gets counted towards the memory limit. As a result, we see
higher swapout activity in the "after" data.
Summary:
========
The v10 data presented above shows that zswap_store of large folios
demonstrates good throughput/performance improvements compared to
conventional SSD swap of large folios with a sufficiently large 525G SSD
swap device. Hence, it seems reasonable for zswap_store to support large
folios, so that further performance improvements can be implemented.
In the experimental setup used in this patchset, we have enabled IAA
compress verification to ensure additional hardware data integrity CRC
checks not currently done by the software compressors. We see good
throughput/latency improvements with deflate-iaa vs. zstd with zswap_store
of large folios.
Some of the ideas for further reducing latency that have shown promise in
our experiments, are:
1) IAA compress/decompress batching.
2) Distributing compress jobs across all IAA devices on the socket.
The tests run for this patchset are using only 1 IAA device per core, that
avails of 2 compress engines on the device. In our experiments with IAA
batching, we distribute compress jobs from all cores to the 8 compress
engines available per socket. We further compress the pages in each folio
in parallel in the accelerator. As a result, we improve compress latency
and reclaim throughput.
In decompress batching, we use swapin_readahead to generate a prefetch
batch of 4K folios that we decompress in parallel in IAA.
------------------------------------------------------------------------------
IAA compress/decompress batching
Further improvements wrt v10 zswap_store Sequential
subpage store using "deflate-iaa":
"deflate-iaa" Batching "deflate-iaa-canned" [2] Batching
Additional Impr Additional Impr
64K folios 2M folios 64K folios 2M folios
------------------------------------------------------------------------------
Throughput (KB/s) 19% 43% 26% 55%
elapsed time (sec) -5% -14% -10% -21%
sys time (sec) 4% -7% -4% -18%
------------------------------------------------------------------------------
With zswap IAA compress/decompress batching, we are able to demonstrate
significant performance improvements and memory savings in server
scalability experiments in highly contended system scenarios under
significant memory pressure; as compared to software compressors. We hope
to submit this work in subsequent patch series. The current patch-series
is a prequisite for these future submissions.
This patch (of 7):
zswap_store() will store large folios by compressing them page by page.
This patch provides a sequential implementation of storing a large folio
in zswap_store() by iterating through each page in the folio to compress
and store it in the zswap zpool.
zswap_store() calls the newly added zswap_store_page() function for each
page in the folio. zswap_store_page() handles compressing and storing
each page.
We check the global and per-cgroup limits once at the beginning of
zswap_store(), and only check that the limit is not reached yet. This is
racy and inaccurate, but it should be sufficient for now. We also obtain
initial references to the relevant objcg and pool to guarantee that
subsequent references can be acquired by zswap_store_page(). A new
function zswap_pool_get() is added to facilitate this.
If these one-time checks pass, we compress the pages of the folio, while
maintaining a running count of compressed bytes for all the folio's pages.
If all pages are successfully compressed and stored, we do the cgroup
zswap charging with the total compressed bytes, and batch update the
zswap_stored_pages atomic/zswpout event stats with folio_nr_pages() once,
before returning from zswap_store().
If an error is encountered during the store of any page in the folio, all
pages in that folio currently stored in zswap will be invalidated. Thus,
a folio is either entirely stored in zswap, or entirely not stored in
zswap.
The most important value provided by this patch is it enables swapping out
large folios to zswap without splitting them. Furthermore, it batches
some operations while doing so (cgroup charging, stats updates).
This patch also forms the basis for building compress batching of pages in
a large folio in zswap_store() by compressing up to say, 8 pages of the
folio in parallel in hardware using the Intel In-Memory Analytics
Accelerator (Intel IAA).
This change reuses and adapts the functionality in Ryan Roberts' RFC
patch [1]:
"[RFC,v1] mm: zswap: Store large folios without splitting"
[1] https://lore.kernel.org/linux-mm/20231019110543.3284654-1-ryan.roberts@arm.com/T/#u
Link: https://lkml.kernel.org/r/20241001053222.6944-1-kanchana.p.sridhar@intel.com
Link: https://lkml.kernel.org/r/20241001053222.6944-7-kanchana.p.sridhar@intel.com
Signed-off-by: Kanchana P Sridhar <kanchana.p.sridhar@intel.com>
Originally-by: Ryan Roberts <ryan.roberts@arm.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Cc: Chengming Zhou <chengming.zhou@linux.dev>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Wajdi Feghali <wajdi.k.feghali@intel.com>
Cc: "Zou, Nanhai" <nanhai.zou@intel.com>
Cc: Barry Song <21cnbao@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
For zswap_store() to support large folios, we need to be able to do a
batch update of zswap_stored_pages upon successful store of all pages in
the folio. For this, we need to add folio_nr_pages(), which returns a
long, to zswap_stored_pages.
Link: https://lkml.kernel.org/r/20241001053222.6944-6-kanchana.p.sridhar@intel.com
Signed-off-by: Kanchana P Sridhar <kanchana.p.sridhar@intel.com>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Cc: Chengming Zhou <chengming.zhou@linux.dev>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Wajdi Feghali <wajdi.k.feghali@intel.com>
Cc: "Zou, Nanhai" <nanhai.zou@intel.com>
Cc: Barry Song <21cnbao@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Modify the name of the existing zswap_pool_get() to zswap_pool_tryget() to
be representative of the call it makes to percpu_ref_tryget(). A
subsequent patch will introduce a new zswap_pool_get() that calls
percpu_ref_get().
The intent behind this change is for higher level zswap API such as
zswap_store() to call zswap_pool_tryget() to check upfront if the pool's
refcount is "0" (which means it could be getting destroyed) and to handle
this as an error condition. zswap_store() would proceed only if
zswap_pool_tryget() returns success, and any additional pool refcounts
that need to be obtained for compressing sub-pages in a large folio could
simply call zswap_pool_get().
Link: https://lkml.kernel.org/r/20241001053222.6944-4-kanchana.p.sridhar@intel.com
Signed-off-by: Kanchana P Sridhar <kanchana.p.sridhar@intel.com>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: Chengming Zhou <chengming.zhou@linux.dev>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Wajdi Feghali <wajdi.k.feghali@intel.com>
Cc: "Zou, Nanhai" <nanhai.zou@intel.com>
Cc: Barry Song <21cnbao@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
For zswap_store() to be able to store a large folio by compressing it one
page at a time, zswap_compress() needs to accept a page as input. This
will allow us to iterate through each page in the folio in zswap_store(),
compress it and store it in the zpool.
Link: https://lkml.kernel.org/r/20241001053222.6944-3-kanchana.p.sridhar@intel.com
Signed-off-by: Kanchana P Sridhar <kanchana.p.sridhar@intel.com>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Reviewed-by: Chengming Zhou <chengming.zhou@linux.dev>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Wajdi Feghali <wajdi.k.feghali@intel.com>
Cc: "Zou, Nanhai" <nanhai.zou@intel.com>
Cc: Barry Song <21cnbao@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Pick up e7ac4daeed91 ("mm: count zeromap read and set for swapout and
swapin") in order to move
mm: define obj_cgroup_get() if CONFIG_MEMCG is not defined
mm: zswap: modify zswap_compress() to accept a page instead of a folio
mm: zswap: rename zswap_pool_get() to zswap_pool_tryget()
mm: zswap: modify zswap_stored_pages to be atomic_long_t
mm: zswap: support large folios in zswap_store()
mm: swap: count successful large folio zswap stores in hugepage zswpout stats
mm: zswap: zswap_store_page() will initialize entry after adding to xarray.
mm: add per-order mTHP swpin counters
from mm-unstable into mm-stable.
|
|
When the proportion of folios from the zeromap is small, missing their
accounting may not significantly impact profiling. However, it's easy to
construct a scenario where this becomes an issue—for example, allocating
1 GB of memory, writing zeros from userspace, followed by MADV_PAGEOUT,
and then swapping it back in. In this case, the swap-out and swap-in
counts seem to vanish into a black hole, potentially causing semantic
ambiguity.
On the other hand, Usama reported that zero-filled pages can exceed 10% in
workloads utilizing zswap, while Hailong noted that some app in Android
have more than 6% zero-filled pages. Before commit 0ca0c24e3211 ("mm:
store zero pages to be swapped out in a bitmap"), both zswap and zRAM
implemented similar optimizations, leading to these optimized-out pages
being counted in either zswap or zRAM counters (with pswpin/pswpout also
increasing for zRAM). With zeromap functioning prior to both zswap and
zRAM, userspace will no longer detect these swap-out and swap-in actions.
We have three ways to address this:
1. Introduce a dedicated counter specifically for the zeromap.
2. Use pswpin/pswpout accounting, treating the zero map as a standard
backend. This approach aligns with zRAM's current handling of
same-page fills at the device level. However, it would mean losing the
optimized-out page counters previously available in zRAM and would not
align with systems using zswap. Additionally, as noted by Nhat Pham,
pswpin/pswpout counters apply only to I/O done directly to the backend
device.
3. Count zeromap pages under zswap, aligning with system behavior when
zswap is enabled. However, this would not be consistent with zRAM, nor
would it align with systems lacking both zswap and zRAM.
Given the complications with options 2 and 3, this patch selects
option 1.
We can find these counters from /proc/vmstat (counters for the whole
system) and memcg's memory.stat (counters for the interested memcg).
For example:
$ grep -E 'swpin_zero|swpout_zero' /proc/vmstat
swpin_zero 1648
swpout_zero 33536
$ grep -E 'swpin_zero|swpout_zero' /sys/fs/cgroup/system.slice/memory.stat
swpin_zero 3905
swpout_zero 3985
This patch does not address any specific zeromap bug, but the missing
swpout and swpin counts for zero-filled pages can be highly confusing and
may mislead user-space agents that rely on changes in these counters as
indicators. Therefore, we add a Fixes tag to encourage the inclusion of
this counter in any kernel versions with zeromap.
Many thanks to Kanchana for the contribution of changing
count_objcg_event() to count_objcg_events() to support large folios[1],
which has now been incorporated into this patch.
[1] https://lkml.kernel.org/r/20241001053222.6944-5-kanchana.p.sridhar@intel.com
Link: https://lkml.kernel.org/r/20241107011246.59137-1-21cnbao@gmail.com
Fixes: 0ca0c24e3211 ("mm: store zero pages to be swapped out in a bitmap")
Co-developed-by: Kanchana P Sridhar <kanchana.p.sridhar@intel.com>
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Reviewed-by: Chengming Zhou <chengming.zhou@linux.dev>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Hailong Liu <hailong.liu@oppo.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kairui Song <kasong@tencent.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
If the caller supplies an iocb->ki_pos value that is close to the
filesystem upper limit, and an iterator with a count that causes us to
overflow that limit, then filemap_read() enters an infinite loop.
This behaviour was discovered when testing xfstests generic/525 with the
"localio" optimisation for loopback NFS mounts.
Reported-by: Mike Snitzer <snitzer@kernel.org>
Fixes: c2a9737f45e2 ("vfs,mm: fix a dead loop in truncate_inode_pages_range()")
Tested-by: Mike Snitzer <snitzer@kernel.org>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull misc fixes from Andrew Morton:
"20 hotfixes, 14 of which are cc:stable.
Three affect DAMON. Lorenzo's five-patch series to address the
mmap_region error handling is here also.
Apart from that, various singletons"
* tag 'mm-hotfixes-stable-2024-11-09-22-40' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm:
mailmap: add entry for Thorsten Blum
ocfs2: remove entry once instead of null-ptr-dereference in ocfs2_xa_remove()
signal: restore the override_rlimit logic
fs/proc: fix compile warning about variable 'vmcore_mmap_ops'
ucounts: fix counter leak in inc_rlimit_get_ucounts()
selftests: hugetlb_dio: check for initial conditions to skip in the start
mm: fix docs for the kernel parameter ``thp_anon=``
mm/damon/core: avoid overflow in damon_feed_loop_next_input()
mm/damon/core: handle zero schemes apply interval
mm/damon/core: handle zero {aggregation,ops_update} intervals
mm/mlock: set the correct prev on failure
objpool: fix to make percpu slot allocation more robust
mm/page_alloc: keep track of free highatomic
mm: resolve faulty mmap_region() error path behaviour
mm: refactor arch_calc_vm_flag_bits() and arm64 MTE handling
mm: refactor map_deny_write_exec()
mm: unconditionally close VMAs on error
mm: avoid unsafe VMA hook invocation when error arises on mmap hook
mm/thp: fix deferred split unqueue naming and locking
mm/thp: fix deferred split queue not partially_mapped
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab
Pull slab fix from Vlastimil Babka:
- Fix for duplicate caches in some arm64 configurations with
CONFIG_SLAB_BUCKETS (Koichiro Den)
* tag 'slab-for-6.12-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab:
mm/slab: fix warning caused by duplicate kmem_cache creation in kmem_buckets_create
|
|
comment
Closing part of double inclusion guarding macro for dbgfs-kunit.h was
copy-pasted from somewhere (maybe before the initial mainline merge of
DAMON), and not properly updated. Fix it.
Link: https://lkml.kernel.org/r/20241028233058.283381-7-sj@kernel.org
Fixes: 17ccae8bb5c9 ("mm/damon: add kunit tests")
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Andrew Paniakin <apanyaki@amazon.com>
Cc: Brendan Higgins <brendan.higgins@linux.dev>
Cc: David Gow <davidgow@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
CONFIG_DAMON_SYSFS_KUNIT_TEST prompt is copied from that for DAMON debugfs
interface kunit tests, and not correctly updated. Fix it.
Link: https://lkml.kernel.org/r/20241028233058.283381-6-sj@kernel.org
Fixes: b8ee5575f763 ("mm/damon/sysfs-test: add a unit test for damon_sysfs_set_targets()")
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Andrew Paniakin <apanyaki@amazon.com>
Cc: Brendan Higgins <brendan.higgins@linux.dev>
Cc: David Gow <davidgow@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Currently mem_cgroup_css_rstat_flush() is used to flush the per-CPU
statistics from a specified CPU into the global statistics of the
memcg. It processes three kinds of data in three for loops using exactly
the same method. Therefore, the for loop can be factored out and may
make the code more clean.
Link: https://lkml.kernel.org/r/20241026093407.310955-1-xiujianfeng@huaweicloud.com
Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Wang Weiyang <wangweiyang2@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Remove hard-coded strings by using the str_yes_no() helper function.
Link: https://lkml.kernel.org/r/20241026103552.6790-2-thorsten.blum@linux.dev
Signed-off-by: Thorsten Blum <thorsten.blum@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Commit 14aa8b2d5c2e ("mm/mglru: don't sync disk for each aging cycle")
removed the opportunity to wake up flushers during the MGLRU page
reclamation process can lead to an increased likelihood of triggering OOM
when encountering many dirty pages during reclamation on MGLRU.
This leads to premature OOM if there are too many dirty pages in cgroup:
Killed
dd invoked oom-killer: gfp_mask=0x101cca(GFP_HIGHUSER_MOVABLE|__GFP_WRITE),
order=0, oom_score_adj=0
Call Trace:
<TASK>
dump_stack_lvl+0x5f/0x80
dump_stack+0x14/0x20
dump_header+0x46/0x1b0
oom_kill_process+0x104/0x220
out_of_memory+0x112/0x5a0
mem_cgroup_out_of_memory+0x13b/0x150
try_charge_memcg+0x44f/0x5c0
charge_memcg+0x34/0x50
__mem_cgroup_charge+0x31/0x90
filemap_add_folio+0x4b/0xf0
__filemap_get_folio+0x1a4/0x5b0
? srso_return_thunk+0x5/0x5f
? __block_commit_write+0x82/0xb0
ext4_da_write_begin+0xe5/0x270
generic_perform_write+0x134/0x2b0
ext4_buffered_write_iter+0x57/0xd0
ext4_file_write_iter+0x76/0x7d0
? selinux_file_permission+0x119/0x150
? srso_return_thunk+0x5/0x5f
? srso_return_thunk+0x5/0x5f
vfs_write+0x30c/0x440
ksys_write+0x65/0xe0
__x64_sys_write+0x1e/0x30
x64_sys_call+0x11c2/0x1d50
do_syscall_64+0x47/0x110
entry_SYSCALL_64_after_hwframe+0x76/0x7e
memory: usage 308224kB, limit 308224kB, failcnt 2589
swap: usage 0kB, limit 9007199254740988kB, failcnt 0
...
file_dirty 303247360
file_writeback 0
...
oom-kill:constraint=CONSTRAINT_MEMCG,nodemask=(null),cpuset=test,
mems_allowed=0,oom_memcg=/test,task_memcg=/test,task=dd,pid=4404,uid=0
Memory cgroup out of memory: Killed process 4404 (dd) total-vm:10512kB,
anon-rss:1152kB, file-rss:1824kB, shmem-rss:0kB, UID:0 pgtables:76kB
oom_score_adj:0
The flusher wake up was removed to decrease SSD wearing, but if we are
seeing all dirty folios at the tail of an LRU, not waking up the flusher
could lead to thrashing easily. So wake it up when a memcg is about to
OOM due to dirty caches.
I did run the build kernel test[1] on V6, with -j16 1G memcg on my local
branch:
Without the patch(10 times):
user 1449.394
system 368.78 372.58 363.03 362.31 360.84 372.70 368.72 364.94 373.51
366.58 (avg 367.399)
real 164.883
With the V6 patch(10 times):
user 1447.525
system 360.87 360.63 372.39 364.09 368.49 365.15 359.93 362.04 359.72
354.60 (avg 362.79)
real 164.514
Test results show that this patch has about 1% performance improvement,
which should be caused by noise.
Link: https://lkml.kernel.org/r/20241026115714.1437435-1-jingxiangzeng.cas@gmail.com
Link: https://lore.kernel.org/all/CACePvbV4L-gRN9UKKuUnksfVJjOTq_5Sti2-e=pb_w51kucLKQ@mail.gmail.com/ [1]
Fixes: 14aa8b2d5c2e ("mm/mglru: don't sync disk for each aging cycle")
Suggested-by: Wei Xu <weixugc@google.com>
Signed-off-by: Zeng Jingxiang <linuszeng@tencent.com>
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Wei Xu <weixugc@google.com>
Tested-by: Chris Li <chrisl@kernel.org>
Cc: T.J. Mercier <tjmercier@google.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The percpu allocator only uses one field in struct page, just change it
from page->index to page->private.
Link: https://lkml.kernel.org/r/20241005200121.3231142-8-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
We already have folios in all these places; it's just a matter of using
them instead of the pages.
Link: https://lkml.kernel.org/r/20241005200121.3231142-7-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Encode the type into the bottom four bits of page->private and the info
into the remaining bits. Also turn the bootmem type into a named enum.
[arnd@arndb.de: bootmem: add bootmem_type stub function]
Link: https://lkml.kernel.org/r/20241015143802.577613-1-arnd@kernel.org
[akpm@linux-foundation.org: fix build with !CONFIG_HAVE_BOOTMEM_INFO_NODE]
Link: https://lore.kernel.org/oe-kbuild-all/202410090311.eaqcL7IZ-lkp@intel.com/
Link: https://lkml.kernel.org/r/20241005200121.3231142-6-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: kernel test robot <lkp@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Now that page_pgoff() takes const pointers, we can constify the pointers
to a lot of functions.
Link: https://lkml.kernel.org/r/20241005200121.3231142-5-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This function doesn't modify any of its arguments, so if we make a few
other functions take const pointers, we can make page_address_in_vma()
take const pointers too. All of its callers have the containing folio
already, so pass that in as an argument instead of recalculating it. Also
add kernel-doc
Link: https://lkml.kernel.org/r/20241005200121.3231142-4-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
There are several places which currently open-code page_pgoff(), convert
them to call it.
Link: https://lkml.kernel.org/r/20241005200121.3231142-3-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "page->index removals in mm", v2.
As part of shrinking struct page, we need to stop using page->index. This
patchset gets rid of most of the remaining references to page->index in
mm, as well as increasing the number of functions which take a const
folio/page pointer. It shrinks the text segment of mm by a few hundred
bytes in my test config, probably mostly from removing calls to
compound_head() in page_to_pgoff().
This patch (of 7):
Change the function signature to pass in the folio as all three callers
have it. This removes a reference to page->index, which we're trying to
get rid of. And add kernel-doc.
Link: https://lkml.kernel.org/r/20241005200121.3231142-1-willy@infradead.org
Link: https://lkml.kernel.org/r/20241005200121.3231142-2-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
As part of "zsmalloc: replace kmap_atomic with kmap_local_page" [1] we
replaced kmap/kunmap_atomic() with kmap_local_page()/kunmap_local().
But later it was found that some of the code could be replaced with
already available apis in highmem.h, such as
memcpy_from_page()/memcpy_to_page().
Also, update the comments with correct api naming.
[1] https://lkml.kernel.org/r/20241001175358.12970-1-quic_pintu@quicinc.com
Link: https://lkml.kernel.org/r/20241010175143.27262-1-quic_pintu@quicinc.com
Signed-off-by: Pintu Kumar <quic_pintu@quicinc.com>
Suggested-by: Matthew Wilcox <willy@infradead.org>
Suggested-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Joe Perches <joe@perches.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pintu Agarwal <pintu.ping@gmail.com>
Cc: Shuah Khan <skhan@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The use of kmap_atomic/kunmap_atomic is deprecated. Replace it will
kmap_local_page/kunmap_local all over the place. Also fix SPDX missing
license header.
WARNING: Missing or malformed SPDX-License-Identifier tag in line 1
WARNING: Deprecated use of 'kmap_atomic', prefer 'kmap_local_page' instead
+ vaddr = kmap_atomic(page);
Link: https://lkml.kernel.org/r/20241001175358.12970-1-quic_pintu@quicinc.com
Signed-off-by: Pintu Kumar <quic_pintu@quicinc.com>
Cc: Joe Perches <joe@perches.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pintu Agarwal <pintu.ping@gmail.com>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Shuah Khan <skhan@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|