Age | Commit message (Collapse) | Author |
|
PMU counter support functions enforces event constraints for group of
events to check if all events in a group can be monitored. Incase of
event codes using PMC5 and PMC6 ( 500fa and 600f4 respectively ), not
all constraints are applicable, say the threshold or sample bits. But
current code includes pmc5 and pmc6 in some group constraints (like
IC_DC Qualifier bits) which is actually not applicable and hence
results in those events not getting counted when scheduled along with
group of other events. Patch fixes this by excluding PMC5/6 from
constraints which are not relevant for it.
Fixes: 7ffd948 ("powerpc/perf: factor out power8 pmu functions")
Signed-off-by: Athira Rajeev <atrajeev@linux.vnet.ibm.com>
Reviewed-by: Madhavan Srinivasan <maddy@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/1600672204-1610-1-git-send-email-atrajeev@linux.vnet.ibm.com
|
|
All threads of a SMT4/SMT8 core can either be part of CPU's coregroup
mask or outside the coregroup. Use this relation to reduce the
number of iterations needed to find all the CPUs that share the same
coregroup
Use a temporary mask to iterate through the CPUs that may share
coregroup mask. Also instead of setting one CPU at a time into
cpu_coregroup_mask, copy the SMT4/SMT8/submask at one shot.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200921095653.9701-12-srikar@linux.vnet.ibm.com
|
|
Move the logic for updating the coregroup mask of a CPU to its own
function. This will help in reworking the updation of coregroup mask in
subsequent patch.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200921095653.9701-11-srikar@linux.vnet.ibm.com
|
|
All threads of a SMT4 core can either be part of this CPU's l2-cache
mask or not related to this CPU l2-cache mask. Use this relation to
reduce the number of iterations needed to find all the CPUs that share
the same l2-cache.
Use a temporary mask to iterate through the CPUs that may share l2_cache
mask. Also instead of setting one CPU at a time into cpu_l2_cache_mask,
copy the SMT4/sub mask at one shot.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200921095653.9701-10-srikar@linux.vnet.ibm.com
|
|
CACHE and COREGROUP domains are now part of default topology. However on
systems that don't support CACHE or COREGROUP, these domains will
eventually be degenerated. The degeneration happens per CPU. Do note the
current fixup_topology() logic ensures that mask of a domain that is not
supported on the current platform is set to the previous domain.
Instead of waiting for the scheduler to degenerated try to consolidate
based on their masks and sd_flags. This is done just before setting
the scheduler topology.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200921095653.9701-9-srikar@linux.vnet.ibm.com
|
|
Currently on hotplug/hotunplug, CPU iterates through all the CPUs in
its core to find threads in its thread group. However this info is
already captured in cpu_l1_cache_map. Hence reduce iterations and
cleanup add_cpu_to_smallcore_masks function.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Tested-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200921095653.9701-8-srikar@linux.vnet.ibm.com
|
|
update_mask_by_l2 is called only once. But it passes cpu_l2_cache_mask
as parameter. Instead of passing cpu_l2_cache_mask, use it directly in
update_mask_by_l2.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Tested-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200921095653.9701-7-srikar@linux.vnet.ibm.com
|
|
All the arch specific topology cpumasks are within a node/DIE.
However when setting these per CPU cpumasks, system traverses through
all the online CPUs. This is redundant.
Reduce the traversal to only CPUs that are online in the node to which
the CPU belongs to.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Tested-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200921095653.9701-6-srikar@linux.vnet.ibm.com
|
|
While offlining a CPU, system currently iterate through all the CPUs in
the DIE to clear sibling, l2_cache and smallcore maps. However if there
are more cores in a DIE, system can end up spending more time iterating
through CPUs which are completely unrelated.
Optimize this by only iterating through smaller but relevant cpumap.
If shared_cache is set, cpu_l2_cache_map should be relevant else
cpu_sibling_map would be relevant.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Tested-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200921095653.9701-5-srikar@linux.vnet.ibm.com
|
|
Now that cpu_core_mask has been removed and topology_core_cpumask has
been updated to use cpu_cpu_mask, we no more need
get_physical_package_id.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Tested-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200921095653.9701-4-srikar@linux.vnet.ibm.com
|
|
Anton Blanchard reported that his 4096 vcpu KVM guest took around 30
minutes to boot. He also analyzed it to the time taken to iterate while
setting the cpu_core_mask.
Further analysis shows that cpu_core_mask and cpu_cpu_mask for any CPU
would be equal on Power. However updating cpu_core_mask took forever to
update as its a per cpu cpumask variable. Instead cpu_cpu_mask was a per
NODE /per DIE cpumask that was shared by all the respective CPUs.
Also cpu_cpu_mask is needed from a scheduler perspective. However
cpu_core_map is an exported symbol. Hence stop updating cpu_core_map
and make it point to cpu_cpu_mask.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Tested-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200921095653.9701-3-srikar@linux.vnet.ibm.com
|
|
On Power, cpu_core_mask and cpu_cpu_mask refer to the same set of CPUs.
cpu_cpu_mask is needed by scheduler, hence look at deprecating
cpu_core_mask. Before deleting the cpu_core_mask, ensure its only user
is moved to cpu_cpu_mask.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Tested-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200921095653.9701-2-srikar@linux.vnet.ibm.com
|
|
Althought AMR is stashed in the checkpoint area, currently we don't save
it to the per thread checkpoint struct after a treclaim and so we don't
restore it either from that struct when we trechkpt. As a consequence when
the transaction is later rolled back the kernel space AMR value when the
trechkpt was done appears in userspace.
That commit saves and restores AMR accordingly on treclaim and trechkpt.
Since AMR value is also used in kernel space in other functions, it also
takes care of stashing kernel live AMR into the stack before treclaim and
before trechkpt, restoring it later, just before returning from tm_reclaim
and __tm_recheckpoint.
Is also fixes two nonrelated comments about CR and MSR.
Signed-off-by: Gustavo Romero <gromero@linux.ibm.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200919150025.9609-1-gromero@linux.ibm.com
|
|
When support for EEH on PowerNV was added a lot of pseries specific code
was made "generic" and some of the quirks of pseries EEH came along for the
ride. One of the stranger quirks is eeh_pe containing two types of PE
address: pe->addr and pe->config_addr. There reason for this appears to be
historical baggage rather than any real requirements.
On pseries EEH PEs are manipulated using RTAS calls. Each EEH RTAS call
takes a "PE configuration address" as an input which is used to identify
which EEH PE is being manipulated by the call. When initialising the EEH
state for a device the first thing we need to do is determine the
configuration address for the PE which contains the device so we can enable
EEH on that PE. This process is outlined in PAPR which is the modern
(i.e post-2003) FW specification for pseries. However, EEH support was
first described in the pSeries RISC Platform Architecture (RPA) and
although they are mostly compatible EEH is one of the areas where they are
not.
The major difference is that RPA doesn't actually have the concept of a PE.
On RPA systems the EEH RTAS calls are done on a per-device basis using the
same config_addr that would be passed to the RTAS functions to access PCI
config space (e.g. ibm,read-pci-config). The config_addr is not identical
since the function and config register offsets of the config_addr must be
set to zero. EEH operations being done on a per-device basis doesn't make a
whole lot of sense when you consider how EEH was implemented on legacy PCI
systems.
For legacy PCI(-X) systems EEH was implemented using special PCI-PCI
bridges which contained logic to detect errors and freeze the secondary
bus when one occurred. This means that the EEH enabled state is shared
among all devices behind that EEH bridge. As a result there's no way to
implement the per-device control required for the semantics specified by
RPA. It can be made to work if we assume that a separate EEH bridge exists
for each EEH capable PCI slot and there are no bridges behind those slots.
However, RPA also specifies the ibm,configure-bridge RTAS call for
re-initalising bridges behind EEH capable slots after they are reset due
to an EEH event so that is probably not a valid assumption. This
incoherence was fixed in later PAPR, which succeeded RPA. Unfortunately,
since Linux EEH support seems to have been implemented based on the RPA
spec some of the legacy assumptions were carried over (probably for POWER4
compatibility).
The fix made in PAPR was the introduction of the "PE" concept and
redefining the EEH RTAS calls (set-eeh-option, reset-slot, etc) to operate
on a per-PE basis so all devices behind an EEH bride would share the same
EEH state. The "config_addr" argument to the EEH RTAS calls became the
"PE_config_addr" and the OS was required to use the
ibm,get-config-addr-info RTAS call to find the correct PE address for the
device. When support for the new interfaces was added to Linux it was
implemented using something like:
At probe time:
pdn->eeh_config_addr = rtas_config_addr(pdn);
pdn->eeh_pe_config_addr = rtas_get_config_addr_info(pdn);
When performing an RTAS call:
config_addr = pdn->eeh_config_addr;
if (pdn->eeh_pe_config_addr)
config_addr = pdn->eeh_pe_config_addr;
rtas_call(..., config_addr, ...);
In other words, if the ibm,get-config-addr-info RTAS call is implemented
and returned a valid result we'd use that as the argument to the EEH
RTAS calls. If not, Linux would fall back to using the device's
config_addr. Over time these addresses have moved around going from pci_dn
to eeh_dev and finally into eeh_pe. Today the users look like this:
config_addr = pe->config_addr;
if (pe->addr)
config_addr = pe->addr;
rtas_call(..., config_addr, ...);
However, considering the EEH core always operates on a per-PE basis and
even on pseries the only per-device operation is the initial call to
ibm,set-eeh-option I'm not sure if any of this actually works on an RPA
system today. It doesn't make much sense to have the fallback address in
a generic structure either since the bulk of the code which reference it
is in pseries anyway.
The EEH core makes a token effort to support looking up a PE using the
config_addr by having two arguments to eeh_pe_get(). However, a survey of
all the callers to eeh_pe_get() shows that all bar one have the config_addr
argument hard-coded to zero.The only caller that doesn't is in
eeh_pe_tree_insert() which has:
if (!eeh_has_flag(EEH_VALID_PE_ZERO) && !edev->pe_config_addr)
return -EINVAL;
pe = eeh_pe_get(hose, edev->pe_config_addr, edev->bdfn);
The third argument (config_addr) is only used if the second (pe->addr)
argument is invalid. The preceding check ensures that the call to
eeh_pe_get() will never happen if edev->pe_config_addr is invalid so there
is no situation where eeh_pe_get() will search for a PE based on the 3rd
argument. The check also means that we'll never insert a PE into the tree
where pe_config_addr is zero since EEH_VALID_PE_ZERO is never set on
pseries. All the users of the fallback address on pseries never actually
use the fallback and all the only caller that supplies something for the
config_addr argument to eeh_pe_get() never use it either. It's all dead
code.
This patch removes the fallback address from eeh_pe since nothing uses it.
Specificly, we do this by:
1) Removing pe->config_addr
2) Removing the EEH_VALID_PE_ZERO flag
3) Removing the fallback address argument to eeh_pe_get().
4) Removing all the checks for pe->addr being zero in the pseries EEH code.
This leaves us with PE's only being identified by what's in their pe->addr
field and the EEH core relying on the platform to ensure that eeh_dev's are
only inserted into the EEH tree if they're actually inside a PE.
No functional changes, I hope.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200918093050.37344-9-oohall@gmail.com
|
|
There's no real reason why zero can't be a valid PE configuration address.
Under qemu each sPAPR PHB (i.e. EEH supporting) has the passed-though
devices on bus zero, so the PE address of bus <dddd>:00 should be zero.
However, all previous versions of Linux will reject that, so Qemu at least
goes out of it's way to avoid it. The Qemu implementation of
ibm,get-config-addr-info2 RTAS has the following comment:
> /*
> * We always have PE address of form "00BB0001". "BB"
> * represents the bus number of PE's primary bus.
> */
So qemu puts a one into the register portion of the PE's config_addr to
avoid it being zero. The whole is pretty silly considering that RTAS will
return a negative error code if it can't map the device's config_addr to a
PE.
This patch fixes Linux to treat zero as a valid PE address. This shouldn't
have any real effects due to the Qemu hack mentioned above. And the fact
that Linux EEH has worked historically on PowerVM means they never pass
through devices on bus zero so we would never see the problem there either.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200918093050.37344-8-oohall@gmail.com
|
|
The process Linux uses for determining if a device supports EEH or not
appears to be at odds with what PAPR says the OS should be doing. The
current flow is something like:
1. Assume pe_config_addr is equal the the device's config_addr.
2. Attempt to enable EEH on that PE
3. Verify EEH was enabled (POWER4 bug workaround)
4. Try find the pe_config_addr using the ibm,get-config-addr-info2 RTAS
call.
5. If that fails walk the pci_dn tree upwards trying to find a parent
device with EEH support. If we find one then add the device to that PE.
The first major problem with this process is that we need the PE config
address in step 2) since its needs to be passed to the ibm,set-eeh-option
RTAS call when enabling EEH for th PE. We hack around this requirement in
by making the assumption in 1) and delay finding the actual PE address
until 4). This is fine if:
a) The PCI device is the 0th function, and
b) The device is on the PE's root bus.
Granted, the current sequence does appear to work on most systems even when
these conditions are false. At a guess PowerVM's RTAS has workarounds to
accommodate Linux's quirks or the RTAS call to enable EEH is treated as
no-op on most platforms since EEH is usually enabled by default. However,
what is currently implemented is a bit sketch and is downright confusing
since it doesn't match up with what what PAPR suggests we should be doing.
This patch re-works how we handle EEH init so that we find the PE config
address using the ibm,get-config-addr-info2 RTAS call first, then use the
found address to finish the EEH init process. It also drops the Power4
workaround since as of commit 471d7ff8b51b ("powerpc/64s: Remove POWER4
support") the kernel does not support running on a Power4 CPU so there's
no need to support the Power4 platform's quirks either. With the patch
applied the sequence is now:
1. Find the pe_config_addr from the device using the RTAS call.
2. Enable the PE.
3. Insert the edev into the tree and create an eeh_pe if needed.
The other change made here is ignoring unsupported devices entirely.
Currently the device's BARs are saved to the eeh_dev even if the device is
not part of an EEH PE. Not being part of a PE means that an EEH recovery
pass will never see that device so the saving the BARs is pointless.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200918093050.37344-7-oohall@gmail.com
|
|
De-duplicate, and fix up the comments, and make the prototype just take a
pci_dn since the job of the function is to return the pe_config_addr of the
PE which contains a given device.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200918093050.37344-6-oohall@gmail.com
|
|
The initialisation of EEH mostly happens in a core_initcall_sync initcall,
followed by registering a bus notifier later on in an arch_initcall.
Anything involving initcall dependecies is mostly incomprehensible unless
you've spent a while staring at code so here's the full sequence:
ppc_md.setup_arch <-- pci_controllers are created here
...time passes...
core_initcall <-- pci_dns are created from DT nodes
core_initcall_sync <-- platforms call eeh_init()
postcore_initcall <-- PCI bus type is registered
postcore_initcall_sync
arch_initcall <-- EEH pci_bus notifier registered
subsys_initcall <-- PHBs are scanned here
There's no real requirement to do the EEH setup at the core_initcall_sync
level. It just needs to be done after pci_dn's are created and before we
start scanning PHBs. Simplify the flow a bit by moving the platform EEH
inititalisation to an arch_initcall so we can fold the bus notifier
registration into eeh_init().
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200918093050.37344-5-oohall@gmail.com
|
|
No longer used since the platforms perform their EEH initialisation before
calling eeh_init().
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200918093050.37344-4-oohall@gmail.com
|
|
Fold pseries_eeh_init() into eeh_pseries_init() rather than having
eeh_init() call it via eeh_ops->init(). It's simpler and it'll let us
delete eeh_ops.init.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200918093050.37344-3-oohall@gmail.com
|
|
Fold pnv_eeh_init() into eeh_powernv_init() rather than having eeh_init()
call it via eeh_ops->init(). It's simpler and it'll let us delete
eeh_ops.init.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200918093050.37344-2-oohall@gmail.com
|
|
Drop the EEH register / unregister ops thing and have the platform pass the
ops structure into eeh_init() directly. This takes one initcall out of the
EEH setup path and it means we're only doing EEH setup on the platforms
which actually support it. It's also less code and generally easier to
follow.
No functional changes.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200918093050.37344-1-oohall@gmail.com
|
|
Switch the 85xx defconfigs from the soon to be removed legacy ide
driver to libata.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200924041310.520970-1-hch@lst.de
|
|
In commit 61f879d97ce4 ("powerpc/pseries: Detect secure and trusted
boot state of the system.") we taught the kernel how to understand the
secure-boot parameters used by a pseries guest.
However, CONFIG_PPC_SECURE_BOOT still requires PowerNV. I didn't
catch this because pseries_le_defconfig includes support for
PowerNV and so everything still worked. Indeed, most configs will.
Nonetheless, technically PPC_SECURE_BOOT doesn't require PowerNV
any more.
The secure variables support (PPC_SECVAR_SYSFS) doesn't do anything
on pSeries yet, but I don't think it's worth adding a new condition -
at some stage we'll want to add a backend for pSeries anyway.
Fixes: 61f879d97ce4 ("powerpc/pseries: Detect secure and trusted boot state of the system.")
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200924014922.172914-1-dja@axtens.net
|
|
Build the kernel with 'make C=2':
arch/powerpc/platforms/pseries/papr_scm.c:825:1: warning: symbol
'dev_attr_perf_stats' was not declared. Should it be static?
Signed-off-by: Wang Wensheng <wangwensheng4@huawei.com>
Reviewed-by: Vaibhav Jain <vaibhav@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200918085951.44983-1-wangwensheng4@huawei.com
|
|
This is not used by 64s.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200915114650.3980244-5-npiggin@gmail.com
|
|
Since the assembly soft-masking code was moved to 64e specific, there
are some 64s specific interrupt types still there. Remove them.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200915114650.3980244-4-npiggin@gmail.com
|
|
This is not used anywhere.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200915114650.3980244-3-npiggin@gmail.com
|
|
Replayed interrupts get an "artificial" struct pt_regs constructed to
pass to interrupt handler functions. This did not get the softe field
set correctly, it's as though the interrupt has hit while irqs are
disabled. It should be IRQS_ENABLED.
This is possibly harmless, asynchronous handlers should not be testing
if irqs were disabled, but it might be possible for example some code
is shared with synchronous or NMI handlers, and it makes more sense if
debug output looks at this.
Fixes: 3282a3da25bd ("powerpc/64: Implement soft interrupt replay in C")
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200915114650.3980244-2-npiggin@gmail.com
|
|
Prior to commit 3282a3da25bd ("powerpc/64: Implement soft interrupt
replay in C"), replayed interrupts returned by the regular interrupt
exit code, which performs preemption in case an interrupt had set
need_resched.
This logic was missed by the conversion. Adding preempt_disable/enable
around the interrupt replay and final irq enable will reschedule if
needed.
Fixes: 3282a3da25bd ("powerpc/64: Implement soft interrupt replay in C")
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200915114650.3980244-1-npiggin@gmail.com
|
|
The hypervisor interface has defined branch prediction security bits for
handling the link stack. Wire them up.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200825075612.224656-1-npiggin@gmail.com
|
|
The copy buffer is implemented as a real address in the nest which is
translated from EA by copy, and used for memory access by paste. This
requires that it be invalidated by TLB invalidation.
TLBIE does invalidate the copy buffer, but TLBIEL does not. Add
cp_abort to the tlbiel sequence.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Fixup whitespace and comment formatting]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200916030234.4110379-2-npiggin@gmail.com
|
|
Having cputable.h include mce.h means it pulls in a bunch of low level
headers (e.g., synch.h) which then can't use CPU_FTR_ definitions.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200916030234.4110379-1-npiggin@gmail.com
|
|
Every error log reported by OPAL is exported to userspace through a
sysfs interface and notified using kobject_uevent(). The userspace
daemon (opal_errd) then reads the error log and acknowledges the error
log is saved safely to disk. Once acknowledged the kernel removes the
respective sysfs file entry causing respective resources to be
released including kobject.
However it's possible the userspace daemon may already be scanning
elog entries when a new sysfs elog entry is created by the kernel.
User daemon may read this new entry and ack it even before kernel can
notify userspace about it through kobject_uevent() call. If that
happens then we have a potential race between
elog_ack_store->kobject_put() and kobject_uevent which can lead to
use-after-free of a kernfs object resulting in a kernel crash. eg:
BUG: Unable to handle kernel data access on read at 0x6b6b6b6b6b6b6bfb
Faulting instruction address: 0xc0000000008ff2a0
Oops: Kernel access of bad area, sig: 11 [#1]
LE PAGE_SIZE=64K MMU=Hash SMP NR_CPUS=2048 NUMA PowerNV
CPU: 27 PID: 805 Comm: irq/29-opal-elo Not tainted 5.9.0-rc2-gcc-8.2.0-00214-g6f56a67bcbb5-dirty #363
...
NIP kobject_uevent_env+0xa0/0x910
LR elog_event+0x1f4/0x2d0
Call Trace:
0x5deadbeef0000122 (unreliable)
elog_event+0x1f4/0x2d0
irq_thread_fn+0x4c/0xc0
irq_thread+0x1c0/0x2b0
kthread+0x1c4/0x1d0
ret_from_kernel_thread+0x5c/0x6c
This patch fixes this race by protecting the sysfs file
creation/notification by holding a reference count on kobject until we
safely send kobject_uevent().
The function create_elog_obj() returns the elog object which if used
by caller function will end up in use-after-free problem again.
However, the return value of create_elog_obj() function isn't being
used today and there is no need as well. Hence change it to return
void to make this fix complete.
Fixes: 774fea1a38c6 ("powerpc/powernv: Read OPAL error log and export it through sysfs")
Cc: stable@vger.kernel.org # v3.15+
Reported-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.ibm.com>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: Oliver O'Halloran <oohall@gmail.com>
Reviewed-by: Vasant Hegde <hegdevasant@linux.vnet.ibm.com>
[mpe: Rework the logic to use a single return, reword comments, add oops]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201006122051.190176-1-mpe@ellerman.id.au
|
|
There are no users of PAGE_USERIO.
Signed-off-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
|
|
All boards have the same prom_init() function. Move it to common code and
delete the duplicates.
Signed-off-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
|
|
Only include wm97xx touchscreen probing code, if driver is enabled.
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
|
|
It turns out that in some cases there are EC events to flush in
acpi_ec_dispatch_gpe() even though the ec_no_wakeup kernel parameter
is set and the EC GPE is disabled while sleeping, so drop the
ec_no_wakeup check that prevents those events from being processed
from acpi_ec_dispatch_gpe().
Reported-by: Todd Brandt <todd.e.brandt@linux.intel.com>
Cc: 5.4+ <stable@vger.kernel.org> # 5.4+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Commit 607b9df63057 ("ACPI: EC: PM: Avoid flushing EC work when EC
GPE is inactive") has been reported to cause some power button wakeup
events to be missed on some systems, so modify acpi_ec_dispatch_gpe()
to call acpi_ec_flush_work() unconditionally to effectively reverse
the changes made by that commit.
Also note that the problem which prompted commit 607b9df63057 is not
reproducible any more on the affected machine.
Fixes: 607b9df63057 ("ACPI: EC: PM: Avoid flushing EC work when EC GPE is inactive")
Reported-by: Raymond Tan <raymond.tan@intel.com>
Cc: 5.4+ <stable@vger.kernel.org> # 5.4+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/vireshk/pm
Pull ARM cpufreq updates for 5.10-rc1 from Viresh Kumar:
"- STI cpufreq driver updates to allow new hardware (Alain Volmat).
- Minor tegra driver fixes around initial frequency mismatch warnings (Jon
Hunter).
- dev_err simplification for s5pv210 driver (Krzysztof Kozlowski).
- Qcom driver updates to allow new hardware and minor cleanup (Manivannan
Sadhasivam and Matthias Kaehlcke).
- Add missing MODULE_DEVICE_TABLE for armada driver (Pali Rohár).
- Improved defer-probe handling in cpufreq-dt driver (Stephan Gerhold).
- Call dev_pm_opp_of_remove_table() unconditionally for imx driver (Viresh
Kumar)."
* 'cpufreq/arm/linux-next' of git://git.kernel.org/pub/scm/linux/kernel/git/vireshk/pm:
cpufreq: qcom: Don't add frequencies without an OPP
cpufreq: qcom-hw: Add cpufreq support for SM8250 SoC
cpufreq: qcom-hw: Use of_device_get_match_data for offsets and row size
cpufreq: qcom-hw: Use devm_platform_ioremap_resource() to simplify code
dt-bindings: cpufreq: cpufreq-qcom-hw: Document Qcom EPSS compatible
cpufreq: qcom-hw: Make use of cpufreq driver_data for passing pdev
cpufreq: armada-37xx: Add missing MODULE_DEVICE_TABLE
cpufreq: arm: Kconfig: add CPUFREQ_DT depend for STI CPUFREQ
cpufreq: dt-platdev: Blacklist st,stih418 SoC
cpufreq: sti-cpufreq: add stih418 support
cpufreq: s5pv210: Use dev_err instead of pr_err in probe
cpufreq: s5pv210: Simplify with dev_err_probe()
cpufreq: tegra186: Fix initial frequency
cpufreq: dt: Refactor initialization to handle probe deferral properly
opp: Handle multiple calls for same OPP table in _of_add_opp_table_v1()
cpufreq: imx6q: Unconditionally call dev_pm_opp_of_remove_table()
opp: Allow dev_pm_opp_get_opp_table() to return -EPROBE_DEFER
|
|
Kexec can directly boot into a new kernel without going to complete
reboot. This can leave the previous kernel's configuration for PDC
interrupts as is.
Clear previous kernel's configuration during init by setting interrupts
in enable bank to zero. The IRQs specified in qcom,pdc-ranges property
are the only ones that can be used by the new kernel so clear only those
IRQs. The remaining ones may be in use by a different kernel and should
not be set by new kernel.
Suggested-by: Stephen Boyd <swboyd@chromium.org>
Signed-off-by: Maulik Shah <mkshah@codeaurora.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Tested-by: Stephen Boyd <swboyd@chromium.org>
Reviewed-by: Stephen Boyd <swboyd@chromium.org>
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Link: https://lore.kernel.org/r/1601267524-20199-7-git-send-email-mkshah@codeaurora.org
|
|
Set IRQCHIP_ENABLE_WAKEUP_ON_SUSPEND flag to enable/unmask the
wakeirqs during suspend entry.
Signed-off-by: Maulik Shah <mkshah@codeaurora.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Tested-by: Stephen Boyd <swboyd@chromium.org>
Reviewed-by: Stephen Boyd <swboyd@chromium.org>
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Link: https://lore.kernel.org/r/1601267524-20199-6-git-send-email-mkshah@codeaurora.org
|
|
Set IRQCHIP_ENABLE_WAKEUP_ON_SUSPEND flag to enable/unmask the
wakeirqs during suspend entry.
Signed-off-by: Maulik Shah <mkshah@codeaurora.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Tested-by: Stephen Boyd <swboyd@chromium.org>
Reviewed-by: Stephen Boyd <swboyd@chromium.org>
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Link: https://lore.kernel.org/r/1601267524-20199-5-git-send-email-mkshah@codeaurora.org
|
|
An interrupt that is disabled/masked but set for wakeup may still need to
be able to wake up the system from sleep states like "suspend to RAM".
To that effect, introduce the IRQCHIP_ENABLE_WAKEUP_ON_SUSPEND flag.
If the irqchip have this flag set, the irq PM code will enable/unmask
the irqs that are marked for wakeup, but that are in a disabled state.
On resume, such irqs will be restored back to their disabled state.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Maulik Shah <mkshah@codeaurora.org>
[maz: commit message fix-up]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Tested-by: Stephen Boyd <swboyd@chromium.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Link: https://lore.kernel.org/r/1601267524-20199-4-git-send-email-mkshah@codeaurora.org
|
|
msmgpio irqchip was not using return value of irq_set_irq_wake() callback
since previously GIC-v3 irqchip neither had IRQCHIP_SKIP_SET_WAKE flag nor
it implemented .irq_set_wake callback. This lead to irq_set_irq_wake()
return error -ENXIO.
However from 'commit 4110b5cbb014 ("irqchip/gic-v3: Allow interrupt to be
configured as wake-up sources")' GIC irqchip has IRQCHIP_SKIP_SET_WAKE
flag.
Use return value from irq_set_irq_wake() and irq_chip_set_wake_parent()
instead of always returning success.
Fixes: e35a6ae0eb3a ("pinctrl/msm: Setup GPIO chip in hierarchy")
Signed-off-by: Maulik Shah <mkshah@codeaurora.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Tested-by: Stephen Boyd <swboyd@chromium.org>
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Reviewed-by: Stephen Boyd <swboyd@chromium.org>
Acked-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Link: https://lore.kernel.org/r/1601267524-20199-3-git-send-email-mkshah@codeaurora.org
|
|
Both IRQCHIP_SET_TYPE_MASKED and IRQCHIP_MASK_ON_SUSPEND flags are already
set for msmgpio's parent PDC irqchip but GPIO interrupts do not get masked
during suspend or during setting irq type since genirq checks irqchip flag
of msmgpio irqchip which forwards these calls to its parent PDC irqchip.
Add irqchip specific flags for msmgpio irqchip to mask non wakeirqs during
suspend and mask before setting irq type. Masking before changing type make
sures any spurious interrupt is not detected during this operation.
Fixes: e35a6ae0eb3a ("pinctrl/msm: Setup GPIO chip in hierarchy")
Signed-off-by: Maulik Shah <mkshah@codeaurora.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Tested-by: Stephen Boyd <swboyd@chromium.org>
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Acked-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Link: https://lore.kernel.org/r/1601267524-20199-2-git-send-email-mkshah@codeaurora.org
|
|
Recent laptops with dual AMD GPUs fail to suspend the discrete GPU, thus
causing lockups on system sleep and high power consumption at runtime.
The discrete GPU would normally be suspended to D3cold by turning off
ACPI _PR3 Power Resources of the Root Port above the GPU.
However on affected systems, the Root Port is hotplug-capable and
pci_bridge_d3_possible() only allows hotplug ports to go to D3 if they
belong to a Thunderbolt device or if the Root Port possesses a
"HotPlugSupportInD3" ACPI property. Neither is the case on affected
laptops. The reason for whitelisting only specific, known to work
hotplug ports for D3 is that there have been reports of SkyLake Xeon-SP
systems raising Hardware Error NMIs upon suspending their hotplug ports:
https://lore.kernel.org/linux-pci/20170503180426.GA4058@otc-nc-03/
But if a hotplug port is power manageable by ACPI (as can be detected
through presence of Power Resources and corresponding _PS0 and _PS3
methods) then it ought to be safe to suspend it to D3. To this end,
amend acpi_pci_bridge_d3() to whitelist such ports for D3.
Link: https://gitlab.freedesktop.org/drm/amd/-/issues/1222
Link: https://gitlab.freedesktop.org/drm/amd/-/issues/1252
Link: https://gitlab.freedesktop.org/drm/amd/-/issues/1304
Reported-and-tested-by: Arthur Borsboom <arthurborsboom@gmail.com>
Reported-and-tested-by: matoro <matoro@airmail.cc>
Reported-by: Aaron Zakhrov <aaron.zakhrov@gmail.com>
Reported-by: Michal Rostecki <mrostecki@suse.com>
Reported-by: Shai Coleman <git@shaicoleman.com>
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Acked-by: Alex Deucher <alexander.deucher@amd.com>
Cc: 5.4+ <stable@vger.kernel.org> # 5.4+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Commit 395a7251dc2b (power: supply: sbs-battery: don't assume
i2c errors as battery disconnect) overwrites the original error code
returned from internal functions. On such a sporadic i2c error,
a user will get a wrong value without errors.
Fixes: 395a7251dc2b (power: supply: sbs-battery: don't assume i2c errors as battery disconnect)
Signed-off-by: Ikjoon Jang <ikjn@chromium.org>
Signed-off-by: Sebastian Reichel <sebastian.reichel@collabora.com>
|
|
The motivations to go rework memcpy_mcsafe() are that the benefit of
doing slow and careful copies is obviated on newer CPUs, and that the
current opt-in list of CPUs to instrument recovery is broken relative to
those CPUs. There is no need to keep an opt-in list up to date on an
ongoing basis if pmem/dax operations are instrumented for recovery by
default. With recovery enabled by default the old "mcsafe_key" opt-in to
careful copying can be made a "fragile" opt-out. Where the "fragile"
list takes steps to not consume poison across cachelines.
The discussion with Linus made clear that the current "_mcsafe" suffix
was imprecise to a fault. The operations that are needed by pmem/dax are
to copy from a source address that might throw #MC to a destination that
may write-fault, if it is a user page.
So copy_to_user_mcsafe() becomes copy_mc_to_user() to indicate
the separate precautions taken on source and destination.
copy_mc_to_kernel() is introduced as a non-SMAP version that does not
expect write-faults on the destination, but is still prepared to abort
with an error code upon taking #MC.
The original copy_mc_fragile() implementation had negative performance
implications since it did not use the fast-string instruction sequence
to perform copies. For this reason copy_mc_to_kernel() fell back to
plain memcpy() to preserve performance on platforms that did not indicate
the capability to recover from machine check exceptions. However, that
capability detection was not architectural and now that some platforms
can recover from fast-string consumption of memory errors the memcpy()
fallback now causes these more capable platforms to fail.
Introduce copy_mc_enhanced_fast_string() as the fast default
implementation of copy_mc_to_kernel() and finalize the transition of
copy_mc_fragile() to be a platform quirk to indicate 'copy-carefully'.
With this in place, copy_mc_to_kernel() is fast and recovery-ready by
default regardless of hardware capability.
Thanks to Vivek for identifying that copy_user_generic() is not suitable
as the copy_mc_to_user() backend since the #MC handler explicitly checks
ex_has_fault_handler(). Thanks to the 0day robot for catching a
performance bug in the x86/copy_mc_to_user implementation.
[ bp: Add the "why" for this change from the 0/2th message, massage. ]
Fixes: 92b0729c34ca ("x86/mm, x86/mce: Add memcpy_mcsafe()")
Reported-by: Erwin Tsaur <erwin.tsaur@intel.com>
Reported-by: 0day robot <lkp@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Tested-by: Erwin Tsaur <erwin.tsaur@intel.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/160195562556.2163339.18063423034951948973.stgit@dwillia2-desk3.amr.corp.intel.com
|