// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2017 - Columbia University and Linaro Ltd. * Author: Jintack Lim */ #include #include #include #include #include #include #include #include #include #include "sys_regs.h" struct vncr_tlb { /* The guest's VNCR_EL2 */ u64 gva; struct s1_walk_info wi; struct s1_walk_result wr; u64 hpa; /* -1 when not mapped on a CPU */ int cpu; /* * true if the TLB is valid. Can only be changed with the * mmu_lock held. */ bool valid; }; /* * Ratio of live shadow S2 MMU per vcpu. This is a trade-off between * memory usage and potential number of different sets of S2 PTs in * the guests. Running out of S2 MMUs only affects performance (we * will invalidate them more often). */ #define S2_MMU_PER_VCPU 2 void kvm_init_nested(struct kvm *kvm) { kvm->arch.nested_mmus = NULL; kvm->arch.nested_mmus_size = 0; atomic_set(&kvm->arch.vncr_map_count, 0); } static int init_nested_s2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu) { /* * We only initialise the IPA range on the canonical MMU, which * defines the contract between KVM and userspace on where the * "hardware" is in the IPA space. This affects the validity of MMIO * exits forwarded to userspace, for example. * * For nested S2s, we use the PARange as exposed to the guest, as it * is allowed to use it at will to expose whatever memory map it * wants to its own guests as it would be on real HW. */ return kvm_init_stage2_mmu(kvm, mmu, kvm_get_pa_bits(kvm)); } int kvm_vcpu_init_nested(struct kvm_vcpu *vcpu) { struct kvm *kvm = vcpu->kvm; struct kvm_s2_mmu *tmp; int num_mmus, ret = 0; if (test_bit(KVM_ARM_VCPU_HAS_EL2_E2H0, kvm->arch.vcpu_features) && !cpus_have_final_cap(ARM64_HAS_HCR_NV1)) return -EINVAL; if (!vcpu->arch.ctxt.vncr_array) vcpu->arch.ctxt.vncr_array = (u64 *)__get_free_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); if (!vcpu->arch.ctxt.vncr_array) return -ENOMEM; /* * Let's treat memory allocation failures as benign: If we fail to * allocate anything, return an error and keep the allocated array * alive. Userspace may try to recover by intializing the vcpu * again, and there is no reason to affect the whole VM for this. */ num_mmus = atomic_read(&kvm->online_vcpus) * S2_MMU_PER_VCPU; tmp = kvrealloc(kvm->arch.nested_mmus, size_mul(sizeof(*kvm->arch.nested_mmus), num_mmus), GFP_KERNEL_ACCOUNT | __GFP_ZERO); if (!tmp) return -ENOMEM; swap(kvm->arch.nested_mmus, tmp); /* * If we went through a realocation, adjust the MMU back-pointers in * the previously initialised kvm_pgtable structures. */ if (kvm->arch.nested_mmus != tmp) for (int i = 0; i < kvm->arch.nested_mmus_size; i++) kvm->arch.nested_mmus[i].pgt->mmu = &kvm->arch.nested_mmus[i]; for (int i = kvm->arch.nested_mmus_size; !ret && i < num_mmus; i++) ret = init_nested_s2_mmu(kvm, &kvm->arch.nested_mmus[i]); if (ret) { for (int i = kvm->arch.nested_mmus_size; i < num_mmus; i++) kvm_free_stage2_pgd(&kvm->arch.nested_mmus[i]); free_page((unsigned long)vcpu->arch.ctxt.vncr_array); vcpu->arch.ctxt.vncr_array = NULL; return ret; } kvm->arch.nested_mmus_size = num_mmus; return 0; } struct s2_walk_info { int (*read_desc)(phys_addr_t pa, u64 *desc, void *data); void *data; u64 baddr; unsigned int max_oa_bits; unsigned int pgshift; unsigned int sl; unsigned int t0sz; bool be; }; static u32 compute_fsc(int level, u32 fsc) { return fsc | (level & 0x3); } static int esr_s2_fault(struct kvm_vcpu *vcpu, int level, u32 fsc) { u32 esr; esr = kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC; esr |= compute_fsc(level, fsc); return esr; } static int get_ia_size(struct s2_walk_info *wi) { return 64 - wi->t0sz; } static int check_base_s2_limits(struct s2_walk_info *wi, int level, int input_size, int stride) { int start_size, ia_size; ia_size = get_ia_size(wi); /* Check translation limits */ switch (BIT(wi->pgshift)) { case SZ_64K: if (level == 0 || (level == 1 && ia_size <= 42)) return -EFAULT; break; case SZ_16K: if (level == 0 || (level == 1 && ia_size <= 40)) return -EFAULT; break; case SZ_4K: if (level < 0 || (level == 0 && ia_size <= 42)) return -EFAULT; break; } /* Check input size limits */ if (input_size > ia_size) return -EFAULT; /* Check number of entries in starting level table */ start_size = input_size - ((3 - level) * stride + wi->pgshift); if (start_size < 1 || start_size > stride + 4) return -EFAULT; return 0; } /* Check if output is within boundaries */ static int check_output_size(struct s2_walk_info *wi, phys_addr_t output) { unsigned int output_size = wi->max_oa_bits; if (output_size != 48 && (output & GENMASK_ULL(47, output_size))) return -1; return 0; } /* * This is essentially a C-version of the pseudo code from the ARM ARM * AArch64.TranslationTableWalk function. I strongly recommend looking at * that pseudocode in trying to understand this. * * Must be called with the kvm->srcu read lock held */ static int walk_nested_s2_pgd(phys_addr_t ipa, struct s2_walk_info *wi, struct kvm_s2_trans *out) { int first_block_level, level, stride, input_size, base_lower_bound; phys_addr_t base_addr; unsigned int addr_top, addr_bottom; u64 desc; /* page table entry */ int ret; phys_addr_t paddr; switch (BIT(wi->pgshift)) { default: case SZ_64K: case SZ_16K: level = 3 - wi->sl; first_block_level = 2; break; case SZ_4K: level = 2 - wi->sl; first_block_level = 1; break; } stride = wi->pgshift - 3; input_size = get_ia_size(wi); if (input_size > 48 || input_size < 25) return -EFAULT; ret = check_base_s2_limits(wi, level, input_size, stride); if (WARN_ON(ret)) return ret; base_lower_bound = 3 + input_size - ((3 - level) * stride + wi->pgshift); base_addr = wi->baddr & GENMASK_ULL(47, base_lower_bound); if (check_output_size(wi, base_addr)) { out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ); return 1; } addr_top = input_size - 1; while (1) { phys_addr_t index; addr_bottom = (3 - level) * stride + wi->pgshift; index = (ipa & GENMASK_ULL(addr_top, addr_bottom)) >> (addr_bottom - 3); paddr = base_addr | index; ret = wi->read_desc(paddr, &desc, wi->data); if (ret < 0) return ret; /* * Handle reversedescriptors if endianness differs between the * host and the guest hypervisor. */ if (wi->be) desc = be64_to_cpu((__force __be64)desc); else desc = le64_to_cpu((__force __le64)desc); /* Check for valid descriptor at this point */ if (!(desc & 1) || ((desc & 3) == 1 && level == 3)) { out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT); out->desc = desc; return 1; } /* We're at the final level or block translation level */ if ((desc & 3) == 1 || level == 3) break; if (check_output_size(wi, desc)) { out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ); out->desc = desc; return 1; } base_addr = desc & GENMASK_ULL(47, wi->pgshift); level += 1; addr_top = addr_bottom - 1; } if (level < first_block_level) { out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT); out->desc = desc; return 1; } if (check_output_size(wi, desc)) { out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ); out->desc = desc; return 1; } if (!(desc & BIT(10))) { out->esr = compute_fsc(level, ESR_ELx_FSC_ACCESS); out->desc = desc; return 1; } addr_bottom += contiguous_bit_shift(desc, wi, level); /* Calculate and return the result */ paddr = (desc & GENMASK_ULL(47, addr_bottom)) | (ipa & GENMASK_ULL(addr_bottom - 1, 0)); out->output = paddr; out->block_size = 1UL << ((3 - level) * stride + wi->pgshift); out->readable = desc & (0b01 << 6); out->writable = desc & (0b10 << 6); out->level = level; out->desc = desc; return 0; } static int read_guest_s2_desc(phys_addr_t pa, u64 *desc, void *data) { struct kvm_vcpu *vcpu = data; return kvm_read_guest(vcpu->kvm, pa, desc, sizeof(*desc)); } static void vtcr_to_walk_info(u64 vtcr, struct s2_walk_info *wi) { wi->t0sz = vtcr & TCR_EL2_T0SZ_MASK; switch (vtcr & VTCR_EL2_TG0_MASK) { case VTCR_EL2_TG0_4K: wi->pgshift = 12; break; case VTCR_EL2_TG0_16K: wi->pgshift = 14; break; case VTCR_EL2_TG0_64K: default: /* IMPDEF: treat any other value as 64k */ wi->pgshift = 16; break; } wi->sl = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr); /* Global limit for now, should eventually be per-VM */ wi->max_oa_bits = min(get_kvm_ipa_limit(), ps_to_output_size(FIELD_GET(VTCR_EL2_PS_MASK, vtcr))); } int kvm_walk_nested_s2(struct kvm_vcpu *vcpu, phys_addr_t gipa, struct kvm_s2_trans *result) { u64 vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2); struct s2_walk_info wi; int ret; result->esr = 0; if (!vcpu_has_nv(vcpu)) return 0; wi.read_desc = read_guest_s2_desc; wi.data = vcpu; wi.baddr = vcpu_read_sys_reg(vcpu, VTTBR_EL2); vtcr_to_walk_info(vtcr, &wi); wi.be = vcpu_read_sys_reg(vcpu, SCTLR_EL2) & SCTLR_ELx_EE; ret = walk_nested_s2_pgd(gipa, &wi, result); if (ret) result->esr |= (kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC); return ret; } static unsigned int ttl_to_size(u8 ttl) { int level = ttl & 3; int gran = (ttl >> 2) & 3; unsigned int max_size = 0; switch (gran) { case TLBI_TTL_TG_4K: switch (level) { case 0: break; case 1: max_size = SZ_1G; break; case 2: max_size = SZ_2M; break; case 3: max_size = SZ_4K; break; } break; case TLBI_TTL_TG_16K: switch (level) { case 0: case 1: break; case 2: max_size = SZ_32M; break; case 3: max_size = SZ_16K; break; } break; case TLBI_TTL_TG_64K: switch (level) { case 0: case 1: /* No 52bit IPA support */ break; case 2: max_size = SZ_512M; break; case 3: max_size = SZ_64K; break; } break; default: /* No size information */ break; } return max_size; } static u8 pgshift_level_to_ttl(u16 shift, u8 level) { u8 ttl; switch(shift) { case 12: ttl = TLBI_TTL_TG_4K; break; case 14: ttl = TLBI_TTL_TG_16K; break; case 16: ttl = TLBI_TTL_TG_64K; break; default: BUG(); } ttl <<= 2; ttl |= level & 3; return ttl; } /* * Compute the equivalent of the TTL field by parsing the shadow PT. The * granule size is extracted from the cached VTCR_EL2.TG0 while the level is * retrieved from first entry carrying the level as a tag. */ static u8 get_guest_mapping_ttl(struct kvm_s2_mmu *mmu, u64 addr) { u64 tmp, sz = 0, vtcr = mmu->tlb_vtcr; kvm_pte_t pte; u8 ttl, level; lockdep_assert_held_write(&kvm_s2_mmu_to_kvm(mmu)->mmu_lock); switch (vtcr & VTCR_EL2_TG0_MASK) { case VTCR_EL2_TG0_4K: ttl = (TLBI_TTL_TG_4K << 2); break; case VTCR_EL2_TG0_16K: ttl = (TLBI_TTL_TG_16K << 2); break; case VTCR_EL2_TG0_64K: default: /* IMPDEF: treat any other value as 64k */ ttl = (TLBI_TTL_TG_64K << 2); break; } tmp = addr; again: /* Iteratively compute the block sizes for a particular granule size */ switch (vtcr & VTCR_EL2_TG0_MASK) { case VTCR_EL2_TG0_4K: if (sz < SZ_4K) sz = SZ_4K; else if (sz < SZ_2M) sz = SZ_2M; else if (sz < SZ_1G) sz = SZ_1G; else sz = 0; break; case VTCR_EL2_TG0_16K: if (sz < SZ_16K) sz = SZ_16K; else if (sz < SZ_32M) sz = SZ_32M; else sz = 0; break; case VTCR_EL2_TG0_64K: default: /* IMPDEF: treat any other value as 64k */ if (sz < SZ_64K) sz = SZ_64K; else if (sz < SZ_512M) sz = SZ_512M; else sz = 0; break; } if (sz == 0) return 0; tmp &= ~(sz - 1); if (kvm_pgtable_get_leaf(mmu->pgt, tmp, &pte, NULL)) goto again; if (!(pte & PTE_VALID)) goto again; level = FIELD_GET(KVM_NV_GUEST_MAP_SZ, pte); if (!level) goto again; ttl |= level; /* * We now have found some level information in the shadow S2. Check * that the resulting range is actually including the original IPA. */ sz = ttl_to_size(ttl); if (addr < (tmp + sz)) return ttl; return 0; } unsigned long compute_tlb_inval_range(struct kvm_s2_mmu *mmu, u64 val) { struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); unsigned long max_size; u8 ttl; ttl = FIELD_GET(TLBI_TTL_MASK, val); if (!ttl || !kvm_has_feat(kvm, ID_AA64MMFR2_EL1, TTL, IMP)) { /* No TTL, check the shadow S2 for a hint */ u64 addr = (val & GENMASK_ULL(35, 0)) << 12; ttl = get_guest_mapping_ttl(mmu, addr); } max_size = ttl_to_size(ttl); if (!max_size) { /* Compute the maximum extent of the invalidation */ switch (mmu->tlb_vtcr & VTCR_EL2_TG0_MASK) { case VTCR_EL2_TG0_4K: max_size = SZ_1G; break; case VTCR_EL2_TG0_16K: max_size = SZ_32M; break; case VTCR_EL2_TG0_64K: default: /* IMPDEF: treat any other value as 64k */ /* * No, we do not support 52bit IPA in nested yet. Once * we do, this should be 4TB. */ max_size = SZ_512M; break; } } WARN_ON(!max_size); return max_size; } /* * We can have multiple *different* MMU contexts with the same VMID: * * - S2 being enabled or not, hence differing by the HCR_EL2.VM bit * * - Multiple vcpus using private S2s (huh huh...), hence differing by the * VBBTR_EL2.BADDR address * * - A combination of the above... * * We can always identify which MMU context to pick at run-time. However, * TLB invalidation involving a VMID must take action on all the TLBs using * this particular VMID. This translates into applying the same invalidation * operation to all the contexts that are using this VMID. Moar phun! */ void kvm_s2_mmu_iterate_by_vmid(struct kvm *kvm, u16 vmid, const union tlbi_info *info, void (*tlbi_callback)(struct kvm_s2_mmu *, const union tlbi_info *)) { write_lock(&kvm->mmu_lock); for (int i = 0; i < kvm->arch.nested_mmus_size; i++) { struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i]; if (!kvm_s2_mmu_valid(mmu)) continue; if (vmid == get_vmid(mmu->tlb_vttbr)) tlbi_callback(mmu, info); } write_unlock(&kvm->mmu_lock); } struct kvm_s2_mmu *lookup_s2_mmu(struct kvm_vcpu *vcpu) { struct kvm *kvm = vcpu->kvm; bool nested_stage2_enabled; u64 vttbr, vtcr, hcr; lockdep_assert_held_write(&kvm->mmu_lock); vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2); vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2); hcr = vcpu_read_sys_reg(vcpu, HCR_EL2); nested_stage2_enabled = hcr & HCR_VM; /* Don't consider the CnP bit for the vttbr match */ vttbr &= ~VTTBR_CNP_BIT; /* * Two possibilities when looking up a S2 MMU context: * * - either S2 is enabled in the guest, and we need a context that is * S2-enabled and matches the full VTTBR (VMID+BADDR) and VTCR, * which makes it safe from a TLB conflict perspective (a broken * guest won't be able to generate them), * * - or S2 is disabled, and we need a context that is S2-disabled * and matches the VMID only, as all TLBs are tagged by VMID even * if S2 translation is disabled. */ for (int i = 0; i < kvm->arch.nested_mmus_size; i++) { struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i]; if (!kvm_s2_mmu_valid(mmu)) continue; if (nested_stage2_enabled && mmu->nested_stage2_enabled && vttbr == mmu->tlb_vttbr && vtcr == mmu->tlb_vtcr) return mmu; if (!nested_stage2_enabled && !mmu->nested_stage2_enabled && get_vmid(vttbr) == get_vmid(mmu->tlb_vttbr)) return mmu; } return NULL; } static struct kvm_s2_mmu *get_s2_mmu_nested(struct kvm_vcpu *vcpu) { struct kvm *kvm = vcpu->kvm; struct kvm_s2_mmu *s2_mmu; int i; lockdep_assert_held_write(&vcpu->kvm->mmu_lock); s2_mmu = lookup_s2_mmu(vcpu); if (s2_mmu) goto out; /* * Make sure we don't always search from the same point, or we * will always reuse a potentially active context, leaving * free contexts unused. */ for (i = kvm->arch.nested_mmus_next; i < (kvm->arch.nested_mmus_size + kvm->arch.nested_mmus_next); i++) { s2_mmu = &kvm->arch.nested_mmus[i % kvm->arch.nested_mmus_size]; if (atomic_read(&s2_mmu->refcnt) == 0) break; } BUG_ON(atomic_read(&s2_mmu->refcnt)); /* We have struct MMUs to spare */ /* Set the scene for the next search */ kvm->arch.nested_mmus_next = (i + 1) % kvm->arch.nested_mmus_size; /* Make sure we don't forget to do the laundry */ if (kvm_s2_mmu_valid(s2_mmu)) s2_mmu->pending_unmap = true; /* * The virtual VMID (modulo CnP) will be used as a key when matching * an existing kvm_s2_mmu. * * We cache VTCR at allocation time, once and for all. It'd be great * if the guest didn't screw that one up, as this is not very * forgiving... */ s2_mmu->tlb_vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2) & ~VTTBR_CNP_BIT; s2_mmu->tlb_vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2); s2_mmu->nested_stage2_enabled = vcpu_read_sys_reg(vcpu, HCR_EL2) & HCR_VM; out: atomic_inc(&s2_mmu->refcnt); /* * Set the vCPU request to perform an unmap, even if the pending unmap * originates from another vCPU. This guarantees that the MMU has been * completely unmapped before any vCPU actually uses it, and allows * multiple vCPUs to lend a hand with completing the unmap. */ if (s2_mmu->pending_unmap) kvm_make_request(KVM_REQ_NESTED_S2_UNMAP, vcpu); return s2_mmu; } void kvm_init_nested_s2_mmu(struct kvm_s2_mmu *mmu) { /* CnP being set denotes an invalid entry */ mmu->tlb_vttbr = VTTBR_CNP_BIT; mmu->nested_stage2_enabled = false; atomic_set(&mmu->refcnt, 0); } void kvm_vcpu_load_hw_mmu(struct kvm_vcpu *vcpu) { /* * If the vCPU kept its reference on the MMU after the last put, * keep rolling with it. */ if (is_hyp_ctxt(vcpu)) { if (!vcpu->arch.hw_mmu) vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu; } else { if (!vcpu->arch.hw_mmu) { scoped_guard(write_lock, &vcpu->kvm->mmu_lock) vcpu->arch.hw_mmu = get_s2_mmu_nested(vcpu); } if (__vcpu_sys_reg(vcpu, HCR_EL2) & HCR_NV) kvm_make_request(KVM_REQ_MAP_L1_VNCR_EL2, vcpu); } } void kvm_vcpu_put_hw_mmu(struct kvm_vcpu *vcpu) { /* Unconditionally drop the VNCR mapping if we have one */ if (host_data_test_flag(L1_VNCR_MAPPED)) { BUG_ON(vcpu->arch.vncr_tlb->cpu != smp_processor_id()); BUG_ON(is_hyp_ctxt(vcpu)); clear_fixmap(vncr_fixmap(vcpu->arch.vncr_tlb->cpu)); vcpu->arch.vncr_tlb->cpu = -1; host_data_clear_flag(L1_VNCR_MAPPED); atomic_dec(&vcpu->kvm->arch.vncr_map_count); } /* * Keep a reference on the associated stage-2 MMU if the vCPU is * scheduling out and not in WFI emulation, suggesting it is likely to * reuse the MMU sometime soon. */ if (vcpu->scheduled_out && !vcpu_get_flag(vcpu, IN_WFI)) return; if (kvm_is_nested_s2_mmu(vcpu->kvm, vcpu->arch.hw_mmu)) atomic_dec(&vcpu->arch.hw_mmu->refcnt); vcpu->arch.hw_mmu = NULL; } /* * Returns non-zero if permission fault is handled by injecting it to the next * level hypervisor. */ int kvm_s2_handle_perm_fault(struct kvm_vcpu *vcpu, struct kvm_s2_trans *trans) { bool forward_fault = false; trans->esr = 0; if (!kvm_vcpu_trap_is_permission_fault(vcpu)) return 0; if (kvm_vcpu_trap_is_iabt(vcpu)) { forward_fault = !kvm_s2_trans_executable(trans); } else { bool write_fault = kvm_is_write_fault(vcpu); forward_fault = ((write_fault && !trans->writable) || (!write_fault && !trans->readable)); } if (forward_fault) trans->esr = esr_s2_fault(vcpu, trans->level, ESR_ELx_FSC_PERM); return forward_fault; } int kvm_inject_s2_fault(struct kvm_vcpu *vcpu, u64 esr_el2) { vcpu_write_sys_reg(vcpu, vcpu->arch.fault.far_el2, FAR_EL2); vcpu_write_sys_reg(vcpu, vcpu->arch.fault.hpfar_el2, HPFAR_EL2); return kvm_inject_nested_sync(vcpu, esr_el2); } static void invalidate_vncr(struct vncr_tlb *vt) { vt->valid = false; if (vt->cpu != -1) clear_fixmap(vncr_fixmap(vt->cpu)); } static void kvm_invalidate_vncr_ipa(struct kvm *kvm, u64 start, u64 end) { struct kvm_vcpu *vcpu; unsigned long i; lockdep_assert_held_write(&kvm->mmu_lock); if (!kvm_has_feat(kvm, ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY)) return; kvm_for_each_vcpu(i, vcpu, kvm) { struct vncr_tlb *vt = vcpu->arch.vncr_tlb; u64 ipa_start, ipa_end, ipa_size; /* * Careful here: We end-up here from an MMU notifier, * and this can race against a vcpu not being onlined * yet, without the pseudo-TLB being allocated. * * Skip those, as they obviously don't participate in * the invalidation at this stage. */ if (!vt) continue; if (!vt->valid) continue; ipa_size = ttl_to_size(pgshift_level_to_ttl(vt->wi.pgshift, vt->wr.level)); ipa_start = vt->wr.pa & (ipa_size - 1); ipa_end = ipa_start + ipa_size; if (ipa_end <= start || ipa_start >= end) continue; invalidate_vncr(vt); } } struct s1e2_tlbi_scope { enum { TLBI_ALL, TLBI_VA, TLBI_VAA, TLBI_ASID, } type; u16 asid; u64 va; u64 size; }; static void invalidate_vncr_va(struct kvm *kvm, struct s1e2_tlbi_scope *scope) { struct kvm_vcpu *vcpu; unsigned long i; lockdep_assert_held_write(&kvm->mmu_lock); kvm_for_each_vcpu(i, vcpu, kvm) { struct vncr_tlb *vt = vcpu->arch.vncr_tlb; u64 va_start, va_end, va_size; if (!vt->valid) continue; va_size = ttl_to_size(pgshift_level_to_ttl(vt->wi.pgshift, vt->wr.level)); va_start = vt->gva & (va_size - 1); va_end = va_start + va_size; switch (scope->type) { case TLBI_ALL: break; case TLBI_VA: if (va_end <= scope->va || va_start >= (scope->va + scope->size)) continue; if (vt->wr.nG && vt->wr.asid != scope->asid) continue; break; case TLBI_VAA: if (va_end <= scope->va || va_start >= (scope->va + scope->size)) continue; break; case TLBI_ASID: if (!vt->wr.nG || vt->wr.asid != scope->asid) continue; break; } invalidate_vncr(vt); } } static void compute_s1_tlbi_range(struct kvm_vcpu *vcpu, u32 inst, u64 val, struct s1e2_tlbi_scope *scope) { switch (inst) { case OP_TLBI_ALLE2: case OP_TLBI_ALLE2IS: case OP_TLBI_ALLE2OS: case OP_TLBI_VMALLE1: case OP_TLBI_VMALLE1IS: case OP_TLBI_VMALLE1OS: case OP_TLBI_ALLE2NXS: case OP_TLBI_ALLE2ISNXS: case OP_TLBI_ALLE2OSNXS: case OP_TLBI_VMALLE1NXS: case OP_TLBI_VMALLE1ISNXS: case OP_TLBI_VMALLE1OSNXS: scope->type = TLBI_ALL; break; case OP_TLBI_VAE2: case OP_TLBI_VAE2IS: case OP_TLBI_VAE2OS: case OP_TLBI_VAE1: case OP_TLBI_VAE1IS: case OP_TLBI_VAE1OS: case OP_TLBI_VAE2NXS: case OP_TLBI_VAE2ISNXS: case OP_TLBI_VAE2OSNXS: case OP_TLBI_VAE1NXS: case OP_TLBI_VAE1ISNXS: case OP_TLBI_VAE1OSNXS: case OP_TLBI_VALE2: case OP_TLBI_VALE2IS: case OP_TLBI_VALE2OS: case OP_TLBI_VALE1: case OP_TLBI_VALE1IS: case OP_TLBI_VALE1OS: case OP_TLBI_VALE2NXS: case OP_TLBI_VALE2ISNXS: case OP_TLBI_VALE2OSNXS: case OP_TLBI_VALE1NXS: case OP_TLBI_VALE1ISNXS: case OP_TLBI_VALE1OSNXS: scope->type = TLBI_VA; scope->size = ttl_to_size(FIELD_GET(TLBI_TTL_MASK, val)); if (!scope->size) scope->size = SZ_1G; scope->va = (val << 12) & ~(scope->size - 1); scope->asid = FIELD_GET(TLBIR_ASID_MASK, val); break; case OP_TLBI_ASIDE1: case OP_TLBI_ASIDE1IS: case OP_TLBI_ASIDE1OS: case OP_TLBI_ASIDE1NXS: case OP_TLBI_ASIDE1ISNXS: case OP_TLBI_ASIDE1OSNXS: scope->type = TLBI_ASID; scope->asid = FIELD_GET(TLBIR_ASID_MASK, val); break; case OP_TLBI_VAAE1: case OP_TLBI_VAAE1IS: case OP_TLBI_VAAE1OS: case OP_TLBI_VAAE1NXS: case OP_TLBI_VAAE1ISNXS: case OP_TLBI_VAAE1OSNXS: case OP_TLBI_VAALE1: case OP_TLBI_VAALE1IS: case OP_TLBI_VAALE1OS: case OP_TLBI_VAALE1NXS: case OP_TLBI_VAALE1ISNXS: case OP_TLBI_VAALE1OSNXS: scope->type = TLBI_VAA; scope->size = ttl_to_size(FIELD_GET(TLBI_TTL_MASK, val)); if (!scope->size) scope->size = SZ_1G; scope->va = (val << 12) & ~(scope->size - 1); break; case OP_TLBI_RVAE2: case OP_TLBI_RVAE2IS: case OP_TLBI_RVAE2OS: case OP_TLBI_RVAE1: case OP_TLBI_RVAE1IS: case OP_TLBI_RVAE1OS: case OP_TLBI_RVAE2NXS: case OP_TLBI_RVAE2ISNXS: case OP_TLBI_RVAE2OSNXS: case OP_TLBI_RVAE1NXS: case OP_TLBI_RVAE1ISNXS: case OP_TLBI_RVAE1OSNXS: case OP_TLBI_RVALE2: case OP_TLBI_RVALE2IS: case OP_TLBI_RVALE2OS: case OP_TLBI_RVALE1: case OP_TLBI_RVALE1IS: case OP_TLBI_RVALE1OS: case OP_TLBI_RVALE2NXS: case OP_TLBI_RVALE2ISNXS: case OP_TLBI_RVALE2OSNXS: case OP_TLBI_RVALE1NXS: case OP_TLBI_RVALE1ISNXS: case OP_TLBI_RVALE1OSNXS: scope->type = TLBI_VA; scope->va = decode_range_tlbi(val, &scope->size, &scope->asid); break; case OP_TLBI_RVAAE1: case OP_TLBI_RVAAE1IS: case OP_TLBI_RVAAE1OS: case OP_TLBI_RVAAE1NXS: case OP_TLBI_RVAAE1ISNXS: case OP_TLBI_RVAAE1OSNXS: case OP_TLBI_RVAALE1: case OP_TLBI_RVAALE1IS: case OP_TLBI_RVAALE1OS: case OP_TLBI_RVAALE1NXS: case OP_TLBI_RVAALE1ISNXS: case OP_TLBI_RVAALE1OSNXS: scope->type = TLBI_VAA; scope->va = decode_range_tlbi(val, &scope->size, NULL); break; } } void kvm_handle_s1e2_tlbi(struct kvm_vcpu *vcpu, u32 inst, u64 val) { struct s1e2_tlbi_scope scope = {}; compute_s1_tlbi_range(vcpu, inst, val, &scope); guard(write_lock)(&vcpu->kvm->mmu_lock); invalidate_vncr_va(vcpu->kvm, &scope); } void kvm_nested_s2_wp(struct kvm *kvm) { int i; lockdep_assert_held_write(&kvm->mmu_lock); for (i = 0; i < kvm->arch.nested_mmus_size; i++) { struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i]; if (kvm_s2_mmu_valid(mmu)) kvm_stage2_wp_range(mmu, 0, kvm_phys_size(mmu)); } kvm_invalidate_vncr_ipa(kvm, 0, BIT(kvm->arch.mmu.pgt->ia_bits)); } void kvm_nested_s2_unmap(struct kvm *kvm, bool may_block) { int i; lockdep_assert_held_write(&kvm->mmu_lock); for (i = 0; i < kvm->arch.nested_mmus_size; i++) { struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i]; if (kvm_s2_mmu_valid(mmu)) kvm_stage2_unmap_range(mmu, 0, kvm_phys_size(mmu), may_block); } kvm_invalidate_vncr_ipa(kvm, 0, BIT(kvm->arch.mmu.pgt->ia_bits)); } void kvm_nested_s2_flush(struct kvm *kvm) { int i; lockdep_assert_held_write(&kvm->mmu_lock); for (i = 0; i < kvm->arch.nested_mmus_size; i++) { struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i]; if (kvm_s2_mmu_valid(mmu)) kvm_stage2_flush_range(mmu, 0, kvm_phys_size(mmu)); } } void kvm_arch_flush_shadow_all(struct kvm *kvm) { int i; for (i = 0; i < kvm->arch.nested_mmus_size; i++) { struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i]; if (!WARN_ON(atomic_read(&mmu->refcnt))) kvm_free_stage2_pgd(mmu); } kvfree(kvm->arch.nested_mmus); kvm->arch.nested_mmus = NULL; kvm->arch.nested_mmus_size = 0; kvm_uninit_stage2_mmu(kvm); } /* * Dealing with VNCR_EL2 exposed by the *guest* is a complicated matter: * * - We introduce an internal representation of a vcpu-private TLB, * representing the mapping between the guest VA contained in VNCR_EL2, * the IPA the guest's EL2 PTs point to, and the actual PA this lives at. * * - On translation fault from a nested VNCR access, we create such a TLB. * If there is no mapping to describe, the guest inherits the fault. * Crucially, no actual mapping is done at this stage. * * - On vcpu_load() in a non-HYP context with HCR_EL2.NV==1, if the above * TLB exists, we map it in the fixmap for this CPU, and run with it. We * have to respect the permissions dictated by the guest, but not the * memory type (FWB is a must). * * - Note that we usually don't do a vcpu_load() on the back of a fault * (unless we are preempted), so the resolution of a translation fault * must go via a request that will map the VNCR page in the fixmap. * vcpu_load() might as well use the same mechanism. * * - On vcpu_put() in a non-HYP context with HCR_EL2.NV==1, if the TLB was * mapped, we unmap it. Yes it is that simple. The TLB still exists * though, and may be reused at a later load. * * - On permission fault, we simply forward the fault to the guest's EL2. * Get out of my way. * * - On any TLBI for the EL2&0 translation regime, we must find any TLB that * intersects with the TLBI request, invalidate it, and unmap the page * from the fixmap. Because we need to look at all the vcpu-private TLBs, * this requires some wide-ranging locking to ensure that nothing races * against it. This may require some refcounting to avoid the search when * no such TLB is present. * * - On MMU notifiers, we must invalidate our TLB in a similar way, but * looking at the IPA instead. The funny part is that there may not be a * stage-2 mapping for this page if L1 hasn't accessed it using LD/ST * instructions. */ int kvm_vcpu_allocate_vncr_tlb(struct kvm_vcpu *vcpu) { if (!kvm_has_feat(vcpu->kvm, ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY)) return 0; vcpu->arch.vncr_tlb = kzalloc(sizeof(*vcpu->arch.vncr_tlb), GFP_KERNEL_ACCOUNT); if (!vcpu->arch.vncr_tlb) return -ENOMEM; return 0; } static u64 read_vncr_el2(struct kvm_vcpu *vcpu) { return (u64)sign_extend64(__vcpu_sys_reg(vcpu, VNCR_EL2), 48); } static int kvm_translate_vncr(struct kvm_vcpu *vcpu) { bool write_fault, writable; unsigned long mmu_seq; struct vncr_tlb *vt; struct page *page; u64 va, pfn, gfn; int ret; vt = vcpu->arch.vncr_tlb; /* * If we're about to walk the EL2 S1 PTs, we must invalidate the * current TLB, as it could be sampled from another vcpu doing a * TLBI *IS. A real CPU wouldn't do that, but we only keep a single * translation, so not much of a choice. * * We also prepare the next walk wilst we're at it. */ scoped_guard(write_lock, &vcpu->kvm->mmu_lock) { invalidate_vncr(vt); vt->wi = (struct s1_walk_info) { .regime = TR_EL20, .as_el0 = false, .pan = false, }; vt->wr = (struct s1_walk_result){}; } guard(srcu)(&vcpu->kvm->srcu); va = read_vncr_el2(vcpu); ret = __kvm_translate_va(vcpu, &vt->wi, &vt->wr, va); if (ret) return ret; write_fault = kvm_is_write_fault(vcpu); mmu_seq = vcpu->kvm->mmu_invalidate_seq; smp_rmb(); gfn = vt->wr.pa >> PAGE_SHIFT; pfn = kvm_faultin_pfn(vcpu, gfn, write_fault, &writable, &page); if (is_error_noslot_pfn(pfn) || (write_fault && !writable)) return -EFAULT; scoped_guard(write_lock, &vcpu->kvm->mmu_lock) { if (mmu_invalidate_retry(vcpu->kvm, mmu_seq)) return -EAGAIN; vt->gva = va; vt->hpa = pfn << PAGE_SHIFT; vt->valid = true; vt->cpu = -1; kvm_make_request(KVM_REQ_MAP_L1_VNCR_EL2, vcpu); kvm_release_faultin_page(vcpu->kvm, page, false, vt->wr.pw); } if (vt->wr.pw) mark_page_dirty(vcpu->kvm, gfn); return 0; } static void inject_vncr_perm(struct kvm_vcpu *vcpu) { struct vncr_tlb *vt = vcpu->arch.vncr_tlb; u64 esr = kvm_vcpu_get_esr(vcpu); /* Adjust the fault level to reflect that of the guest's */ esr &= ~ESR_ELx_FSC; esr |= FIELD_PREP(ESR_ELx_FSC, ESR_ELx_FSC_PERM_L(vt->wr.level)); kvm_inject_nested_sync(vcpu, esr); } static bool kvm_vncr_tlb_lookup(struct kvm_vcpu *vcpu) { struct vncr_tlb *vt = vcpu->arch.vncr_tlb; lockdep_assert_held_read(&vcpu->kvm->mmu_lock); if (!vt->valid) return false; if (read_vncr_el2(vcpu) != vt->gva) return false; if (vt->wr.nG) { u64 tcr = vcpu_read_sys_reg(vcpu, TCR_EL2); u64 ttbr = ((tcr & TCR_A1) ? vcpu_read_sys_reg(vcpu, TTBR1_EL2) : vcpu_read_sys_reg(vcpu, TTBR0_EL2)); u16 asid; asid = FIELD_GET(TTBR_ASID_MASK, ttbr); if (!kvm_has_feat_enum(vcpu->kvm, ID_AA64MMFR0_EL1, ASIDBITS, 16) || !(tcr & TCR_ASID16)) asid &= GENMASK(7, 0); return asid != vt->wr.asid; } return true; } int kvm_handle_vncr_abort(struct kvm_vcpu *vcpu) { struct vncr_tlb *vt = vcpu->arch.vncr_tlb; u64 esr = kvm_vcpu_get_esr(vcpu); BUG_ON(!(esr & ESR_ELx_VNCR_SHIFT)); if (esr_fsc_is_permission_fault(esr)) { inject_vncr_perm(vcpu); } else if (esr_fsc_is_translation_fault(esr)) { bool valid; int ret; scoped_guard(read_lock, &vcpu->kvm->mmu_lock) valid = kvm_vncr_tlb_lookup(vcpu); if (!valid) ret = kvm_translate_vncr(vcpu); else ret = -EPERM; switch (ret) { case -EAGAIN: case -ENOMEM: /* Let's try again... */ break; case -EFAULT: case -EINVAL: case -ENOENT: case -EACCES: /* * Translation failed, inject the corresponding * exception back to EL2. */ BUG_ON(!vt->wr.failed); esr &= ~ESR_ELx_FSC; esr |= FIELD_PREP(ESR_ELx_FSC, vt->wr.fst); kvm_inject_nested_sync(vcpu, esr); break; case -EPERM: /* Hack to deal with POE until we get kernel support */ inject_vncr_perm(vcpu); break; case 0: break; } } else { WARN_ONCE(1, "Unhandled VNCR abort, ESR=%llx\n", esr); } return 1; } static void kvm_map_l1_vncr(struct kvm_vcpu *vcpu) { struct vncr_tlb *vt = vcpu->arch.vncr_tlb; pgprot_t prot; guard(preempt)(); guard(read_lock)(&vcpu->kvm->mmu_lock); /* * The request to map VNCR may have raced against some other * event, such as an interrupt, and may not be valid anymore. */ if (is_hyp_ctxt(vcpu)) return; /* * Check that the pseudo-TLB is valid and that VNCR_EL2 still * contains the expected value. If it doesn't, we simply bail out * without a mapping -- a transformed MSR/MRS will generate the * fault and allows us to populate the pseudo-TLB. */ if (!vt->valid) return; if (read_vncr_el2(vcpu) != vt->gva) return; if (vt->wr.nG) { u64 tcr = vcpu_read_sys_reg(vcpu, TCR_EL2); u64 ttbr = ((tcr & TCR_A1) ? vcpu_read_sys_reg(vcpu, TTBR1_EL2) : vcpu_read_sys_reg(vcpu, TTBR0_EL2)); u16 asid; asid = FIELD_GET(TTBR_ASID_MASK, ttbr); if (!kvm_has_feat_enum(vcpu->kvm, ID_AA64MMFR0_EL1, ASIDBITS, 16) || !(tcr & TCR_ASID16)) asid &= GENMASK(7, 0); if (asid != vt->wr.asid) return; } vt->cpu = smp_processor_id(); if (vt->wr.pw && vt->wr.pr) prot = PAGE_KERNEL; else if (vt->wr.pr) prot = PAGE_KERNEL_RO; else prot = PAGE_NONE; /* * We can't map write-only (or no permission at all) in the kernel, * but the guest can do it if using POE, so we'll have to turn a * translation fault into a permission fault at runtime. * FIXME: WO doesn't work at all, need POE support in the kernel. */ if (pgprot_val(prot) != pgprot_val(PAGE_NONE)) { __set_fixmap(vncr_fixmap(vt->cpu), vt->hpa, prot); host_data_set_flag(L1_VNCR_MAPPED); atomic_inc(&vcpu->kvm->arch.vncr_map_count); } } /* * Our emulated CPU doesn't support all the possible features. For the * sake of simplicity (and probably mental sanity), wipe out a number * of feature bits we don't intend to support for the time being. * This list should get updated as new features get added to the NV * support, and new extension to the architecture. */ u64 limit_nv_id_reg(struct kvm *kvm, u32 reg, u64 val) { switch (reg) { case SYS_ID_AA64ISAR0_EL1: /* Support everything but TME */ val &= ~ID_AA64ISAR0_EL1_TME; break; case SYS_ID_AA64ISAR1_EL1: /* Support everything but LS64 and Spec Invalidation */ val &= ~(ID_AA64ISAR1_EL1_LS64 | ID_AA64ISAR1_EL1_SPECRES); break; case SYS_ID_AA64PFR0_EL1: /* No RME, AMU, MPAM, S-EL2, or RAS */ val &= ~(ID_AA64PFR0_EL1_RME | ID_AA64PFR0_EL1_AMU | ID_AA64PFR0_EL1_MPAM | ID_AA64PFR0_EL1_SEL2 | ID_AA64PFR0_EL1_RAS | ID_AA64PFR0_EL1_EL3 | ID_AA64PFR0_EL1_EL2 | ID_AA64PFR0_EL1_EL1 | ID_AA64PFR0_EL1_EL0); /* 64bit only at any EL */ val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, EL0, IMP); val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, EL1, IMP); val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, EL2, IMP); val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, EL3, IMP); break; case SYS_ID_AA64PFR1_EL1: /* Only support BTI, SSBS, CSV2_frac */ val &= (ID_AA64PFR1_EL1_BT | ID_AA64PFR1_EL1_SSBS | ID_AA64PFR1_EL1_CSV2_frac); break; case SYS_ID_AA64MMFR0_EL1: /* Hide ExS, Secure Memory */ val &= ~(ID_AA64MMFR0_EL1_EXS | ID_AA64MMFR0_EL1_TGRAN4_2 | ID_AA64MMFR0_EL1_TGRAN16_2 | ID_AA64MMFR0_EL1_TGRAN64_2 | ID_AA64MMFR0_EL1_SNSMEM); /* Hide CNTPOFF if present */ val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64MMFR0_EL1, ECV, IMP); /* Disallow unsupported S2 page sizes */ switch (PAGE_SIZE) { case SZ_64K: val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN16_2, NI); fallthrough; case SZ_16K: val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN4_2, NI); fallthrough; case SZ_4K: /* Support everything */ break; } /* * Since we can't support a guest S2 page size smaller * than the host's own page size (due to KVM only * populating its own S2 using the kernel's page * size), advertise the limitation using FEAT_GTG. */ switch (PAGE_SIZE) { case SZ_4K: val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN4_2, IMP); fallthrough; case SZ_16K: val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN16_2, IMP); fallthrough; case SZ_64K: val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN64_2, IMP); break; } /* Cap PARange to 48bits */ val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64MMFR0_EL1, PARANGE, 48); break; case SYS_ID_AA64MMFR1_EL1: val &= (ID_AA64MMFR1_EL1_HCX | ID_AA64MMFR1_EL1_PAN | ID_AA64MMFR1_EL1_LO | ID_AA64MMFR1_EL1_HPDS | ID_AA64MMFR1_EL1_VH | ID_AA64MMFR1_EL1_VMIDBits); /* FEAT_E2H0 implies no VHE */ if (test_bit(KVM_ARM_VCPU_HAS_EL2_E2H0, kvm->arch.vcpu_features)) val &= ~ID_AA64MMFR1_EL1_VH; break; case SYS_ID_AA64MMFR2_EL1: val &= ~(ID_AA64MMFR2_EL1_BBM | ID_AA64MMFR2_EL1_TTL | GENMASK_ULL(47, 44) | ID_AA64MMFR2_EL1_ST | ID_AA64MMFR2_EL1_CCIDX | ID_AA64MMFR2_EL1_VARange); /* Force TTL support */ val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR2_EL1, TTL, IMP); break; case SYS_ID_AA64MMFR4_EL1: /* * You get EITHER * * - FEAT_VHE without FEAT_E2H0 * - FEAT_NV limited to FEAT_NV2 * - HCR_EL2.NV1 being RES0 * * OR * * - FEAT_E2H0 without FEAT_VHE nor FEAT_NV * * Life is too short for anything else. */ if (test_bit(KVM_ARM_VCPU_HAS_EL2_E2H0, kvm->arch.vcpu_features)) { val = 0; } else { val = SYS_FIELD_PREP_ENUM(ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY); val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR4_EL1, E2H0, NI_NV1); } break; case SYS_ID_AA64DFR0_EL1: /* Only limited support for PMU, Debug, BPs, WPs, and HPMN0 */ val &= (ID_AA64DFR0_EL1_PMUVer | ID_AA64DFR0_EL1_WRPs | ID_AA64DFR0_EL1_BRPs | ID_AA64DFR0_EL1_DebugVer| ID_AA64DFR0_EL1_HPMN0); /* Cap Debug to ARMv8.1 */ val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, VHE); break; } return val; } u64 kvm_vcpu_apply_reg_masks(const struct kvm_vcpu *vcpu, enum vcpu_sysreg sr, u64 v) { struct kvm_sysreg_masks *masks; masks = vcpu->kvm->arch.sysreg_masks; if (masks) { sr -= __SANITISED_REG_START__; v &= ~masks->mask[sr].res0; v |= masks->mask[sr].res1; } return v; } static __always_inline void set_sysreg_masks(struct kvm *kvm, int sr, u64 res0, u64 res1) { int i = sr - __SANITISED_REG_START__; BUILD_BUG_ON(!__builtin_constant_p(sr)); BUILD_BUG_ON(sr < __SANITISED_REG_START__); BUILD_BUG_ON(sr >= NR_SYS_REGS); kvm->arch.sysreg_masks->mask[i].res0 = res0; kvm->arch.sysreg_masks->mask[i].res1 = res1; } int kvm_init_nv_sysregs(struct kvm_vcpu *vcpu) { struct kvm *kvm = vcpu->kvm; u64 res0, res1; lockdep_assert_held(&kvm->arch.config_lock); if (kvm->arch.sysreg_masks) goto out; kvm->arch.sysreg_masks = kzalloc(sizeof(*(kvm->arch.sysreg_masks)), GFP_KERNEL_ACCOUNT); if (!kvm->arch.sysreg_masks) return -ENOMEM; /* VTTBR_EL2 */ res0 = res1 = 0; if (!kvm_has_feat_enum(kvm, ID_AA64MMFR1_EL1, VMIDBits, 16)) res0 |= GENMASK(63, 56); if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, CnP, IMP)) res0 |= VTTBR_CNP_BIT; set_sysreg_masks(kvm, VTTBR_EL2, res0, res1); /* VTCR_EL2 */ res0 = GENMASK(63, 32) | GENMASK(30, 20); res1 = BIT(31); set_sysreg_masks(kvm, VTCR_EL2, res0, res1); /* VMPIDR_EL2 */ res0 = GENMASK(63, 40) | GENMASK(30, 24); res1 = BIT(31); set_sysreg_masks(kvm, VMPIDR_EL2, res0, res1); /* HCR_EL2 */ get_reg_fixed_bits(kvm, HCR_EL2, &res0, &res1); set_sysreg_masks(kvm, HCR_EL2, res0, res1); /* HCRX_EL2 */ get_reg_fixed_bits(kvm, HCRX_EL2, &res0, &res1); set_sysreg_masks(kvm, HCRX_EL2, res0, res1); /* HFG[RW]TR_EL2 */ get_reg_fixed_bits(kvm, HFGRTR_EL2, &res0, &res1); set_sysreg_masks(kvm, HFGRTR_EL2, res0, res1); get_reg_fixed_bits(kvm, HFGWTR_EL2, &res0, &res1); set_sysreg_masks(kvm, HFGWTR_EL2, res0, res1); /* HDFG[RW]TR_EL2 */ get_reg_fixed_bits(kvm, HDFGRTR_EL2, &res0, &res1); set_sysreg_masks(kvm, HDFGRTR_EL2, res0, res1); get_reg_fixed_bits(kvm, HDFGWTR_EL2, &res0, &res1); set_sysreg_masks(kvm, HDFGWTR_EL2, res0, res1); /* HFGITR_EL2 */ get_reg_fixed_bits(kvm, HFGITR_EL2, &res0, &res1); set_sysreg_masks(kvm, HFGITR_EL2, res0, res1); /* HAFGRTR_EL2 - not a lot to see here */ get_reg_fixed_bits(kvm, HAFGRTR_EL2, &res0, &res1); set_sysreg_masks(kvm, HAFGRTR_EL2, res0, res1); /* HFG[RW]TR2_EL2 */ get_reg_fixed_bits(kvm, HFGRTR2_EL2, &res0, &res1); set_sysreg_masks(kvm, HFGRTR2_EL2, res0, res1); get_reg_fixed_bits(kvm, HFGWTR2_EL2, &res0, &res1); set_sysreg_masks(kvm, HFGWTR2_EL2, res0, res1); /* HDFG[RW]TR2_EL2 */ get_reg_fixed_bits(kvm, HDFGRTR2_EL2, &res0, &res1); set_sysreg_masks(kvm, HDFGRTR2_EL2, res0, res1); get_reg_fixed_bits(kvm, HDFGWTR2_EL2, &res0, &res1); set_sysreg_masks(kvm, HDFGWTR2_EL2, res0, res1); /* HFGITR2_EL2 */ get_reg_fixed_bits(kvm, HFGITR2_EL2, &res0, &res1); set_sysreg_masks(kvm, HFGITR2_EL2, res0, res1); /* TCR2_EL2 */ res0 = TCR2_EL2_RES0; res1 = TCR2_EL2_RES1; if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, D128, IMP)) res0 |= (TCR2_EL2_DisCH0 | TCR2_EL2_DisCH1 | TCR2_EL2_D128); if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, MEC, IMP)) res0 |= TCR2_EL2_AMEC1 | TCR2_EL2_AMEC0; if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, HAFDBS, HAFT)) res0 |= TCR2_EL2_HAFT; if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, THE, IMP)) res0 |= TCR2_EL2_PTTWI | TCR2_EL2_PnCH; if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, AIE, IMP)) res0 |= TCR2_EL2_AIE; if (!kvm_has_s1poe(kvm)) res0 |= TCR2_EL2_POE | TCR2_EL2_E0POE; if (!kvm_has_s1pie(kvm)) res0 |= TCR2_EL2_PIE; if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, VH, IMP)) res0 |= (TCR2_EL2_E0POE | TCR2_EL2_D128 | TCR2_EL2_AMEC1 | TCR2_EL2_DisCH0 | TCR2_EL2_DisCH1); set_sysreg_masks(kvm, TCR2_EL2, res0, res1); /* SCTLR_EL1 */ res0 = SCTLR_EL1_RES0; res1 = SCTLR_EL1_RES1; if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, PAN, PAN3)) res0 |= SCTLR_EL1_EPAN; set_sysreg_masks(kvm, SCTLR_EL1, res0, res1); /* MDCR_EL2 */ res0 = MDCR_EL2_RES0; res1 = MDCR_EL2_RES1; if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, IMP)) res0 |= (MDCR_EL2_HPMN | MDCR_EL2_TPMCR | MDCR_EL2_TPM | MDCR_EL2_HPME); if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSVer, IMP)) res0 |= MDCR_EL2_E2PB | MDCR_EL2_TPMS; if (!kvm_has_feat(kvm, ID_AA64DFR1_EL1, SPMU, IMP)) res0 |= MDCR_EL2_EnSPM; if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, V3P1)) res0 |= MDCR_EL2_HPMD; if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceFilt, IMP)) res0 |= MDCR_EL2_TTRF; if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, V3P5)) res0 |= MDCR_EL2_HCCD | MDCR_EL2_HLP; if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceBuffer, IMP)) res0 |= MDCR_EL2_E2TB; if (!kvm_has_feat(kvm, ID_AA64MMFR0_EL1, FGT, IMP)) res0 |= MDCR_EL2_TDCC; if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, MTPMU, IMP) || kvm_has_feat(kvm, ID_AA64PFR0_EL1, EL3, IMP)) res0 |= MDCR_EL2_MTPME; if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, V3P7)) res0 |= MDCR_EL2_HPMFZO; if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSS, IMP)) res0 |= MDCR_EL2_PMSSE; if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSVer, V1P2)) res0 |= MDCR_EL2_HPMFZS; if (!kvm_has_feat(kvm, ID_AA64DFR1_EL1, EBEP, IMP)) res0 |= MDCR_EL2_PMEE; if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, DebugVer, V8P9)) res0 |= MDCR_EL2_EBWE; if (!kvm_has_feat(kvm, ID_AA64DFR2_EL1, STEP, IMP)) res0 |= MDCR_EL2_EnSTEPOP; set_sysreg_masks(kvm, MDCR_EL2, res0, res1); /* CNTHCTL_EL2 */ res0 = GENMASK(63, 20); res1 = 0; if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RME, IMP)) res0 |= CNTHCTL_CNTPMASK | CNTHCTL_CNTVMASK; if (!kvm_has_feat(kvm, ID_AA64MMFR0_EL1, ECV, CNTPOFF)) { res0 |= CNTHCTL_ECV; if (!kvm_has_feat(kvm, ID_AA64MMFR0_EL1, ECV, IMP)) res0 |= (CNTHCTL_EL1TVT | CNTHCTL_EL1TVCT | CNTHCTL_EL1NVPCT | CNTHCTL_EL1NVVCT); } if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, VH, IMP)) res0 |= GENMASK(11, 8); set_sysreg_masks(kvm, CNTHCTL_EL2, res0, res1); /* ICH_HCR_EL2 */ res0 = ICH_HCR_EL2_RES0; res1 = ICH_HCR_EL2_RES1; if (!(kvm_vgic_global_state.ich_vtr_el2 & ICH_VTR_EL2_TDS)) res0 |= ICH_HCR_EL2_TDIR; /* No GICv4 is presented to the guest */ res0 |= ICH_HCR_EL2_DVIM | ICH_HCR_EL2_vSGIEOICount; set_sysreg_masks(kvm, ICH_HCR_EL2, res0, res1); /* VNCR_EL2 */ set_sysreg_masks(kvm, VNCR_EL2, VNCR_EL2_RES0, VNCR_EL2_RES1); out: for (enum vcpu_sysreg sr = __SANITISED_REG_START__; sr < NR_SYS_REGS; sr++) (void)__vcpu_sys_reg(vcpu, sr); return 0; } void check_nested_vcpu_requests(struct kvm_vcpu *vcpu) { if (kvm_check_request(KVM_REQ_NESTED_S2_UNMAP, vcpu)) { struct kvm_s2_mmu *mmu = vcpu->arch.hw_mmu; write_lock(&vcpu->kvm->mmu_lock); if (mmu->pending_unmap) { kvm_stage2_unmap_range(mmu, 0, kvm_phys_size(mmu), true); mmu->pending_unmap = false; } write_unlock(&vcpu->kvm->mmu_lock); } if (kvm_check_request(KVM_REQ_MAP_L1_VNCR_EL2, vcpu)) kvm_map_l1_vncr(vcpu); /* Must be last, as may switch context! */ if (kvm_check_request(KVM_REQ_GUEST_HYP_IRQ_PENDING, vcpu)) kvm_inject_nested_irq(vcpu); }