Age | Commit message (Collapse) | Author |
|
Currently cache alignment among nodes in the kernel is still 128
bytes on x86 NUMA machines - we got that X86_INTERNODE_CACHE_SHIFT
default from old P4 processors.
But now most modern x86 CPUs use the same size: 64 bytes from L1 to
last level L3. so let's remove the incorrect setting, and directly
use the L1 cache size to do SMP cache line alignment.
This patch saves some memory space on kernel data, and it also
improves the cache locality of kernel data.
The System.map is quite different with/without this change:
before patch after patch
...
000000000000b000 d tlb_vector_| 000000000000b000 d tlb_vector
000000000000b080 d cpu_loops_p| 000000000000b040 d cpu_loops_
...
Signed-off-by: Alex Shi <alex.shi@intel.com>
Cc: asit.k.mallick@intel.com
Link: http://lkml.kernel.org/r/1330774047-18597-1-git-send-email-alex.shi@intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/acme/linux into perf/urgent
Cherry picked fixes from perf/core, together with the kernel fix (1018faa),
the sampling tools (top, record) are back working on AMD systems.
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
nlmsg_parse() might return an error, so test its return value before
potential random memory accesses.
Errors introduced in commit 115c9b81928 (rtnetlink: Fix problem with
buffer allocation)
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Greg Rose <gregory.v.rose@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
commit bridge: send proper message_age in config BPDU
added this gem:
bpdu.message_age = (jiffies - root->designated_age)
p->designated_age = jiffies + bpdu->message_age;
Notice how bpdu->message_age is negated when reassigned to
bpdu.message_age. This causes message age to decrease breaking the
STP protocol.
Signed-off-by: Joakim Tjernlund <Joakim.Tjernlund@transmode.se>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
min age increment needs to round up its min age tick for all
HZ values to guarantee message age is increasing.
Signed-off-by: Joakim Tjernlund <Joakim.Tjernlund@transmode.se>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Fix log messages and corrects some typos
Change logging of failure to enable MSI/MSI-X to display device's PCI
address instead of eth%d. Rectify a typo.
Signed-off-by: Shreyas N Bhatewara <sbhatewara@vmware.com>
Reviewed-by: Joe Perches <joe@perches.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This patch recodes the MRRS cap for 5719 A0 devices as a PCI quirk.
Signed-off-by: Matt Carlson <mcarlson@broadcom.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Factor out the the existing allocation and free operations
so that they can be used individually.
This is to improve code readability, and also to prepare for
possible future changes like better error recovery and more
dynamic configuration (e.g on-the-fly resizing of the rings).
This change represents a straight up relocation of the existing
code into separate routines without changing any of the contained
code itself. Local variables are relocated as necessary.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Since all that include/linux/if_ppp.h does is #include <linux/ppp-ioctl.h>,
this replaces the occurrences of #include <linux/if_ppp.h> with
#include <linux/ppp-ioctl.h>.
It also corrects an error in Documentation/networking/l2tp.txt, where
it referenced include/linux/if_ppp.h as the source of some definitions
that are actually now defined in include/linux/if_pppol2tp.h.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This moves the definitions of the ioctls, constants and structures
relating to the ppp_generic interface to userspace out from if_ppp.h
to a new file, ppp-ioctl.h. The new file has my copyright since I
designed and implemented the ppp_generic interface in the late 1990s.
None of the contents of this file comes from the original if_ppp.h
published by Carnegie Mellon University.
Of the remainder of if_ppp.h, only the PPP_MTU definition was being
used, and this replaces the uses of it with PPP_MRU (which is identical).
Therefore, this replaces the entire file with the single line
#include <linux/ppp-ioctl.h>
which clearly doesn't contain any CMU code. Thus I have removed the
CMU copyright notice with its problematic advertising clause, and in
fact since it's only one trivial line I have not added any other
copyright notice.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This changes the copyright notices on the PPP code that I developed
in the late 1990s from being copyright The Australian National
University to copyright Paul Mackerras. I can do this as I have an
acknowledgement in writing from the Head of the Computer Science
Department at ANU (where I worked then) that ANU does not claim any
intellectual property in this code.
While I'm at it, change the copyright notice from BSD-style to
GNU GPL like the rest of the kernel.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
GRC reset causes the read DMA engine to go into a mode that breaks up
requests into 256 bytes. A PHY reset is required to bring it back to
the normal mode.
Signed-off-by: Michael Chan <mchan@broadcom.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
for weak memory model architectures to ensure that the chip will DMA
valid BD data.
Signed-off-by: Michael Chan <mchan@broadcom.com>
Reviewed-by: Benjamin Li <benli@broadcom.com>
Reviewed-by: Matt Carlson <mcarlson@broadcom.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Loopback on 9K packet fails because the chip has a DMA limit of 4K. The
loopback test logic uses a single BD for simplicity. Fix it by reducing
the jumbo packet size to the DMA limit.
Signed-off-by: Michael Chan <mchan@broadcom.com>
Reviewed-by: Benjamin Li <benli@broadcom.com>
Reviewed-by: Matt Carlson <mcarlson@broadcom.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/sameo/mfd-2.6
MFD fixes from Samuel Ortiz:
"This is the pull request for the MFD fixes for 3.3. We have a few
NULL pointer dereferences fixes, an ACPI conflict check fix, and a
couple of wm8994 fixes."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sameo/mfd-2.6:
mfd: Correct readability of WM8994 DC servo 4E register
mfd: Initialize tps65912 irq platform data properly
mfd: Fix ACPI conflict check
mfd: Fix ab8500 error path bug
mfd: Test for jack detection when deciding if wm8994 should suspend
mfd: Initialize tps65910 irq platform data properly
mfd: Fix possible s5m null pointer dereference
mfd: wm8350 variable dereferenced before check
|
|
Most of the more modern ColdFire cores use the same code to reset the CPU
(but it is different to most of the earlier cores). Currently that is
duplicated in each of the sub-arch files. Pull out this common code and
out a single copy of it with the other common reset code.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
If we make all MCF_RCR (CPU reset register) addressing consistent across all
ColdFire CPU family members that use it then we will be able to remove the
duplicated copies of the code that use it.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
If we make all MCF_RCR (CPU reset register) addressing consistent across all
ColdFire CPU family members that use it then we will be able to remove the
duplicated copies of the code that use it.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
If we make all MCF_RCR (CPU reset register) addressing consistent across all
ColdFire CPU family members that use it then we will be able to remove the
duplicated copies of the code that use it.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
A number of the early ColdFire cores use the same code to reset the CPU.
Currently that is duplicated in each of the sub-arch files. Pull out this
common code and use a single copy of it for all CPU types that use it.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
It's only used inside fs/dcache.c, and we're going to play games with it
for the word-at-a-time patches. This time we really don't even want to
export it, because it really is an internal function to fs/dcache.c, and
has been since it was introduced.
Having it in that extremely hot header file (it's included in pretty
much everything, thanks to <linux/fs.h>) is a disaster for testing
different versions, and is utterly pointless.
We really should have some kind of header file diet thing, where we
figure out which parts of header files are really better off private and
only result in more expensive compiles.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The original ColdFire timer interrupt setup is used by most of the users
of the original ColdFire timer code. But the code is currently duplicated
in each of the ColdFire CPU specific init files. Move it to the timers
code that it is really part of. It is strait forward to make it conditional
on also having the original interrupt engine that it needs.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
We can move all the init calls in the initcall code into the more general
arch setup code (which is config_BSP() here). That makes the 532x consistent
with other ColdFire CPUs setup code. It means we can get rid of the initcall
setup here all together. Also make sure we set the arch mach_reset function
pointer to get the local arch reset code called on reset.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
We can move all the init calls in the initcall code into the more general
arch setup code (which is config_BSP() here). That makes the 528x consistent
with other ColdFire CPUs setup cod. It means we can get rif of the initcall
setup here all together.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
We can move the QSPI init call to the more general config_BSP() code on
the 523x platorm setup code. Then we can remove the initcall code all
together.
We can also remove the un-needed include of mcfuart.h while we are
cleaning up here too.
Also I noticed that we are not calling the fec_init() code here, and we
should be doing that. Put that back in too.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
The ColdFire QSPI is common to quite a few ColdFire CPUs. No need to duplicate
its platform setup code for every CPU family member that has it. Merge all the
setup code into a single shared file.
This also results in few platforms no longer needing any local platform
setup code. In those cases remove the empty devices array and initcall
code as well.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
If we make all QSPI (SPI protocol) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and code and use a single setup for all.
So modify the ColdFire 532x QSPI addressing so that:
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
. move chip select definitions (CS) to appropriate header
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
If we make all QSPI (SPI protocol) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and code and use a single setup for all.
So modify the ColdFire 528x QSPI addressing so that:
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
. move chip select definitions (CS) to appropriate header
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
If we make all QSPI (SPI protocol) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and code and use a single setup for all.
So modify the ColdFire 527x QSPI addressing so that:
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
. move chip select definitions (CS) to appropriate header
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
If we make all QSPI (SPI protocol) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and code and use a single setup for all.
So modify the ColdFire 5249 QSPI addressing so that:
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
. move chip select definitions (CS) to appropriate header
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
If we make all QSPI (SPI protocol) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and code and use a single setup for all.
So modify the ColdFire 523x QSPI addressing so that:
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
. move chip select definitions (CS) to appropriate header
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
If we make all QSPI (SPI protocol) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and code and use a single setup for all.
So modify the ColdFire 520x QSPI addressing so that:
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
. move chip select definitions (CS) to appropriate header
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
The ColdFire FEC is common to quite a few ColdFire CPUs. No need to duplicate
its platform setup code for every CPU family member that has it. Merge all the
setup code into a single shared file.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
If we make all FEC (ethernet) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and use a single setup for all.
So modify the ColdFire 532x FEC addressing so that:
. FECs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
If we make all FEC (ethernet) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and use a single setup for all.
So modify the ColdFire 528x FEC addressing so that:
. FECs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
If we make all FEC (ethernet) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and use a single setup for all.
So modify the ColdFire 527x FEC addressing so that:
. FECs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
If we make all FEC (ethernet) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and use a single setup for all.
So modify the ColdFire 5272 FEC addressing so that:
. FECs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
If we make all FEC (ethernet) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and use a single setup for all.
So modify the ColdFire 523x FEC addressing so that:
. FECs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
If we make all FEC (ethernet) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and use a single setup for all.
So modify the ColdFire 520x FEC addressing so that:
. FECs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
Some ColdFire CPU UART hardware modules can configure the IRQ they use.
Currently the same setup code is duplicated in the init code for each of
these ColdFire CPUs. Merge all this code to a single instance.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
The ColdFire UART is common to all ColdFire CPU's. No need to duplicate
its platform setup code for every CPU family member. Merge all the setup
code into a single shared file.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
Simplify the UART setup code so that it no longer loops for each UART
present. Just make it do all the work it needs in a single function.
This will make the code easier to share when we move to a single set
of platform data for ColdFire UARTs.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
Simplify the UART setup code so that it no longer loops for each UART
present. Just make it do all the work it needs in a single function.
This will make the code easier to share when we move to a single set
of platform data for ColdFire UARTs.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
Simplify the UART setup code so that it no longer loops for each UART
present. Just make it do all the work it needs in a single function.
This will make the code easier to share when we move to a single set
of platform data for ColdFire UARTs.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
Simplify the UART setup code so that it no longer loops for each UART
present. Just make it do all the work it needs in a single function.
This will make the code easier to share when we move to a single set
of platform data for ColdFire UARTs.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
Simplify the UART setup code so that it no longer loops for each UART
present. Just make it do all the work it needs in a single function.
This will make the code easier to share when we move to a single set
of platform data for ColdFire UARTs.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
Simplify the UART setup code so that it no longer loops for each UART
present. Just make it do all the work it needs in a single function.
This will make the code easier to share when we move to a single set
of platform data for ColdFire UARTs.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
Simplify the UART setup code so that it no longer loops for each UART
present. Just make it do all the work it needs in a single function.
This will make the code easier to share when we move to a single set
of platform data for ColdFire UARTs.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
Simplify the UART setup code so that it no longer loops for each UART
present. Just make it do all the work it needs in a single function.
This will make the code easier to share when we move to a single set
of platform data for ColdFire UARTs.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|