Age | Commit message (Collapse) | Author |
|
If a PPI interrupt is forwarded to a guest, skip the deactivate and
only EOI. Rely on the guest deactivating both the virtual and physical
interrupts (due to ICH_LRx_EL2.HW being set) later on as part of
handling the injected interrupt. This mimics the behaviour seen on
native GICv3.
This is part of adding support for the GICv3 compatibility mode on a
GICv5 host.
Reviewed-by: Lorenzo Pieralisi <lpieralisi@kernel.org>
Co-authored-by: Timothy Hayes <timothy.hayes@arm.com>
Signed-off-by: Timothy Hayes <timothy.hayes@arm.com>
Signed-off-by: Sascha Bischoff <sascha.bischoff@arm.com>
Link: https://lore.kernel.org/r/20250627100847.1022515-2-sascha.bischoff@arm.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
Add test coverage for ID_AA64MMFR3_EL1 and the recently added
FEAT_DoubleFault2.
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250708172532.1699409-28-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
Handle SCTLR2_EL1 specially as it is only visible to userspace when
FEAT_SCTLR2 is implemented for the VM.
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250708172532.1699409-27-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
Ensure KVM routes SEAs to the correct vector depending on
SCTLR2_EL1.EASE.
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250708172532.1699409-26-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
Add tests for SError injection considering KVM is more directly involved
in delivery:
- Pending SErrors are taken at the first CSE after SErrors are unmasked
- Pending SErrors aren't taken and remain pending if SErrors are masked
- Unmasked SErrors are taken immediately when injected (implementation
detail)
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250708172532.1699409-25-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
KVM might have an emulated SError queued for the guest if userspace
returned an abort for MMIO. Better yet, it could actually be a
*synchronous* exception in disguise if SCTLR2_ELx.EASE is set.
Don't advance PC if KVM owes an emulated SError, just like the handling
of emulated SEA injection.
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250708172532.1699409-24-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
KVM's external abort injection now respects the exception routing
wreckage due to FEAT_DoubleFault2. Advertise the feature.
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250708172532.1699409-23-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
Everything is in place to handle the additional state for SCTLR2_ELx,
which is all that FEAT_SCTLR2 implies.
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250708172532.1699409-22-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
Per R_CDCKC, vSErrors are enabled if HCRX_EL2.TMEA is set, regardless of
HCR_EL2.AMO.
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250708172532.1699409-21-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
As the name might imply, when NMEA is set SErrors are non-maskable and
can be taken regardless of PSTATE.A. As is the recurring theme with
DoubleFault2, the effects on SError routing are entirely backwards to
this.
If at EL1, NMEA is *not* considered for SError routing when TMEA is set
and the exception is taken to EL2 when PSTATE.A is set.
Link: https://lore.kernel.org/r/20250708172532.1699409-20-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
HCRX_EL2.TMEA further modifies the external abort behavior where
unmasked aborts are taken to EL1 and masked aborts are taken to EL2.
It's rather weird when you consider that SEAs are, well, *synchronous*
and therefore not actually maskable. However, for the purposes of
exception routing, they're considered "masked" if the A flag is set.
This gets a bit hairier when considering the fact that TMEA
also enables vSErrors, i.e. KVM has delegated the HW vSError context to
the guest hypervisor. We can keep the vSError context delegation as-is
by taking advantage of a couple properties:
- If SErrors are unmasked, the 'physical' SError can be taken
in-context immediately. In other words, KVM can emulate the EL1
SError while preserving vEL2's ownership of the vSError context.
- If SErrors are masked, the 'physical' SError is taken to EL2
immediately and needs the usual nested exception entry.
Note that the new in-context handling has the benign effect where
unmasked SError injections are emulated even for non-nested VMs.
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250708172532.1699409-19-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
One of the finest additions of FEAT_DoubleFault2 is the ability for
software to request *synchronous* external aborts be taken to the
SError vector, which of coure are *asynchronous* in nature.
Opinions be damned, implement the architecture and send SEAs to the
SError vector if EASE is set for the target context.
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250708172532.1699409-18-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
For historical reasons, Address size faults are first injected into the
guest as an SEA and ESR_EL1 is subsequently modified to reflect the
correct FSC. Of course, when dealing with a vEL2 this should poke
ESR_EL2.
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250708172532.1699409-17-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
Pull out the exception target selection from pend_sync_exception() for
general use. Use PSR_MODE_ELxh as a shorthand for the target EL, as
SP_ELx selection is handled further along in the hyp's exception
emulation.
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250708172532.1699409-16-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
External abort injection will soon rely on a sanitised view of
SCTLR2_ELx to determine exception routing. Compute the RESx masks.
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250708172532.1699409-15-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
HCRX_EL2.SCTLR2En needs to be set for SCTLR2_EL1 to take effect in
hardware (in addition to disabling traps).
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250708172532.1699409-14-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
Restore SCTLR2_EL1 with the correct value for the given context when
FEAT_SCTLR2 is advertised to the guest.
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250708172532.1699409-13-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
Set up the sysreg descriptors for SCTLR2_ELx, along with the associated
storage and VNCR mapping.
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250708172532.1699409-12-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
Add the complete trap description for SCTLR2_EL1, including FGT and the
inverted HCRX bit.
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250708172532.1699409-11-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
Now that the missing bits for vSError injection/deferral have been added
we can merrily claim support for FEAT_RAS.
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250708172532.1699409-10-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
When HCR_EL2.AMO is set, physical SErrors are routed to EL2 and virtual
SError injection is enabled for EL1. Conceptually treating
host-initiated SErrors as 'physical', this means we can delegate control
of the vSError injection context to the guest hypervisor when nesting &&
AMO is set.
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250708172532.1699409-9-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
Prepare to implement RAS for NV by adding the missing EL2 sysregs for
the vSError context.
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250708172532.1699409-8-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
To date KVM has used HCR_EL2.VSE to track the state of a pending SError
for the guest. With this bit set, hardware respects the EL1 exception
routing / masking rules and injects the vSError when appropriate.
This isn't correct for NV guests as hardware is oblivious to vEL2's
intentions for SErrors. Better yet, with FEAT_NV2 the guest can change
the routing behind our back as HCR_EL2 is redirected to memory. Cope
with this mess by:
- Using a flag (instead of HCR_EL2.VSE) to track the pending SError
state when SErrors are unconditionally masked for the current context
- Resampling the routing / masking of a pending SError on every guest
entry/exit
- Emulating exception entry when SError routing implies a translation
regime change
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250708172532.1699409-7-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
Synchronous external aborts are taken to EL2 if ELIsInHost() or
HCR_EL2.TEA=1. Rework the SEA injection plumbing to respect the imposed
routing of the guest hypervisor and opportunistically rephrase things to
make their function a bit more obvious.
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250708172532.1699409-6-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
Per R_VRLPB, a pending SError is a WFI wakeup event regardless of
PSTATE.A, meaning that the vCPU is runnable. Sample VSE in addition to
the other IRQ lines.
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250708172532.1699409-5-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
A common idiom in the KVM code is to check if we are currently
dealing with a "nested" context, defined as having NV enabled,
but being in the EL1&0 translation regime.
This is usually expressed as:
if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu) ... )
which is a mouthful and a bit hard to read, specially when followed
by additional conditions.
Introduce a new helper that encapsulate these two terms, allowing
the above to be written as
if (is_nested_context(vcpu) ... )
which is both shorter and easier to read, and makes more obvious
the potential for simplification on some code paths.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250708172532.1699409-4-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
KVM will soon support FEAT_DoubleFault2. Add a descriptor for the
corresponding ID register field.
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250708172532.1699409-3-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
KVM is about to pick up support for SCTLR2. Add cpucap for later use in
the guest/host context switch hot path.
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250708172532.1699409-2-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
Enable GICv5 driver code for the ARM64 architecture.
Signed-off-by: Lorenzo Pieralisi <lpieralisi@kernel.org>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20250703-gicv5-host-v7-31-12e71f1b3528@kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
Document the requirements for booting a kernel on a system implementing
a GICv5 interrupt controller.
Specifically, other than DT/ACPI providing the required firmware
representation, define what traps must be disabled if the kernel is
booted at EL1 on a system where EL2 is implemented.
Signed-off-by: Lorenzo Pieralisi <lpieralisi@kernel.org>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20250703-gicv5-host-v7-30-12e71f1b3528@kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
The GICv5 architecture implements the Interrupt Wire Bridge (IWB) in
order to support wired interrupts that cannot be connected directly
to an IRS and instead uses the ITS to translate a wire event into
an IRQ signal.
Add the wired-to-MSI IWB driver to manage IWB wired interrupts.
An IWB is connected to an ITS and it has its own deviceID for all
interrupt wires that it manages; the IWB input wire number must be
exposed to the ITS as an eventID with a 1:1 mapping.
This eventID is not programmable and therefore requires a new
msi_alloc_info_t flag to make sure the ITS driver does not allocate
an eventid for the wire but rather it uses the msi_alloc_info_t.hwirq
number to gather the ITS eventID.
Co-developed-by: Sascha Bischoff <sascha.bischoff@arm.com>
Signed-off-by: Sascha Bischoff <sascha.bischoff@arm.com>
Co-developed-by: Timothy Hayes <timothy.hayes@arm.com>
Signed-off-by: Timothy Hayes <timothy.hayes@arm.com>
Signed-off-by: Lorenzo Pieralisi <lpieralisi@kernel.org>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250703-gicv5-host-v7-29-12e71f1b3528@kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
The GICv5 architecture implements Interrupt Translation Service
(ITS) components in order to translate events coming from peripherals
into interrupt events delivered to the connected IRSes.
Events (ie MSI memory writes to ITS translate frame), are translated
by the ITS using tables kept in memory.
ITS translation tables for peripherals is kept in memory storage
(device table [DT] and Interrupt Translation Table [ITT]) that
is allocated by the driver on boot.
Both tables can be 1- or 2-level; the structure is chosen by the
driver after probing the ITS HW parameters and checking the
allowed table splits and supported {device/event}_IDbits.
DT table entries are allocated on demand (ie when a device is
probed); the DT table is sized using the number of supported
deviceID bits in that that's a system design decision (ie the
number of deviceID bits implemented should reflect the number
of devices expected in a system) therefore it makes sense to
allocate a DT table that can cater for the maximum number of
devices.
DT and ITT tables are allocated using the kmalloc interface;
the allocation size may be smaller than a page or larger,
and must provide contiguous memory pages.
LPIs INTIDs backing the device events are allocated one-by-one
and only upon Linux IRQ allocation; this to avoid preallocating
a large number of LPIs to cover the HW device MSI vector
size whereas few MSI entries are actually enabled by a device.
ITS cacheability/shareability attributes are programmed
according to the provided firmware ITS description.
The GICv5 partially reuses the GICv3 ITS MSI parent infrastructure
and adds functions required to retrieve the ITS translate frame
addresses out of msi-map and msi-parent properties to implement
the GICv5 ITS MSI parent callbacks.
Co-developed-by: Sascha Bischoff <sascha.bischoff@arm.com>
Signed-off-by: Sascha Bischoff <sascha.bischoff@arm.com>
Co-developed-by: Timothy Hayes <timothy.hayes@arm.com>
Signed-off-by: Timothy Hayes <timothy.hayes@arm.com>
Signed-off-by: Lorenzo Pieralisi <lpieralisi@kernel.org>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250703-gicv5-host-v7-28-12e71f1b3528@kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
In some irqchip implementations the fwnode representing the IRQdomain
and the MSI controller fwnode do not match; in particular the IRQdomain
fwnode is the MSI controller fwnode parent.
To support selecting such IRQ domains, add a flag in core IRQ domain
code that explicitly tells the MSI lib to use the parent fwnode while
carrying out IRQ domain selection.
Update the msi-lib select callback with the resulting logic.
Signed-off-by: Lorenzo Pieralisi <lpieralisi@kernel.org>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250703-gicv5-host-v7-27-12e71f1b3528@kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
The GICv5 ITS will reuse some GICv3 ITS MSI parent functions therefore
it makes sense to keep the code functionality in a compilation unit
shared by the two drivers.
Rename the GICv3 ITS MSI parent file and update the related
Kconfig/Makefile entries to pave the way for code sharing.
Signed-off-by: Lorenzo Pieralisi <lpieralisi@kernel.org>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250703-gicv5-host-v7-26-12e71f1b3528@kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
IRQchip drivers need a PCI/MSI function to map a RID to a MSI
controller deviceID namespace and at the same time retrieve the
struct device_node pointer of the MSI controller the RID is mapped
to.
Add pci_msi_map_rid_ctlr_node() to achieve this purpose.
Cc Bjorn Helgaas <bhelgaas@google.com>
Signed-off-by: Lorenzo Pieralisi <lpieralisi@kernel.org>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250703-gicv5-host-v7-25-12e71f1b3528@kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
Add an of_msi_xlate() helper that maps a device ID and returns
the device node of the MSI controller the device ID is mapped to.
Required by core functions that need an MSI controller device node
pointer at the same time as a mapped device ID, of_msi_map_id() is not
sufficient for that purpose.
Signed-off-by: Lorenzo Pieralisi <lpieralisi@kernel.org>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Reviewed-by: Rob Herring (Arm) <robh@kernel.org>
Link: https://lore.kernel.org/r/20250703-gicv5-host-v7-24-12e71f1b3528@kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
Set up IPIs by allocating IPI IRQs for all cpus and call into
arm64 core code to initialise IPIs IRQ descriptors and
request the related IRQ.
Implement hotplug callback to enable interrupts on a cpu
and register the cpu with an IRS.
Co-developed-by: Sascha Bischoff <sascha.bischoff@arm.com>
Signed-off-by: Sascha Bischoff <sascha.bischoff@arm.com>
Co-developed-by: Timothy Hayes <timothy.hayes@arm.com>
Signed-off-by: Timothy Hayes <timothy.hayes@arm.com>
Signed-off-by: Lorenzo Pieralisi <lpieralisi@kernel.org>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250703-gicv5-host-v7-23-12e71f1b3528@kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
An IRS supports Logical Peripheral Interrupts (LPIs) and implement
Linux IPIs on top of it.
LPIs are used for interrupt signals that are translated by a
GICv5 ITS (Interrupt Translation Service) but also for software
generated IRQs - namely interrupts that are not driven by a HW
signal, ie IPIs.
LPIs rely on memory storage for interrupt routing and state.
LPIs state and routing information is kept in the Interrupt
State Table (IST).
IRSes provide support for 1- or 2-level IST tables configured
to support a maximum number of interrupts that depend on the
OS configuration and the HW capabilities.
On systems that provide 2-level IST support, always allow
the maximum number of LPIs; On systems with only 1-level
support, limit the number of LPIs to 2^12 to prevent
wasting memory (presumably a system that supports a 1-level
only IST is not expecting a large number of interrupts).
On a 2-level IST system, L2 entries are allocated on
demand.
The IST table memory is allocated using the kmalloc() interface;
the allocation required may be smaller than a page and must be
made up of contiguous physical pages if larger than a page.
On systems where the IRS is not cache-coherent with the CPUs,
cache mainteinance operations are executed to clean and
invalidate the allocated memory to the point of coherency
making it visible to the IRS components.
On GICv5 systems, IPIs are implemented using LPIs.
Add an LPI IRQ domain and implement an IPI-specific IRQ domain created
as a child/subdomain of the LPI domain to allocate the required number
of LPIs needed to implement the IPIs.
IPIs are backed by LPIs, add LPIs allocation/de-allocation
functions.
The LPI INTID namespace is managed using an IDA to alloc/free LPI INTIDs.
Associate an IPI irqchip with IPI IRQ descriptors to provide
core code with the irqchip.ipi_send_single() method required
to raise an IPI.
Co-developed-by: Sascha Bischoff <sascha.bischoff@arm.com>
Signed-off-by: Sascha Bischoff <sascha.bischoff@arm.com>
Co-developed-by: Timothy Hayes <timothy.hayes@arm.com>
Signed-off-by: Timothy Hayes <timothy.hayes@arm.com>
Signed-off-by: Lorenzo Pieralisi <lpieralisi@kernel.org>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20250703-gicv5-host-v7-22-12e71f1b3528@kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
The GICv5 Interrupt Routing Service (IRS) component implements
interrupt management and routing in the GICv5 architecture.
A GICv5 system comprises one or more IRSes, that together
handle the interrupt routing and state for the system.
An IRS supports Shared Peripheral Interrupts (SPIs), that are
interrupt sources directly connected to the IRS; they do not
rely on memory for storage. The number of supported SPIs is
fixed for a given implementation and can be probed through IRS
IDR registers.
SPI interrupt state and routing are managed through GICv5
instructions.
Each core (PE in GICv5 terms) in a GICv5 system is identified with
an Interrupt AFFinity ID (IAFFID).
An IRS manages a set of cores that are connected to it.
Firmware provides a topology description that the driver uses
to detect to which IRS a CPU (ie an IAFFID) is associated with.
Use probeable information and firmware description to initialize
the IRSes and implement GICv5 IRS SPIs support through an
SPI-specific IRQ domain.
The GICv5 IRS driver:
- Probes IRSes in the system to detect SPI ranges
- Associates an IRS with a set of cores connected to it
- Adds an IRQchip structure for SPI handling
SPIs priority is set to a value corresponding to the lowest
permissible priority in the system (taking into account the
implemented priority bits of the IRS and CPU interface).
Since all IRQs are set to the same priority value, the value
itself does not matter as long as it is a valid one.
Co-developed-by: Sascha Bischoff <sascha.bischoff@arm.com>
Signed-off-by: Sascha Bischoff <sascha.bischoff@arm.com>
Co-developed-by: Timothy Hayes <timothy.hayes@arm.com>
Signed-off-by: Timothy Hayes <timothy.hayes@arm.com>
Signed-off-by: Lorenzo Pieralisi <lpieralisi@kernel.org>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20250703-gicv5-host-v7-21-12e71f1b3528@kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
The GICv5 CPU interface implements support for PE-Private Peripheral
Interrupts (PPI), that are handled (enabled/prioritized/delivered)
entirely within the CPU interface hardware.
To enable PPI interrupts, implement the baseline GICv5 host kernel
driver infrastructure required to handle interrupts on a GICv5 system.
Add the exception handling code path and definitions for GICv5
instructions.
Add GICv5 PPI handling code as a specific IRQ domain to:
- Set-up PPI priority
- Manage PPI configuration and state
- Manage IRQ flow handler
- IRQs allocation/free
- Hook-up a PPI specific IRQchip to provide the relevant methods
PPI IRQ priority is chosen as the minimum allowed priority by the
system design (after probing the number of priority bits implemented
by the CPU interface).
Co-developed-by: Sascha Bischoff <sascha.bischoff@arm.com>
Signed-off-by: Sascha Bischoff <sascha.bischoff@arm.com>
Co-developed-by: Timothy Hayes <timothy.hayes@arm.com>
Signed-off-by: Timothy Hayes <timothy.hayes@arm.com>
Signed-off-by: Lorenzo Pieralisi <lpieralisi@kernel.org>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20250703-gicv5-host-v7-20-12e71f1b3528@kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
The GICv5 architecture introduces two barriers instructions
(GSB SYS, GSB ACK) that are used to manage interrupt effects.
Rework macro used to emit the SB barrier instruction and implement
the GSB barriers on top of it.
Suggested-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Lorenzo Pieralisi <lpieralisi@kernel.org>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20250703-gicv5-host-v7-19-12e71f1b3528@kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
The arm64 arch has relied so far on GIC architectural software
generated interrupt (SGIs) to handle IPIs. Those are per-cpu
software generated interrupts.
arm64 architecture code that allocates the IPIs virtual IRQs and
IRQ descriptors was written accordingly.
On GICv5 systems, IPIs are implemented using LPIs that are not
per-cpu interrupts - they are just normal routable IRQs.
Add arch code to set-up IPIs on systems where they are handled
using normal routable IRQs.
For those systems, force the IRQ affinity (and make it immutable)
to the cpu a given IRQ was assigned to.
Signed-off-by: Timothy Hayes <timothy.hayes@arm.com>
[lpieralisi: changed affinity set-up, log]
Signed-off-by: Lorenzo Pieralisi <lpieralisi@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20250703-gicv5-host-v7-18-12e71f1b3528@kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
Implement the GCIE capability as a strict boot cpu capability to
detect whether architectural GICv5 support is available in HW.
Plug it in with a naming consistent with the existing GICv3
CPU interface capability.
Signed-off-by: Lorenzo Pieralisi <lpieralisi@kernel.org>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20250703-gicv5-host-v7-17-12e71f1b3528@kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
In preparation for adding a GICv5 CPU interface capability,
rework the existing GICv3 CPUIF capability - change its name and
description so that the subsequent GICv5 CPUIF capability
can be added with a more consistent naming on top.
Suggested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Lorenzo Pieralisi <lpieralisi@kernel.org>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20250703-gicv5-host-v7-16-12e71f1b3528@kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
GICv5 trap configuration registers value is UNKNOWN at reset.
Initialize GICv5 EL2 trap configuration registers to prevent
trapping GICv5 instruction/register access upon entering the
kernel.
Signed-off-by: Lorenzo Pieralisi <lpieralisi@kernel.org>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20250703-gicv5-host-v7-15-12e71f1b3528@kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
Add ICH_HFGITR_EL2 register description to sysreg.
Signed-off-by: Lorenzo Pieralisi <lpieralisi@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20250703-gicv5-host-v7-14-12e71f1b3528@kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
Add ICH_HFGWTR_EL2 register description to sysreg.
Signed-off-by: Lorenzo Pieralisi <lpieralisi@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20250703-gicv5-host-v7-13-12e71f1b3528@kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
Add ICH_HFGRTR_EL2 register description.
Signed-off-by: Lorenzo Pieralisi <lpieralisi@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20250703-gicv5-host-v7-12-12e71f1b3528@kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
Add ICC_IDR0_EL1 register description.
Signed-off-by: Lorenzo Pieralisi <lpieralisi@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20250703-gicv5-host-v7-11-12e71f1b3528@kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
Add ICC_PCR_EL1 register description.
Signed-off-by: Lorenzo Pieralisi <lpieralisi@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20250703-gicv5-host-v7-10-12e71f1b3528@kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
|