summaryrefslogtreecommitdiff
AgeCommit message (Collapse)Author
2020-04-19arm64: dts: rockchip: drop #address-cells, #size-cells from rk3399 pmugrf nodeChen-Yu Tsai
The device tree compiler gives the following warning: /syscon@ff100000: unnecessary #address-cells/#size-cells without "ranges" or child "reg" property Since the pmygrf node only has an io-domains child node that has no reg property, remove the two properties from the pmugrf node to silence the warning. Signed-off-by: Chen-Yu Tsai <wens@csie.org> Link: https://lore.kernel.org/r/20200327030414.5903-6-wens@kernel.org Signed-off-by: Heiko Stuebner <heiko@sntech.de>
2020-04-19arm64: dts: rockchip: drop #address-cells, #size-cells from rk3328 grf nodeChen-Yu Tsai
The device tree compiler gives the following warning: /syscon@ff100000: unnecessary #address-cells/#size-cells without "ranges" or child "reg" property Since none of the grf node's direct child nodes have any reg properties, remove the two properties from the grf node to silence the warning. Signed-off-by: Chen-Yu Tsai <wens@csie.org> Link: https://lore.kernel.org/r/20200327030414.5903-5-wens@kernel.org Signed-off-by: Heiko Stuebner <heiko@sntech.de>
2020-04-19arm64: dts: rockchip: drop non-existent gmac2phy pinmux options from rk3328Chen-Yu Tsai
When gmac2phy was added, a whole bunch of pinmux options were added. Turns out some of these don't exist on the actual product, based on the publicly available TRM. Remove them. Signed-off-by: Chen-Yu Tsai <wens@csie.org> Link: https://lore.kernel.org/r/20200327030414.5903-4-wens@kernel.org Signed-off-by: Heiko Stuebner <heiko@sntech.de>
2020-04-19arm64: dts: rockchip: Replace RK805 PMIC node name with "pmic" on rk3328 boardsChen-Yu Tsai
In some board device tree files, "rk805" was used for the RK805 PMIC's node name. However the policy for device trees is that generic names should be used. Replace the "rk805" node name with the generic "pmic" name. Fixes: 1e28037ec88e ("arm64: dts: rockchip: add rk805 node for rk3328-evb") Fixes: 955bebde057e ("arm64: dts: rockchip: add rk3328-rock64 board") Signed-off-by: Chen-Yu Tsai <wens@csie.org> Link: https://lore.kernel.org/r/20200327030414.5903-3-wens@kernel.org Signed-off-by: Heiko Stuebner <heiko@sntech.de>
2020-04-19arm64: dts: rockchip: enable DC charger detection pullup on Pinebook ProTobias Schramm
On the Pinebook Pro the DC charger is detected via an open collector transistor attached to a GPIO. This GPIO requires its pullup to be enabled for the detection to work reliably. Fixes: 5a65505a6988 ("arm64: dts: rockchip: Add initial support for Pinebook Pro") Signed-off-by: Tobias Schramm <t.schramm@manjaro.org> Link: https://lore.kernel.org/r/20200414163952.1093784-3-t.schramm@manjaro.org Signed-off-by: Heiko Stuebner <heiko@sntech.de>
2020-04-19arm64: dts: rockchip: fix inverted headphone detection on Pinebook ProTobias Schramm
On the Pinebook Pro the headphone jack is dual use. It can be used either as a normal headphone jack or as a debug serial connection. This functionality is controlled via a small hardware switch on the mainboard. Unfortunately flipping this switch biases the headphone detection switch inside the headphone jack at 3.3 V if in `debug UART` position but to GND when in `headphone out` position. This results in an inversion of the headphone detection logic depending on the switch position. Since the headphone jack can only be used for audio when in `headphone out` position this commit changes the headphone detect GPIO logic to be correct for that case rather than for the debug UART. Fixes: 5a65505a6988 ("arm64: dts: rockchip: Add initial support for Pinebook Pro") Signed-off-by: Tobias Schramm <t.schramm@manjaro.org> Link: https://lore.kernel.org/r/20200414163952.1093784-2-t.schramm@manjaro.org Signed-off-by: Heiko Stuebner <heiko@sntech.de>
2020-04-19arm64: dts: rockchip: Correct PMU compatibles for PX30 and RK3308Robin Murphy
A proper binding for the Cortex-A35 PMU actually predates these DTs being upstreamed, so use it. Signed-off-by: Robin Murphy <robin.murphy@arm.com> Link: https://lore.kernel.org/r/6dfed94a99780c2314b38ff2b55a7efa0be4edbc.1587125314.git.robin.murphy@arm.com Signed-off-by: Heiko Stuebner <heiko@sntech.de>
2020-04-18tcp: cache line align MAX_TCP_HEADEREric Dumazet
TCP stack is dumb in how it cooks its output packets. Depending on MAX_HEADER value, we might chose a bad ending point for the headers. If we align the end of TCP headers to cache line boundary, we make sure to always use the smallest number of cache lines, which always help. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Soheil Hassas Yeganeh <soheil@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-04-18Merge branch 'mptcp-fixes'David S. Miller
Florian Westphal says: ==================== mptcp: fix 'attempt to release socket in state...' splats These two patches fix error handling corner-cases where inet_sock_destruct gets called for a mptcp_sk that is not in TCP_CLOSE state. This results in unwanted error printks from the network stack. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
2020-04-18mptcp: fix 'Attempt to release TCP socket in state' warningsFlorian Westphal
We need to set sk_state to CLOSED, else we will get following: IPv4: Attempt to release TCP socket in state 3 00000000b95f109e IPv4: Attempt to release TCP socket in state 10 00000000b95f109e First one is from inet_sock_destruct(), second one from mptcp_sk_clone failure handling. Setting sk_state to CLOSED isn't enough, we also need to orphan sk so it has DEAD flag set. Otherwise, a very similar warning is printed from inet_sock_destruct(). Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-04-18mptcp: fix splat when incoming connection is never accepted before exit/closeFlorian Westphal
Following snippet (replicated from syzkaller reproducer) generates warning: "IPv4: Attempt to release TCP socket in state 1". int main(void) { struct sockaddr_in sin1 = { .sin_family = 2, .sin_port = 0x4e20, .sin_addr.s_addr = 0x010000e0, }; struct sockaddr_in sin2 = { .sin_family = 2, .sin_addr.s_addr = 0x0100007f, }; struct sockaddr_in sin3 = { .sin_family = 2, .sin_port = 0x4e20, .sin_addr.s_addr = 0x0100007f, }; int r0 = socket(0x2, 0x1, 0x106); int r1 = socket(0x2, 0x1, 0x106); bind(r1, (void *)&sin1, sizeof(sin1)); connect(r1, (void *)&sin2, sizeof(sin2)); listen(r1, 3); return connect(r0, (void *)&sin3, 0x4d); } Reason is that the newly generated mptcp socket is closed via the ulp release of the tcp listener socket when its accept backlog gets purged. To fix this, delay setting the ESTABLISHED state until after userspace calls accept and via mptcp specific destructor. Fixes: 58b09919626bf ("mptcp: create msk early") Closes: https://github.com/multipath-tcp/mptcp_net-next/issues/9 Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-04-18net/mlx4_en: avoid indirect call in TX completionEric Dumazet
Commit 9ecc2d86171a ("net/mlx4_en: add xdp forwarding and data write support") brought another indirect call in fast path. Use INDIRECT_CALL_2() helper to avoid the cost of the indirect call when/if CONFIG_RETPOLINE=y Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Tariq Toukan <tariqt@mellanox.com> Cc: Willem de Bruijn <willemb@google.com> Reviewed-by: Saeed Mahameed <saeedm@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-04-18ipv6: rpl: fix full address compressionAlexander Aring
This patch makes it impossible that cmpri or cmpre values are set to the value 16 which is not possible, because these are 4 bit values. We currently run in an overflow when assigning the value 16 to it. According to the standard a value of 16 can be interpreted as a full elided address which isn't possible to set as compression value. A reason why this cannot be set is that the current ipv6 header destination address should never show up inside the segments of the rpl header. In this case we run in a overflow and the address will have no compression at all. Means cmpri or compre is set to 0. As we handle cmpri and cmpre sometimes as unsigned char or 4 bit value inside the rpl header the current behaviour ends in an invalid header format. This patch simple use the best compression method if we ever run into the case that the destination address is showed up inside the rpl segments. We avoid the overflow handling and the rpl header is still valid, even when we have the destination address inside the rpl segments. Signed-off-by: Alexander Aring <alex.aring@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-04-18net: stmmac: Fix sub-second incrementJulien Beraud
In fine adjustement mode, which is the current default, the sub-second increment register is the number of nanoseconds that will be added to the clock when the accumulator overflows. At each clock cycle, the value of the addend register is added to the accumulator. Currently, we use 20ns = 1e09ns / 50MHz as this value whatever the frequency of the ptp clock actually is. The adjustment is then done on the addend register, only incrementing every X clock cycles X being the ratio between 50MHz and ptp_clock_rate (addend = 2^32 * 50MHz/ptp_clock_rate). This causes the following issues : - In case the frequency of the ptp clock is inferior or equal to 50MHz, the addend value calculation will overflow and the default addend value will be set to 0, causing the clock to not work at all. (For instance, for ptp_clock_rate = 50MHz, addend = 2^32). - The resolution of the timestamping clock is limited to 20ns while it is not needed, thus limiting the accuracy of the timestamping to 20ns. Fix this by setting sub-second increment to 2e09ns / ptp_clock_rate. It will allow to reach the minimum possible frequency for ptp_clk_ref, which is 5MHz for GMII 1000Mps Full-Duplex by setting the sub-second-increment to a higher value. For instance, for 25MHz, it gives ssinc = 80ns and default_addend = 2^31. It will also allow to use a lower value for sub-second-increment, thus improving the timestamping accuracy with frequencies higher than 100MHz, for instance, for 200MHz, ssinc = 10ns and default_addend = 2^31. v1->v2: - Remove modifications to the calculation of default addend, which broke compatibility with clock frequencies for which 2000000000 / ptp_clk_freq is not an integer. - Modify description according to discussions. Signed-off-by: Julien Beraud <julien.beraud@orolia.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-04-18net: stmmac: fix enabling socfpga's ptp_ref_clockJulien Beraud
There are 2 registers to write to enable a ptp ref clock coming from the fpga. One that enables the usage of the clock from the fpga for emac0 and emac1 as a ptp ref clock, and the other to allow signals from the fpga to reach emac0 and emac1. Currently, if the dwmac-socfpga has phymode set to PHY_INTERFACE_MODE_MII, PHY_INTERFACE_MODE_GMII, or PHY_INTERFACE_MODE_SGMII, both registers will be written and the ptp ref clock will be set as coming from the fpga. Separate the 2 register writes to only enable signals from the fpga to reach emac0 or emac1 when ptp ref clock is not coming from the fpga. Signed-off-by: Julien Beraud <julien.beraud@orolia.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-04-18wimax/i2400m: Fix potential urb refcnt leakXiyu Yang
i2400mu_bus_bm_wait_for_ack() invokes usb_get_urb(), which increases the refcount of the "notif_urb". When i2400mu_bus_bm_wait_for_ack() returns, local variable "notif_urb" becomes invalid, so the refcount should be decreased to keep refcount balanced. The issue happens in all paths of i2400mu_bus_bm_wait_for_ack(), which forget to decrease the refcnt increased by usb_get_urb(), causing a refcnt leak. Fix this issue by calling usb_put_urb() before the i2400mu_bus_bm_wait_for_ack() returns. Signed-off-by: Xiyu Yang <xiyuyang19@fudan.edu.cn> Signed-off-by: Xin Tan <tanxin.ctf@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-04-18Merge tag 'scsi-fixes' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi Pull SCSI fixes from James Bottomley: "Seven fixes: three in target, one on a sg error leg, two in qla2xxx fixing warnings introduced in the last merge window and updating MAINTAINERS and one in hisi_sas fixing a problem introduced by libata" * tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi: scsi: sg: add sg_remove_request in sg_common_write scsi: target: tcmu: reset_ring should reset TCMU_DEV_BIT_BROKEN scsi: target: fix PR IN / READ FULL STATUS for FC scsi: target: Write NULL to *port_nexus_ptr if no ISID scsi: MAINTAINERS: Update qla2xxx FC-SCSI driver maintainer scsi: qla2xxx: Fix regression warnings scsi: hisi_sas: Fix build error without SATA_HOST
2020-04-18xattr.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18uapi: linux: fiemap.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18uapi: linux: dlm_device.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18tpm_eventlog.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18ti_wilink_st.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18swap.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18skbuff.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18sched: topology.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18rslib.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18rio.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18posix_acl.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18platform_data: wilco-ec.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18memcontrol.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18list_lru.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18lib: cpu_rmap: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18irq.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18ihex.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18igmp.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18genalloc.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18ethtool.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18energy_model.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18enclosure.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18dirent.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18digsig.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18can: dev: peak_canfd.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18blk_types: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18blk-mq: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18bio: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18Merge tag 'hwmon-for-v5.7-rc2' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/groeck/linux-staging Pull hwmon fixes from Guenter Roeck: - Fix up chip IDs (isl68137) - error handling for invalid temperatures and use true module name (drivetemp) - Fix static symbol warnings (k10temp) - Use valid hwmon device name (jc42) * tag 'hwmon-for-v5.7-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck/linux-staging: hwmon: (jc42) Fix name to have no illegal characters hwmon: (k10temp) make some symbols static hwmon: (drivetemp) Return -ENODATA for invalid temperatures hwmon: (drivetemp) Use drivetemp's true module name in Kconfig section hwmon: (pmbus/isl68137) Fix up chip IDs
2020-04-18tipc: Fix potential tipc_node refcnt leak in tipc_rcvXiyu Yang
tipc_rcv() invokes tipc_node_find() twice, which returns a reference of the specified tipc_node object to "n" with increased refcnt. When tipc_rcv() returns or a new object is assigned to "n", the original local reference of "n" becomes invalid, so the refcount should be decreased to keep refcount balanced. The issue happens in some paths of tipc_rcv(), which forget to decrease the refcnt increased by tipc_node_find() and will cause a refcnt leak. Fix this issue by calling tipc_node_put() before the original object pointed by "n" becomes invalid. Signed-off-by: Xiyu Yang <xiyuyang19@fudan.edu.cn> Signed-off-by: Xin Tan <tanxin.ctf@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-04-18tipc: Fix potential tipc_aead refcnt leak in tipc_crypto_rcvXiyu Yang
tipc_crypto_rcv() invokes tipc_aead_get(), which returns a reference of the tipc_aead object to "aead" with increased refcnt. When tipc_crypto_rcv() returns, the original local reference of "aead" becomes invalid, so the refcount should be decreased to keep refcount balanced. The issue happens in one error path of tipc_crypto_rcv(). When TIPC message decryption status is EINPROGRESS or EBUSY, the function forgets to decrease the refcnt increased by tipc_aead_get() and causes a refcnt leak. Fix this issue by calling tipc_aead_put() on the error path when TIPC message decryption status is EINPROGRESS or EBUSY. Signed-off-by: Xiyu Yang <xiyuyang19@fudan.edu.cn> Signed-off-by: Xin Tan <tanxin.ctf@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-04-18net: netrom: Fix potential nr_neigh refcnt leak in nr_add_nodeXiyu Yang
nr_add_node() invokes nr_neigh_get_dev(), which returns a local reference of the nr_neigh object to "nr_neigh" with increased refcnt. When nr_add_node() returns, "nr_neigh" becomes invalid, so the refcount should be decreased to keep refcount balanced. The issue happens in one normal path of nr_add_node(), which forgets to decrease the refcnt increased by nr_neigh_get_dev() and causes a refcnt leak. It should decrease the refcnt before the function returns like other normal paths do. Fix this issue by calling nr_neigh_put() before the nr_add_node() returns. Signed-off-by: Xiyu Yang <xiyuyang19@fudan.edu.cn> Signed-off-by: Xin Tan <tanxin.ctf@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-04-18ALSA: hda/realtek - Fix unexpected init_amp overrideTakashi Iwai
The commit 1c76aa5fb48d ("ALSA: hda/realtek - Allow skipping spec->init_amp detection") changed the way to assign spec->init_amp field that specifies the way to initialize the amp. Along with the change, the commit also replaced a few fixups that set spec->init_amp in HDA_FIXUP_ACT_PROBE with HDA_FIXUP_ACT_PRE_PROBE. This was rather aligning to the other fixups, and not supposed to change the actual behavior. However, this change turned out to cause a regression on FSC S7020, which hit exactly the above. The reason was that there is still one place that overrides spec->init_amp after HDA_FIXUP_ACT_PRE_PROBE call, namely in alc_ssid_check(). This patch fixes the regression by adding the proper spec->init_amp override check, i.e. verifying whether it's still ALC_INIT_UNDEFINED. Fixes: 1c76aa5fb48d ("ALSA: hda/realtek - Allow skipping spec->init_amp detection") Cc: <stable@vger.kernel.org> BugLink: https://bugzilla.kernel.org/show_bug.cgi?id=207329 Link: https://lore.kernel.org/r/20200418190639.10082-1-tiwai@suse.de Signed-off-by: Takashi Iwai <tiwai@suse.de>