Age | Commit message (Collapse) | Author |
|
There is no need to check for regulator presence in the ->suspend()
since a wrapper does it for us. Due to this we may unconditionally set
AFTER_SUSPEND_POWER flag.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
Make use of device property API in this driver so that both OF based
system and ACPI based system can use this driver.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
Simplify the code which fetches the input clock by using
devm_clk_get_optional(). This comes with a small functional change: previously
all errors were ignored when platform data is present. Now all errors are
treated as errors. If no input clock is present devm_clk_get_optional() will
return NULL instead of an error which matches the behavior of the old code.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
In the pre device-tree ARM aera there were board files that configured
the system (instead of a device tree). A "struct spi_board_info" was
used to describe the SPI bus.
As new systems should be described via device trees, this patch removes
the board setup example from the driver. The "struct
mcp251x_platform_data" cannot be removed completely, as there are still
some in-tree users of this file.
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
Remove checking the wake pin for every read/write call.
The device is not explicitly put to sleep in the code
and the POR interrupt is cleared during the init of
the device.
Signed-off-by: Dan Murphy <dmurphy@ti.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
Remove the data-ready gpio interrupt handling and use the spi->irq
that is created based on the interrupt DT property.
Signed-off-by: Dan Murphy <dmurphy@ti.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
Remove the data-ready-gpio property in favor of the DT standard
interrupt-parent and interrupts.
Signed-off-by: Dan Murphy <dmurphy@ti.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
system.
The system clock frequency for the bus connected to the PCIe controller
shall be used when calculating the frequency of the PWM, not the CAN
system clock frequency.
Signed-off-by: Christer Beskow <chbe@kvaser.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
Recently device pass-through stops working for Linux VM running on Hyper-V.
git-bisect shows the regression is caused by the recent commit
467a3bb97432 ("PCI: hv: Allocate a named fwnode ..."), but the root cause
is that the commit d59f6617eef0 forgets to set the domain->fwnode for
IRQCHIP_FWNODE_NAMED*, and as a result:
1. The domain->fwnode remains to be NULL.
2. irq_find_matching_fwspec() returns NULL since "h->fwnode == fwnode" is
false, and pci_set_bus_msi_domain() sets the Hyper-V PCI root bus's
msi_domain to NULL.
3. When the device is added onto the root bus, the device's dev->msi_domain
is set to NULL in pci_set_msi_domain().
4. When a device driver tries to enable MSI-X, pci_msi_setup_msi_irqs()
calls arch_setup_msi_irqs(), which uses the native MSI chip (i.e.
arch/x86/kernel/apic/msi.c: pci_msi_controller) to set up the irqs, but
actually pci_msi_setup_msi_irqs() is supposed to call
msi_domain_alloc_irqs() with the hbus->irq_domain, which is created in
hv_pcie_init_irq_domain() and is associated with the Hyper-V chip
hv_msi_irq_chip. Consequently, the irq line is not properly set up, and
the device driver can not receive any interrupt.
Fixes: d59f6617eef0 ("genirq: Allow fwnode to carry name information only")
Fixes: 467a3bb97432 ("PCI: hv: Allocate a named fwnode instead of an address-based one")
Reported-by: Lili Deng <v-lide@microsoft.com>
Signed-off-by: Dexuan Cui <decui@microsoft.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/PU1P153MB01694D9AF625AC335C600C5FBFBE0@PU1P153MB0169.APCP153.PROD.OUTLOOK.COM
|
|
In acpi_pci_irq_enable(), 'entry' is allocated by kzalloc() in
acpi_pci_irq_check_entry() (invoked from acpi_pci_irq_lookup()). However,
it is not deallocated if acpi_pci_irq_valid() returns false, leading to a
memory leak. To fix this issue, free 'entry' before returning 0.
Fixes: e237a5518425 ("x86/ACPI/PCI: Recognize that Interrupt Line 255 means "not connected"")
Signed-off-by: Wenwen Wang <wenwen@cs.uga.edu>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Currently, __inline is #defined as inline in compiler_types.h, so this
should not change functionality. It is preparation for removing said
#define.
While at it, change some "inline static" to the customary "static
inline" order.
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Link: https://lore.kernel.org/r/20190830231527.22304-2-linux@rasmusvillemoes.dk
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
skb_put_data is shorter and clear.
Signed-off-by: Ivan Safonov <insafonov@gmail.com>
Link: https://lore.kernel.org/r/20190901195301.GA16043@alpha
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
It fixed following warning in kpc2000 driver
"constant XXXX is so big it is unsigned long"
Signed-off-by: Harsh Jain <harshjain32@gmail.com>
Link: https://lore.kernel.org/r/20190831115532.2398-1-harshjain32@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
A call to FAT_getblk is missing a null return check which can
lead to a null pointer dereference. Fix this by adding a null
check to match all the other FAT_getblk return sanity checks.
Addresses-Coverity: ("Dereference null return")
Fixes: c48c9f7ff32b ("staging: exfat: add exfat filesystem code to staging")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Link: https://lore.kernel.org/r/20190830175050.12706-1-colin.king@canonical.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
The problem is in gb_lights_request_handler(). If we get a request to
change the config then we release the light with gb_lights_light_release()
and re-allocated it. However, if the allocation fails part way through
then we call gb_lights_light_release() again. This can lead to a couple
different double frees where we haven't cleared out the original values:
gb_lights_light_v4l2_unregister(light);
...
kfree(light->channels);
kfree(light->name);
I also made a small change to how we set "light->channels_count = 0;".
The original code handled this part fine and did not cause a use after
free but it was sort of complicated to read.
Fixes: 2870b52bae4c ("greybus: lights: add lights implementation")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Rui Miguel Silva <rmfrfs@gmail.com>
Link: https://lore.kernel.org/r/20190829122839.GA20116@mwanda
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
When cpus != maxcpus cpuidle-haltpoll will fail to register all vcpus
past the online ones and thus fail to register the idle driver.
This is because cpuidle_add_sysfs() will return with -ENODEV as a
consequence from get_cpu_device() return no device for a non-existing
CPU.
Instead switch to cpuidle_register_driver() and manually register each
of the present cpus through cpuhp_setup_state() callbacks and future
ones that get onlined or offlined. This mimmics similar logic that
intel_idle does.
Fixes: fa86ee90eb11 ("add cpuidle-haltpoll driver")
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
This patch fixes the following checkpath warning
in the file drivers/staging/rts5208/rtsx_transport.c:546
WARNING: line over 80 characters
+ option = RTSX_SG_VALID | RTSX_SG_END |
RTSX_SG_TRANS_DATA;
Signed-off-by: P SAI PRASANTH <saip2823@gmail.com>
Link: https://lore.kernel.org/r/20190831034926.GA17810@dell-inspiron
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This patch solves the following checkpatch.pl's message in drivers/staging/rts5208/rtsx_transport.c:397.
WARNING: line over 80 characters
+ option = RTSX_SG_VALID | RTSX_SG_END | RTSX_SG_TRANS_DATA;
Signed-off-by: Prakhar Sinha <prakharsinha2808@gmail.com>
Link: https://lore.kernel.org/r/20190830121656.GA2740@MeraComputer
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
There are two hunks of code that check if sd30_mode is true however
an earlier check in an outer code block on sd30_mode being false means
that sd30_mode can never be true at these points so these checks are
redundant. Remove the dead code.
Addresses-Coverity: ("Logically dead code")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Link: https://lore.kernel.org/r/20190830081047.13630-1-colin.king@canonical.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
The return statement is incorrect, the error exit should be by
assigning ret with the error code and exiting via label out.
Thanks to Valdis Klētnieks for correcting my original fix.
Addresses-Coverity: ("Structurally dead code")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Link: https://lore.kernel.org/r/20190902094052.28029-1-colin.king@canonical.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Currently there are error return paths in ffsReadFile that
exit via lable err_out that return and uninitialized error
return in variable ret. Fix this by initializing ret to zero.
Addresses-Coverity: ("Uninitialized scalar variable")
Fixes: c48c9f7ff32b ("staging: exfat: add exfat filesystem code to staging")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Cc: Valdis Kletnieks <valdis.kletnieks@vt.edu>,
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Link: https://lore.kernel.org/r/20190830184644.15590-1-colin.king@canonical.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190826075558.8125-5-hch@lst.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
These wrappers don't provide a real benefit over just using
set_memory_x() and set_memory_nx().
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190826075558.8125-4-hch@lst.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190826075558.8125-3-hch@lst.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
No module currently messed with clearing or setting the execute
permission of kernel memory, and none really should.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190826075558.8125-2-hch@lst.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
When building with C=2, sparse makes note of a number of things:
arch/x86/events/intel/rapl.c:637:30: warning: symbol 'rapl_attr_update' was not declared. Should it be static?
arch/x86/events/intel/cstate.c:449:30: warning: symbol 'core_attr_update' was not declared. Should it be static?
arch/x86/events/intel/cstate.c:457:30: warning: symbol 'pkg_attr_update' was not declared. Should it be static?
arch/x86/events/msr.c:170:30: warning: symbol 'attr_update' was not declared. Should it be static?
arch/x86/events/intel/lbr.c:276:1: warning: symbol 'lbr_from_quirk_key' was not declared. Should it be static?
And they can all indeed be static.
Signed-off-by: Valdis Kletnieks <valdis.kletnieks@vt.edu>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/128059.1565286242@turing-police
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The supported clamp indexes are defined in 'enum clamp_id', however, because
of the code logic in some of the first utilization clamping series version,
sometimes we needed to use 'unsigned int' to represent indices.
This is not more required since the final version of the uclamp_* APIs can
always use the proper enum uclamp_id type.
Fix it with a bulk rename now that we have all the bits merged.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Michal Koutny <mkoutny@suse.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190822132811.31294-7-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
On updates of task group (TG) clamp values, ensure that these new values
are enforced on all RUNNABLE tasks of the task group, i.e. all RUNNABLE
tasks are immediately boosted and/or capped as requested.
Do that each time we update effective clamps from cpu_util_update_eff().
Use the *cgroup_subsys_state (css) to walk the list of tasks in each
affected TG and update their RUNNABLE tasks.
Update each task by using the same mechanism used for cpu affinity masks
updates, i.e. by taking the rq lock.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Michal Koutny <mkoutny@suse.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190822132811.31294-6-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
When a task specific clamp value is configured via sched_setattr(2), this
value is accounted in the corresponding clamp bucket every time the task is
{en,de}qeued. However, when cgroups are also in use, the task specific
clamp values could be restricted by the task_group (TG) clamp values.
Update uclamp_cpu_inc() to aggregate task and TG clamp values. Every time a
task is enqueued, it's accounted in the clamp bucket tracking the smaller
clamp between the task specific value and its TG effective value. This
allows to:
1. ensure cgroup clamps are always used to restrict task specific requests,
i.e. boosted not more than its TG effective protection and capped at
least as its TG effective limit.
2. implement a "nice-like" policy, where tasks are still allowed to request
less than what enforced by their TG effective limits and protections
Do this by exploiting the concept of "effective" clamp, which is already
used by a TG to track parent enforced restrictions.
Apply task group clamp restrictions only to tasks belonging to a child
group. While, for tasks in the root group or in an autogroup, system
defaults are still enforced.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Michal Koutny <mkoutny@suse.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190822132811.31294-5-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The clamp values are not tunable at the level of the root task group.
That's for two main reasons:
- the root group represents "system resources" which are always
entirely available from the cgroup standpoint.
- when tuning/restricting "system resources" makes sense, tuning must
be done using a system wide API which should also be available when
control groups are not.
When a system wide restriction is available, cgroups should be aware of
its value in order to know exactly how much "system resources" are
available for the subgroups.
Utilization clamping supports already the concepts of:
- system defaults: which define the maximum possible clamp values
usable by tasks.
- effective clamps: which allows a parent cgroup to constraint (maybe
temporarily) its descendants without losing the information related
to the values "requested" from them.
Exploit these two concepts and bind them together in such a way that,
whenever system default are tuned, the new values are propagated to
(possibly) restrict or relax the "effective" value of nested cgroups.
When cgroups are in use, force an update of all the RUNNABLE tasks.
Otherwise, keep things simple and do just a lazy update next time each
task will be enqueued.
Do that since we assume a more strict resource control is required when
cgroups are in use. This allows also to keep "effective" clamp values
updated in case we need to expose them to user-space.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Michal Koutny <mkoutny@suse.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190822132811.31294-4-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
In order to properly support hierarchical resources control, the cgroup
delegation model requires that attribute writes from a child group never
fail but still are locally consistent and constrained based on parent's
assigned resources. This requires to properly propagate and aggregate
parent attributes down to its descendants.
Implement this mechanism by adding a new "effective" clamp value for each
task group. The effective clamp value is defined as the smaller value
between the clamp value of a group and the effective clamp value of its
parent. This is the actual clamp value enforced on tasks in a task group.
Since it's possible for a cpu.uclamp.min value to be bigger than the
cpu.uclamp.max value, ensure local consistency by restricting each
"protection" (i.e. min utilization) with the corresponding "limit"
(i.e. max utilization).
Do that at effective clamps propagation to ensure all user-space write
never fails while still always tracking the most restrictive values.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Michal Koutny <mkoutny@suse.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190822132811.31294-3-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The cgroup CPU bandwidth controller allows to assign a specified
(maximum) bandwidth to the tasks of a group. However this bandwidth is
defined and enforced only on a temporal base, without considering the
actual frequency a CPU is running on. Thus, the amount of computation
completed by a task within an allocated bandwidth can be very different
depending on the actual frequency the CPU is running that task.
The amount of computation can be affected also by the specific CPU a
task is running on, especially when running on asymmetric capacity
systems like Arm's big.LITTLE.
With the availability of schedutil, the scheduler is now able
to drive frequency selections based on actual task utilization.
Moreover, the utilization clamping support provides a mechanism to
bias the frequency selection operated by schedutil depending on
constraints assigned to the tasks currently RUNNABLE on a CPU.
Giving the mechanisms described above, it is now possible to extend the
cpu controller to specify the minimum (or maximum) utilization which
should be considered for tasks RUNNABLE on a cpu.
This makes it possible to better defined the actual computational
power assigned to task groups, thus improving the cgroup CPU bandwidth
controller which is currently based just on time constraints.
Extend the CPU controller with a couple of new attributes uclamp.{min,max}
which allow to enforce utilization boosting and capping for all the
tasks in a group.
Specifically:
- uclamp.min: defines the minimum utilization which should be considered
i.e. the RUNNABLE tasks of this group will run at least at a
minimum frequency which corresponds to the uclamp.min
utilization
- uclamp.max: defines the maximum utilization which should be considered
i.e. the RUNNABLE tasks of this group will run up to a
maximum frequency which corresponds to the uclamp.max
utilization
These attributes:
a) are available only for non-root nodes, both on default and legacy
hierarchies, while system wide clamps are defined by a generic
interface which does not depends on cgroups. This system wide
interface enforces constraints on tasks in the root node.
b) enforce effective constraints at each level of the hierarchy which
are a restriction of the group requests considering its parent's
effective constraints. Root group effective constraints are defined
by the system wide interface.
This mechanism allows each (non-root) level of the hierarchy to:
- request whatever clamp values it would like to get
- effectively get only up to the maximum amount allowed by its parent
c) have higher priority than task-specific clamps, defined via
sched_setattr(), thus allowing to control and restrict task requests.
Add two new attributes to the cpu controller to collect "requested"
clamp values. Allow that at each non-root level of the hierarchy.
Keep it simple by not caring now about "effective" values computation
and propagation along the hierarchy.
Update sysctl_sched_uclamp_handler() to use the newly introduced
uclamp_mutex so that we serialize system default updates with cgroup
relate updates.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Michal Koutny <mkoutny@suse.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190822132811.31294-2-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
SD_BALANCE_{FORK,EXEC} and SD_WAKE_AFFINE are stripped in sd_init()
for any sched domains with a NUMA distance greater than 2 hops
(RECLAIM_DISTANCE). The idea being that it's expensive to balance
across domains that far apart.
However, as is rather unfortunately explained in:
commit 32e45ff43eaf ("mm: increase RECLAIM_DISTANCE to 30")
the value for RECLAIM_DISTANCE is based on node distance tables from
2011-era hardware.
Current AMD EPYC machines have the following NUMA node distances:
node distances:
node 0 1 2 3 4 5 6 7
0: 10 16 16 16 32 32 32 32
1: 16 10 16 16 32 32 32 32
2: 16 16 10 16 32 32 32 32
3: 16 16 16 10 32 32 32 32
4: 32 32 32 32 10 16 16 16
5: 32 32 32 32 16 10 16 16
6: 32 32 32 32 16 16 10 16
7: 32 32 32 32 16 16 16 10
where 2 hops is 32.
The result is that the scheduler fails to load balance properly across
NUMA nodes on different sockets -- 2 hops apart.
For example, pinning 16 busy threads to NUMA nodes 0 (CPUs 0-7) and 4
(CPUs 32-39) like so,
$ numactl -C 0-7,32-39 ./spinner 16
causes all threads to fork and remain on node 0 until the active
balancer kicks in after a few seconds and forcibly moves some threads
to node 4.
Override node_reclaim_distance for AMD Zen.
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Suravee.Suthikulpanit@amd.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas.Lendacky@amd.com
Cc: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20190808195301.13222-3-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
While it does make sense to allow CONFIG_NUMA and !CONFIG_SMP in
theory, it doesn't make much sense in practice.
Follow other architectures and make CONFIG_NUMA select CONFIG_SMP.
The motivation for this patch is to allow a new NUMA variable to be
initialised in kernel/sched/topology.c.
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Suravee.Suthikulpanit@amd.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas.Lendacky@amd.com
Cc: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20190808195301.13222-2-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The below entries are a little unorthodox; I've not found other entries in
MAINTAINER that subdivide responsibilities like this, and certainly the lovely
get_maintainers.pl script will not get it, but I'm thinking to a human it
should be plenty clear and we're all very good at ignoring email anyway.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Single nouveau firmware fix.
Signed-off-by: Dave Airlie <airlied@redhat.com>
From: Ben Skeggs <skeggsb@gmail.com>
Link: https://patchwork.freedesktop.org/patch/msgid/CACAvsv5uGLgDY8V8pWgEH0-YhkCEgvHE=NZ1W_m0gJaoFPuQ0g@mail.gmail.com
|
|
Fixes checkpatch.pl warning:
CHECK: Prefer using the BIT macro
Signed-off-by: Valentin Vidic <vvidic@valentin-vidic.from.hr>
Link: https://lore.kernel.org/r/20190902184319.11971-1-vvidic@valentin-vidic.from.hr
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Fixes checkpatch.pl warnings:
CHECK: Please don't use multiple blank lines
CHECK: Blank lines aren't necessary after an open brace '{'
CHECK: Please use a blank line after function/struct/union/enum
declarations
Signed-off-by: Valentin Vidic <vvidic@valentin-vidic.from.hr>
Link: https://lore.kernel.org/r/20190902190329.18685-1-vvidic@valentin-vidic.from.hr
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
On x86_64 we can do a u64 * u64 -> u128 widening multiply followed by
a u128 / u64 -> u64 division to implement a sane version of
mul_u64_u32_div().
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
do_sched_cfs_period_timer() will refill cfs_b runtime and call
distribute_cfs_runtime to unthrottle cfs_rq, sometimes cfs_b->runtime
will allocate all quota to one cfs_rq incorrectly, then other cfs_rqs
attached to this cfs_b can't get runtime and will be throttled.
We find that one throttled cfs_rq has non-negative
cfs_rq->runtime_remaining and cause an unexpetced cast from s64 to u64
in snippet:
distribute_cfs_runtime() {
runtime = -cfs_rq->runtime_remaining + 1;
}
The runtime here will change to a large number and consume all
cfs_b->runtime in this cfs_b period.
According to Ben Segall, the throttled cfs_rq can have
account_cfs_rq_runtime called on it because it is throttled before
idle_balance, and the idle_balance calls update_rq_clock to add time
that is accounted to the task.
This commit prevents cfs_rq to be assgined new runtime if it has been
throttled until that distribute_cfs_runtime is called.
Signed-off-by: Liangyan <liangyan.peng@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: shanpeic@linux.alibaba.com
Cc: stable@vger.kernel.org
Cc: xlpang@linux.alibaba.com
Fixes: d3d9dc330236 ("sched: Throttle entities exceeding their allowed bandwidth")
Link: https://lkml.kernel.org/r/20190826121633.6538-1-liangyan.peng@linux.alibaba.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Use devm_reset_controller_register to get rid
of manual unregistration.
Signed-off-by: Chuhong Yuan <hslester96@gmail.com>
Signed-off-by: Peter Chen <peter.chen@nxp.com>
|
|
Original pin node values of ASUS UX431FL with ALC294:
0x12 0xb7a60140
0x13 0x40000000
0x14 0x90170110
0x15 0x411111f0
0x16 0x411111f0
0x17 0x90170111
0x18 0x411111f0
0x19 0x411111f0
0x1a 0x411111f0
0x1b 0x411111f0
0x1d 0x4066852d
0x1e 0x411111f0
0x1f 0x411111f0
0x21 0x04211020
1. Has duplicated internal speakers (0x14 & 0x17) which makes the output
route become confused. So, the output volume cannot be changed by
setting.
2. Misses the headset mic pin node.
This patch disables the confusing speaker (NID 0x14) and enables the
headset mic (NID 0x19).
Link: https://lore.kernel.org/r/20190902100054.6941-1-jian-hong@endlessm.com
Signed-off-by: Jian-Hong Pan <jian-hong@endlessm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
|
|
Add qcs404 to cpufreq-dt-platdev blacklist.
Signed-off-by: Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org>
Co-developed-by: Niklas Cassel <niklas.cassel@linaro.org>
Signed-off-by: Niklas Cassel <niklas.cassel@linaro.org>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
|
|
Add support for qcs404 on nvmem driver.
The qcs404 SoC has support for Core Power Reduction (CPR), which is
implemented as a power domain provider, therefore add optional support
in this driver to attach to a genpd power domain.
Co-developed-by: Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org>
Signed-off-by: Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org>
Signed-off-by: Niklas Cassel <niklas.cassel@linaro.org>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
|
|
Refactor the driver to make it easier to extend in a later commit.
Create a driver struct to collect all common resources, in order to make
it easier to free up all common resources.
Create a driver match_data struct to make it easier to extend the driver
with support for new features that might only be supported on certain SoCs.
Co-developed-by: Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org>
Signed-off-by: Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org>
Signed-off-by: Niklas Cassel <niklas.cassel@linaro.org>
Reviewed-by: Ilia Lin <ilia.lin@kernel.org>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
|
|
socs
The kryo cpufreq driver reads the nvmem cell and uses that data to
populate the opps. There are other qcom cpufreq socs like krait which
does similar thing. Except for the interpretation of the read data,
rest of the driver is same for both the cases. So pull the common things
out for reuse.
Signed-off-by: Sricharan R <sricharan@codeaurora.org>
[niklas.cassel@linaro.org: split dt-binding into a separate patch and
do not rename the compatible string. Update MAINTAINERS file.]
Signed-off-by: Niklas Cassel <niklas.cassel@linaro.org>
Reviewed-by: Ilia Lin <ilia.lin@kernel.org>
Reviewed-by: Stephen Boyd <sboyd@kernel.org>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
|
|
|
|
Add qcom-opp bindings with properties needed for Core Power Reduction
(CPR).
CPR is included in a great variety of Qualcomm SoCs, e.g. msm8916 and
msm8996. CPR was first introduced in msm8974.
Co-developed-by: Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org>
Signed-off-by: Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org>
Signed-off-by: Niklas Cassel <niklas.cassel@linaro.org>
Reviewed-by: Stephen Boyd <swboyd@chromium.org>
Reviewed-by: Rob Herring <robh@kernel.org>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
|