Age | Commit message (Collapse) | Author |
|
to 'large PEBS'
The 'freerunning PEBS' and 'large PEBS' are the same thing. Both of these
names appear in the code and in the API, which causes confusion.
Rename 'freerunning PEBS' to 'large PEBS' to unify the code,
which eliminates the confusion.
No functional change.
Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1520865937-22910-1-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
With the following commit:
333522447063 ("jump_label: Explicitly disable jump labels in __init code")
... we explicitly disabled jump labels in __init code, so they could be
detected and not warned about in the following commit:
dc1dd184c2f0 ("jump_label: Warn on failed jump_label patching attempt")
In-kernel __exit code has the same issue. It's never used, so it's
freed along with the rest of initmem. But jump label entries in __exit
code aren't explicitly disabled, so we get the following warning when
enabling pr_debug() in __exit code:
can't patch jump_label at dmi_sysfs_exit+0x0/0x2d
WARNING: CPU: 0 PID: 22572 at kernel/jump_label.c:376 __jump_label_update+0x9d/0xb0
Fix the warning by disabling all jump labels in initmem (which includes
both __init and __exit code).
Reported-and-tested-by: Li Wang <liwang@redhat.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Jason Baron <jbaron@akamai.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: dc1dd184c2f0 ("jump_label: Warn on failed jump_label patching attempt")
Link: http://lkml.kernel.org/r/7121e6e595374f06616c505b6e690e275c0054d1.1521483452.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Adding a filter constraint for Intel Skylake CHA event
UNC_CHA_UPI_CREDITS_ACQUIRED (0x38).
The event supports core-id/thread-id and link filtering.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/1520869294-14176-1-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
We intended to clear the lowest 6 bits but because of a type bug we
clear the high 32 bits as well. Andi says that periods are rarely more
than U32_MAX so this bug probably doesn't have a huge runtime impact.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Fixes: 294fe0f52a44 ("perf/x86/intel: Add INST_RETIRED.ALL workarounds")
Link: http://lkml.kernel.org/r/20180317115216.GB4035@mwanda
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Userspace RDPMC cannot possibly work for large PEBS, which was introduced in:
b8241d20699e ("perf/x86/intel: Implement batched PEBS interrupt handling (large PEBS interrupt threshold)")
When the PEBS interrupt threshold is larger than one, there is no way
to get exact auto-reload times and value for userspace RDPMC. Disable
the userspace RDPMC usage when large PEBS is enabled.
The only exception is when the PEBS interrupt threshold is 1, in which
case user-space RDPMC works well even with auto-reload events.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Fixes: b8241d20699e ("perf/x86/intel: Implement batched PEBS interrupt handling (large PEBS interrupt threshold)")
Link: http://lkml.kernel.org/r/1518474035-21006-6-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
(cherry picked from commit 1af22eba248efe2de25658041a80a3d40fb3e92e)
|
|
Since we fixed hash_64() to not suck there is no need to play games to
attempt to improve the hash value on 64-bit.
Also, since we don't use the bit value for the variables, use hash_ptr()
directly.
No change in functionality.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: George Spelvin <linux@sciencehorizons.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
There are no users left (everyone got converted to wait_var_event()), remove it.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
wait_var_event() API
The old wait_on_atomic_t() is going to get removed, use the more
flexible wait_var_event() API instead.
And while there, fix a bug and add the missing wakeup...
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
wait_var_event() API
The old wait_on_atomic_t() is going to get removed, use the more
flexible wait_var_event() API instead.
No change in functionality.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
wait_var_event() API
The old wait_on_atomic_t() is going to get removed, use the more
flexible wait_var_event() API instead.
No change in functionality.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Anna Schumaker <anna.schumaker@netapp.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
wait_var_event() API
The old wait_on_atomic_t() is going to get removed, use the more
flexible wait_var_event() API instead.
No change in functionality.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
wait_var_event() API
The old wait_on_atomic_t() is going to get removed, use the more
flexible wait_var_event() API instead.
No change in functionality.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: David Sterba <dsterba@suse.com>
Cc: Chris Mason <clm@fb.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
wait_var_event() API
The old wait_on_atomic_t() is going to get removed, use the more
flexible wait_var_event() API instead.
No change in functionality.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
wait_var_event() API
The old wait_on_atomic_t() is going to get removed, use the more
flexible wait_var_event() API instead.
Unlike wake_up_atomic_t(), wake_up_var() will issue the wakeup
even if the variable is not 0.
No change in functionality.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stanimir Varbanov <stanimir.varbanov@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
wait_var_event() API
The old wait_on_atomic_t() is going to get removed, use the more
flexible wait_var_event() API instead.
Unlike wake_up_atomic_t(), wake_up_var() will issue the wakeup
even if the variable is not 0.
No change in functionality.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Daniel Vetter <daniel.vetter@intel.com>
Cc: David Airlie <airlied@linux.ie>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
As a replacement for the wait_on_atomic_t() API provide the
wait_var_event() API.
The wait_var_event() API is based on the very same hashed-waitqueue
idea, but doesn't care about the type (atomic_t) or the specific
condition (atomic_read() == 0). IOW. it's much more widely
applicable/flexible.
It shares all the benefits/disadvantages of a hashed-waitqueue
approach with the existing wait_on_atomic_t/wait_on_bit() APIs.
The API is modeled after the existing wait_event() API, but instead of
taking a wait_queue_head, it takes an address. This addresses is
hashed to obtain a wait_queue_head from the bit_wait_table.
Similar to the wait_event() API, it takes a condition expression as
second argument and will wait until this expression becomes true.
The following are (mostly) identical replacements:
wait_on_atomic_t(&my_atomic, atomic_t_wait, TASK_UNINTERRUPTIBLE);
wake_up_atomic_t(&my_atomic);
wait_var_event(&my_atomic, !atomic_read(&my_atomic));
wake_up_var(&my_atomic);
The only difference is that wake_up_var() is an unconditional wakeup
and doesn't check the previously hard-coded (atomic_read() == 0)
condition here. This is of little concequence, since most callers are
already conditional on atomic_dec_and_test() and the ones that are
not, are trivial to make so.
Tested-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The estimated utilization of a task is currently updated every time the
task is dequeued. However, to keep overheads under control, PELT signals
are effectively updated at maximum once every 1ms.
Thus, for really short running tasks, it can happen that their util_avg
value has not been updates since their last enqueue. If such tasks are
also frequently running tasks (e.g. the kind of workload generated by
hackbench) it can also happen that their util_avg is updated only every
few activations.
This means that updating util_est at every dequeue potentially introduces
not necessary overheads and it's also conceptually wrong if the util_avg
signal has never been updated during a task activation.
Let's introduce a throttling mechanism on task's util_est updates
to sync them with util_avg updates. To make the solution memory
efficient, both in terms of space and load/store operations, we encode a
synchronization flag into the LSB of util_est.enqueued.
This makes util_est an even values only metric, which is still
considered good enough for its purpose.
The synchronization bit is (re)set by __update_load_avg_se() once the
PELT signal of a task has been updated during its last activation.
Such a throttling mechanism allows to keep under control util_est
overheads in the wakeup hot path, thus making it a suitable mechanism
which can be enabled also on high-intensity workload systems.
Thus, this now switches on by default the estimation utilization
scheduler feature.
Suggested-by: Chris Redpath <chris.redpath@arm.com>
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@android.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: http://lkml.kernel.org/r/20180309095245.11071-5-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
When schedutil looks at the CPU utilization, the current PELT value for
that CPU is returned straight away. In certain scenarios this can have
undesired side effects and delays on frequency selection.
For example, since the task utilization is decayed at wakeup time, a
long sleeping big task newly enqueued does not add immediately a
significant contribution to the target CPU. This introduces some latency
before schedutil will be able to detect the best frequency required by
that task.
Moreover, the PELT signal build-up time is a function of the current
frequency, because of the scale invariant load tracking support. Thus,
starting from a lower frequency, the utilization build-up time will
increase even more and further delays the selection of the actual
frequency which better serves the task requirements.
In order to reduce these kind of latencies, we integrate the usage
of the CPU's estimated utilization in the sugov_get_util function.
This allows to properly consider the expected utilization of a CPU which,
for example, has just got a big task running after a long sleep period.
Ultimately this allows to select the best frequency to run a task
right after its wake-up.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steve Muckle <smuckle@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@android.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: http://lkml.kernel.org/r/20180309095245.11071-4-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
When the scheduler looks at the CPU utilization, the current PELT value
for a CPU is returned straight away. In certain scenarios this can have
undesired side effects on task placement.
For example, since the task utilization is decayed at wakeup time, when
a long sleeping big task is enqueued it does not add immediately a
significant contribution to the target CPU.
As a result we generate a race condition where other tasks can be placed
on the same CPU while it is still considered relatively empty.
In order to reduce this kind of race conditions, this patch introduces the
required support to integrate the usage of the CPU's estimated utilization
in the wakeup path, via cpu_util_wake(), as well as in the load-balance
path, via cpu_util() which is used by update_sg_lb_stats().
The estimated utilization of a CPU is defined to be the maximum between
its PELT's utilization and the sum of the estimated utilization (at
previous dequeue time) of all the tasks currently RUNNABLE on that CPU.
This allows to properly represent the spare capacity of a CPU which, for
example, has just got a big task running since a long sleep period.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@android.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: http://lkml.kernel.org/r/20180309095245.11071-3-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The util_avg signal computed by PELT is too variable for some use-cases.
For example, a big task waking up after a long sleep period will have its
utilization almost completely decayed. This introduces some latency before
schedutil will be able to pick the best frequency to run a task.
The same issue can affect task placement. Indeed, since the task
utilization is already decayed at wakeup, when the task is enqueued in a
CPU, this can result in a CPU running a big task as being temporarily
represented as being almost empty. This leads to a race condition where
other tasks can be potentially allocated on a CPU which just started to run
a big task which slept for a relatively long period.
Moreover, the PELT utilization of a task can be updated every [ms], thus
making it a continuously changing value for certain longer running
tasks. This means that the instantaneous PELT utilization of a RUNNING
task is not really meaningful to properly support scheduler decisions.
For all these reasons, a more stable signal can do a better job of
representing the expected/estimated utilization of a task/cfs_rq.
Such a signal can be easily created on top of PELT by still using it as
an estimator which produces values to be aggregated on meaningful
events.
This patch adds a simple implementation of util_est, a new signal built on
top of PELT's util_avg where:
util_est(task) = max(task::util_avg, f(task::util_avg@dequeue))
This allows to remember how big a task has been reported by PELT in its
previous activations via f(task::util_avg@dequeue), which is the new
_task_util_est(struct task_struct*) function added by this patch.
If a task should change its behavior and it runs longer in a new
activation, after a certain time its util_est will just track the
original PELT signal (i.e. task::util_avg).
The estimated utilization of cfs_rq is defined only for root ones.
That's because the only sensible consumer of this signal are the
scheduler and schedutil when looking for the overall CPU utilization
due to FAIR tasks.
For this reason, the estimated utilization of a root cfs_rq is simply
defined as:
util_est(cfs_rq) = max(cfs_rq::util_avg, cfs_rq::util_est::enqueued)
where:
cfs_rq::util_est::enqueued = sum(_task_util_est(task))
for each RUNNABLE task on that root cfs_rq
It's worth noting that the estimated utilization is tracked only for
objects of interests, specifically:
- Tasks: to better support tasks placement decisions
- root cfs_rqs: to better support both tasks placement decisions as
well as frequencies selection
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@android.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: http://lkml.kernel.org/r/20180309095245.11071-2-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
On Wed, Mar 14, 2018 at 01:56:31PM -0700, Andrew Morton wrote:
> My memory is weak and our documentation is awful. What does
> mutex_lock_killable() actually do and how does it differ from
> mutex_lock_interruptible()?
Add kernel-doc for mutex_lock_killable() and mutex_lock_io(). Reword the
kernel-doc for mutex_lock_interruptible().
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mauro Carvalho Chehab <mchehab@kernel.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: cl@linux.com
Cc: tj@kernel.org
Link: http://lkml.kernel.org/r/20180315115812.GA9949@bombadil.infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Since the x86-64 kernel must be aligned to 2MB, refuse to boot the
kernel if the alignment of the LOAD segment isn't a multiple of 2MB.
Signed-off-by: H.J. Lu <hjl.tools@gmail.com>
Cc: Andy Shevchenko <andy.shevchenko@gmail.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/CAMe9rOrR7xSJgUfiCoZLuqWUwymRxXPoGBW38%2BpN%3D9g%2ByKNhZw@mail.gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Binutils 2.31 will enable -z separate-code by default for x86 to avoid
mixing code pages with data to improve cache performance as well as
security. To reduce x86-64 executable and shared object sizes, the
maximum page size is reduced from 2MB to 4KB. But x86-64 kernel must
be aligned to 2MB. Pass -z max-page-size=0x200000 to linker to force
2MB page size regardless of the default page size used by linker.
Tested with Linux kernel 4.15.6 on x86-64.
Signed-off-by: H.J. Lu <hjl.tools@gmail.com>
Cc: Andy Shevchenko <andy.shevchenko@gmail.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/CAMe9rOp4_%3D_8twdpTyAP2DhONOCeaTOsniJLoppzhoNptL8xzA@mail.gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
iscsi tcp will first send out data, then calculate and send data
digest. If we don't have BDI_CAP_STABLE_WRITES, the page cache will be
written in spite of the on going writeback. Consequently, wrong digest
will be got and sent to target.
To fix this, set BDI_CAP_STABLE_WRITES when data digest is enabled
in iscsi_tcp .slave_configure callback.
Signed-off-by: Jianchao Wang <jianchao.w.wang@oracle.com>
Acked-by: Chris Leech <cleech@redhat.com>
Acked-by: Lee Duncan <lduncan@suse.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
The USB storage glue sets the try_rc_10_first flag in an attempt to
avoid wedging poorly implemented legacy USB devices.
If the device capacity is too large to be expressed in the provided
response buffer field of READ CAPACITY(10), a well-behaved device will
set the reported capacity to 0xFFFFFFFF. We will then attempt to issue a
READ CAPACITY(16) to obtain the real capacity.
Since this part of the discovery logic is not covered by the first_scan
flag, a warning will be printed a couple of times times per revalidate
attempt if we upgrade from READ CAPACITY(10) to READ CAPACITY(16).
Remember that we have successfully issued READ CAPACITY(16) so we can
take the fast path on subsequent revalidate attempts.
Reported-by: Menion <menion@gmail.com>
Reviewed-by: Laurence Oberman <loberman@redhat.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
through the devicetree.
When the label is empty, it causes missing information and limits diagnostics
for instances such as 'cat /sys/kernel/debug/gpio'
Setting the label to the regulator supply_name will point to the device
using the gpio(s).
Signed-off-by: Nicholas Lowell <nlowell@lexmark.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
|
|
Grygorii Strashko says:
====================
net: phy: relax error checking when creating sysfs link netdev->phydev
Some ethernet drivers (like TI CPSW) may connect and manage >1 Net PHYs per
one netdevice, as result such drivers will produce warning during system
boot and fail to connect second phy to netdevice when PHYLIB framework
will try to create sysfs link netdev->phydev for second PHY
in phy_attach_direct(), because sysfs link with the same name has been
created already for the first PHY.
As result, second CPSW external port will became unusable.
This regression was introduced by commits:
5568363f0cb3 ("net: phy: Create sysfs reciprocal links for attached_dev/phydev"
a3995460491d ("net: phy: Relax error checking on sysfs_create_link()"
Patch 1: exports sysfs_create_link_nowarn() function as preparation for Patch 2.
Patch 2: relaxes error checking when PHYLIB framework is creating sysfs
link netdev->phydev in phy_attach_direct(), suppresses warning by using
sysfs_create_link_nowarn() and adds error message instead, so links creation
failure is not fatal any more and system can continue working,
which fixes TI CPSW issue and makes boot logs accessible
in case of NFS boot, for example.
This can be stable material 4.13+.
Changes in v2:
- commit messages updated.
v1:
https://patchwork.ozlabs.org/cover/886058/
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Some ethernet drivers (like TI CPSW) may connect and manage >1 Net PHYs per
one netdevice, as result such drivers will produce warning during system
boot and fail to connect second phy to netdevice when PHYLIB framework
will try to create sysfs link netdev->phydev for second PHY
in phy_attach_direct(), because sysfs link with the same name has been
created already for the first PHY. As result, second CPSW external
port will became unusable.
Fix it by relaxing error checking when PHYLIB framework is creating sysfs
link netdev->phydev in phy_attach_direct(), suppressing warning by using
sysfs_create_link_nowarn() and adding error message instead.
After this change links (phy->netdev and netdev->phy) creation failure is not
fatal any more and system can continue working, which fixes TI CPSW issue.
Cc: Florian Fainelli <f.fainelli@gmail.com>
Cc: Andrew Lunn <andrew@lunn.ch>
Fixes: a3995460491d ("net: phy: Relax error checking on sysfs_create_link()")
Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The sysfs_create_link_nowarn() is going to be used in phylib framework in
subsequent patch which can be built as module. Hence, export
sysfs_create_link_nowarn() to avoid build errors.
Cc: Florian Fainelli <f.fainelli@gmail.com>
Cc: Andrew Lunn <andrew@lunn.ch>
Fixes: a3995460491d ("net: phy: Relax error checking on sysfs_create_link()")
Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Use enum dma_transfer_direction as required by dmaengine_prep_slave_sg
instead of enum dma_data_direction. This won't change behavior in
practice as the enum values are equivalent.
This fixes two warnings when building with clang:
drivers/spi/spi-rspi.c:538:26: warning: implicit conversion from enumeration
type 'enum dma_data_direction' to different enumeration type
'enum dma_transfer_direction' [-Wenum-conversion]
rx->sgl, rx->nents, DMA_FROM_DEVICE,
^~~~~~~~~~~~~~~
drivers/spi/spi-rspi.c:558:26: warning: implicit conversion from enumeration
type 'enum dma_data_direction' to different enumeration type
'enum dma_transfer_direction' [-Wenum-conversion]
tx->sgl, tx->nents, DMA_TO_DEVICE,
^~~~~~~~~~~~~
Signed-off-by: Stefan Agner <stefan@agner.ch>
Signed-off-by: Mark Brown <broonie@kernel.org>
|
|
If bios sets up an MST output and hardware state readout code sees this is
an SST configuration, when disabling the encoder we end up calling
->post_disable_dp() hook instead of the MST version. Consequently, we write
to the DP_SET_POWER dpcd to set it D3 state. Further along when we try
enable the encoder in MST mode, POWER_UP_PHY transaction fails to power up
the MST hub. This results in continuous link training failures which keep
the system busy delaying boot. We could identify bios MST boot discrepancy
and handle it accordingly but a simple way to solve this is to write to the
DP_SET_POWER dpcd for MST too.
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=105470
Cc: Ville Syrjälä <ville.syrjala@linux.intel.com>
Cc: Jani Nikula <jani.nikula@intel.com>
Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Reported-by: Laura Abbott <labbott@redhat.com>
Cc: stable@vger.kernel.org
Fixes: 5ea2355a100a ("drm/i915/mst: Use MST sideband message transactions for dpms control")
Tested-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Dhinakaran Pandiyan <dhinakaran.pandiyan@intel.com>
Signed-off-by: Jani Nikula <jani.nikula@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20180314054825.1718-1-dhinakaran.pandiyan@intel.com
(cherry picked from commit ad260ab32a4d94fa974f58262f8000472d34fd5b)
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup fixes from Tejun Heo:
"Two commits to fix the following subtle cgroup2 behavior bugs:
- cpu.max was rejecting config when it shouldn't
- thread mode enable was allowed when it shouldn't"
* 'for-4.16-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: fix rule checking for threaded mode switching
sched, cgroup: Don't reject lower cpu.max on ancestors
|
|
The resource allocation in WDAT watchdog has off-one-by error, it sets
one byte more than the actual end address. This may eventually lead
to unexpected resource conflicts.
Fixes: 058dfc767008 (ACPI / watchdog: Add support for WDAT hardware watchdog)
Cc: 4.9+ <stable@vger.kernel.org> # 4.9+
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Acked-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Acked-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
Pull workqueue fixes from Tejun Heo:
"Two low-impact workqueue commits.
One fixes workqueue creation error path and the other removes the
unused cancel_work()"
* 'for-4.16-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
workqueue: remove unused cancel_work()
workqueue: use put_device() instead of kfree()
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu
Pull percpu fixes from Tejun Heo:
"Late percpu pull request for v4.16-rc6.
- percpu allocator pool replenishing no longer triggers OOM or
warning messages.
Also, the alloc interface now understands __GFP_NORETRY and
__GFP_NOWARN. This is to allow avoiding OOMs from userland
triggered actions like bpf map creation.
Also added cond_resched() in alloc loop.
- perpcu allocation now can be interrupted by kill sigs to avoid
deadlocking OOM killer.
- Added Dennis Zhou as a co-maintainer.
He has rewritten the area map allocator, understands most of the
code base and has been responsive for all bug reports"
* 'for-4.16-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu:
percpu_ref: Update doc to dissuade users from depending on internal RCU grace periods
mm: Allow to kill tasks doing pcpu_alloc() and waiting for pcpu_balance_workfn()
percpu: include linux/sched.h for cond_resched()
percpu: add a schedule point in pcpu_balance_workfn()
percpu: allow select gfp to be passed to underlying allocators
percpu: add __GFP_NORETRY semantics to the percpu balancing path
percpu: match chunk allocator declarations with definitions
percpu: add Dennis Zhou as a percpu co-maintainer
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tj/libata
Pull libata fixes from Tejun Heo:
"I sat on them too long and it's quite a few this late, but nothing has
a wide blast area. The changes are...
- Fix corner cases in SG command handling.
- Recent introduction of default powersaving mode config option
exposed several devices with broken powersaving behaviors. A number
of patches to update the blacklist accordingly.
- Fix a kernel panic on SAS hotplug.
- Other misc and device specific updates"
* 'for-4.16-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/libata:
libata: Modify quirks for MX100 to limit NCQ_TRIM quirk to MU01 version
libata: Make Crucial BX100 500GB LPM quirk apply to all firmware versions
libata: Apply NOLPM quirk to Crucial M500 480 and 960GB SSDs
libata: Enable queued TRIM for Samsung SSD 860
PCI: Add function 1 DMA alias quirk for Highpoint RocketRAID 644L
ahci: Add PCI-id for the Highpoint Rocketraid 644L card
ata: do not schedule hot plug if it is a sas host
libata: disable LPM for Crucial BX100 SSD 500GB drive
libata: Apply NOLPM quirk to Crucial MX100 512GB SSDs
libata: update documentation for sysfs interfaces
ata: sata_rcar: Remove unused variable in sata_rcar_init_controller()
libata: transport: cleanup documentation of sysfs interface
sata_rcar: Reset SATA PHY when Salvator-X board resumes
libata: don't try to pass through NCQ commands to non-NCQ devices
libata: remove WARN() for DMA or PIO command without data
libata: fix length validation of ATAPI-relayed SCSI commands
ata: libahci: fix comment indentation
ahci: Add check for device presence (PCIe hot unplug) in ahci_stop_engine()
libata: Fix compile warning with ATA_DEBUG enabled
|
|
Now that we have the guarantee that we will have only a single YUV plane,
actually support them. The way it works is not really straightforward,
since we first need to enable the YUV mode in the plane that we want to
setup, and then we have a few registers to setup the YUV buffer and
parameters.
We also need to setup the color correction to actually have something
displayed.
Reviewed-by: Chen-Yu Tsai <wens@csie.org>
Signed-off-by: Maxime Ripard <maxime.ripard@bootlin.com>
Link: https://patchwork.freedesktop.org/patch/msgid/66088c1398bd3189123f28a89a7ccc669fe9f296.1519931807.git-series.maxime.ripard@bootlin.com
|
|
We had some reports of panics in nfsd4_lm_notify, and that showed a
nfs4_lockowner that had outlived its so_client.
Ensure that we walk any leftover lockowners after tearing down all of
the stateids, and remove any blocked locks that they hold.
With this change, we also don't need to walk the nbl_lru on nfsd_net
shutdown, as that will happen naturally when we tear down the clients.
Fixes: 76d348fadff5 (nfsd: have nfsd4_lock use blocking locks for v4.1+ locks)
Reported-by: Frank Sorenson <fsorenso@redhat.com>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Cc: stable@vger.kernel.org # 4.9
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
|
|
John Fastabend says:
====================
This series adds a BPF hook for sendmsg and senfile by using
the ULP infrastructure and sockmap. A simple pseudocode example
would be,
// load the programs
bpf_prog_load(SOCKMAP_TCP_MSG_PROG, BPF_PROG_TYPE_SK_MSG,
&obj, &msg_prog);
// lookup the sockmap
bpf_map_msg = bpf_object__find_map_by_name(obj, "my_sock_map");
// get fd for sockmap
map_fd_msg = bpf_map__fd(bpf_map_msg);
// attach program to sockmap
bpf_prog_attach(msg_prog, map_fd_msg, BPF_SK_MSG_VERDICT, 0);
// Add a socket 'fd' to sockmap at location 'i'
bpf_map_update_elem(map_fd_msg, &i, fd, BPF_ANY);
After the above snippet any socket attached to the map would run
msg_prog on sendmsg and sendfile system calls.
Three additional helpers are added bpf_msg_apply_bytes(),
bpf_msg_cork_bytes(), and bpf_msg_pull_data(). With
bpf_msg_apply_bytes BPF programs can tell the infrastructure how
many bytes the given verdict should apply to. This has two cases.
First, a BPF program applies verdict to fewer bytes than in the
current sendmsg/sendfile msg this will apply the verdict to the
first N bytes of the message then run the BPF program again with
data pointers recalculated to the N+1 byte. The second case is the
BPF program applies a verdict to more bytes than the current sendmsg
or sendfile system call. In this case the infrastructure will cache
the verdict and apply it to future sendmsg/sendfile calls until the
byte limit is reached. This avoids the overhead of running BPF
programs on large payloads.
The helper bpf_msg_cork_bytes() handles a different case where
a BPF program can not reach a verdict on a msg until it receives
more bytes AND the program doesn't want to forward the packet
until it is known to be "good". The example case being a user
(albeit a dumb one probably) sends a N byte header in 1B system
calls. The BPF program can call bpf_msg_cork_bytes with the
required byte limit to reach a verdict and then the program will
only be called again once N bytes are received.
The last helper added in this series is bpf_msg_pull_data(). It
is used to pull data in for modification or reading. Similar to
how sk_pull_data() works msg_pull_data can be used to access data
not in the initial (data_start, data_end) range. For sendpage()
calls this is needed if any data is accessed because the BPF
sendpage hook initializes the data_start and data_end pointers to
zero. We do this because sendpage data is shared with the user
and can be modified during or after the BPF verdict possibly
invalidating any verdict the BPF program decides. For sendmsg
the data is already copied by the sendmsg bpf infrastructure so
we only copy the data if the user request a data range that is
not already linearized. This happens if the user requests larger
blocks of data that are not in a single scatterlist element. The
common case seems to be accessing headers which normally are
in the first scatterlist element and already linearized.
For more examples please review the sample program. There are
examples for all the actions and helpers there.
Patches 1-8 implement the above sockmap/BPF infrastructure. The
remaining patches flush out some minimal selftests and the sample
sockmap program. The sockmap sample program is the main vehicle
for testing this infrastructure and will be moved into selftests
shortly. The final patch in this series is a simple shell script
to run a set of tests. These are the tests I run after any changes
to sockmap. The next task on the list after this series is to
push those into selftests so we can avoid manually testing.
Couple notes on future items in the pipeline,
0. move sample sockmap programs into selftests (noted above)
1. add additional support for tcp flags, most are ignored now.
2. add a Documentation/bpf/sockmap file with these details
3. support stacked ULP types to allow this and ktls to cooperate
4. Ingress flag support, redirect only supports egress here. The
other redirect helpers support ingress and egress flags.
5. add optimizations, I cut a few optimizations here in the
first iteration of the code for later study/implementation
-v3 updates
: u32 data pointers in msg_md changed to void *
: page_address NULL check and flag verification in msg_pull_data
: remove old note in commit msg that is no longer relevant
: remove enum sk_msg_action its not used anywhere
: fixup test_verifier W -> DW insn to account for data pointers
: unintentionally dropped a smap_stop_tx() call in sockmap.c
I propagated the ACKs forward because above changes were small
one/two line changes.
-v2 updates (discussion):
Dave noticed that sendpage call was previously (in v1) running
on the data directly. This allowed users to potentially modify
the data after or during the BPF program. However doing a copy
automatically even if the data is not accessed has measurable
performance impact. So we added another helper modeled after
the existing skb_pull_data() helper to allow users to selectively
pull data from the msg. This is also useful in the sendmsg case
when users need to access data outside the first scatterlist
element or across scatterlist boundaries.
While doing this I also unified the sendmsg and sendfile handlers
a bit. Originally the sendfile call was optimized for never
touching the data. I've decided for a first submission to drop
this optimization and we can add it back later. It introduced
unnecessary complexity, at least for a first posting, for a
use case I have not entirely flushed out yet. When the use
case is deployed we can add it back if needed. Then we can
review concrete performance deltas as well on real-world
use-cases/applications.
Lastly, I reorganized the patches a bit. Now all sockmap
changes are in a single patch and each helper gets its own
patch. This, at least IMO, makes it easier to review because
sockmap changes are not spread across the patch series. On
the other hand now apply_bytes, cork_bytes logic is only
activated later in the series. But that should be OK.
====================
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
This adds the test script I am currently using to validate
the latest sockmap changes. Shortly sockmap will be ported
to selftests and these will be run from the infrastructure
there. Until then add the script here so we have a coverage
checklist when porting into selftests.
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
This adds an option to test the msg_pull_data helper. This
uses two options txmsg_start and txmsg_end to let the user
specify start and end bytes to pull.
The options can be used with txmsg_apply, txmsg_cork options
as well as with any of the basic tests, txmsg, txmsg_redir and
txmsg_drop (plus noisy variants) to run pull_data inline with
those tests. By giving user direct control over the variables
we can easily do negative testing as well as positive tests.
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
Add tests for SK_DROP.
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
Add sample application support for the bpf_msg_cork_bytes helper. This
lets the user specify how many bytes each verdict should apply to.
Similar to apply_bytes() tests these can be run as a stand-alone test
when used without other options or inline with other tests by using
the txmsg_cork option along with any of the basic tests txmsg,
txmsg_redir, txmsg_drop.
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
This adds an option to test the apply_bytes helper. This option lets
the user specify an int on the command line specifying how much data
each verdict should apply to.
When this is set a map entry is set with the bytes input by the user
and then the specified program --txmsg or --txmsg_redir will use the
value and set the applied data. If no other option is set then a
default --txmsg_apply program is run. This program will drop pkts
if an error is detected on the bytes map lookup. Useful to verify
the map lookup and apply helper are working and causing a hard
error if it is not.
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
To verify data is not being dropped or corrupted this adds an option
to verify test-patterns on recv.
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
To exercise TX ULP sendpage implementation we need a test that does
a sendfile. Add sendfile test option here.
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
Add sockmap option to use SK_MSG program types.
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
Test read and writes for BPF_PROG_TYPE_SK_MSG.
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
Add map tests to attach BPF_PROG_TYPE_SK_MSG types to a sockmap.
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|