Age | Commit message (Collapse) | Author |
|
Drop avic_get_physical_id_entry()'s compatibility check on the incoming
ID, as its sole caller, avic_init_backing_page(), performs the exact same
check. Drop avic_get_physical_id_entry() entirely as the only remaining
functionality is getting the address of the Physical ID table, and
accessing the array without an immediate bounds check is kludgy.
Opportunistically add a compile-time assertion to ensure the vcpu_id can't
result in a bounds overflow, e.g. if KVM (really) messed up a maximum
physical ID #define, as well as run-time assertions so that a NULL pointer
dereference is morphed into a safer WARN().
No functional change intended.
Tested-by: Sairaj Kodilkar <sarunkod@amd.com>
Reviewed-by: Naveen N Rao (AMD) <naveen@kernel.org>
Link: https://lore.kernel.org/r/20250611224604.313496-15-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Inhibit AVIC with a new "ID too big" flag if userspace creates a vCPU with
an ID that is too big, but otherwise allow vCPU creation to succeed.
Rejecting KVM_CREATE_VCPU with EINVAL violates KVM's ABI as KVM advertises
that the max vCPU ID is 4095, but disallows creating vCPUs with IDs bigger
than 254 (AVIC) or 511 (x2AVIC).
Alternatively, KVM could advertise an accurate value depending on which
AVIC mode is in use, but that wouldn't really solve the underlying problem,
e.g. would be a breaking change if KVM were to ever try and enable AVIC or
x2AVIC by default.
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Tested-by: Sairaj Kodilkar <sarunkod@amd.com>
Link: https://lore.kernel.org/r/20250611224604.313496-14-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Drop vcpu_svm's avic_backing_page pointer and instead grab the physical
address of KVM's vAPIC page directly from the source. Getting a physical
address from a kernel virtual address is not an expensive operation, and
getting the physical address from a struct page is *more* expensive for
CONFIG_SPARSEMEM=y kernels. Regardless, none of the paths that consume
the address are hot paths, i.e. shaving cycles is not a priority.
Eliminating the "cache" means KVM doesn't have to worry about the cache
being invalid, which will simplify a future fix when dealing with vCPU IDs
that are too big.
WARN if KVM attempts to allocate a vCPU's AVIC backing page without an
in-kernel local APIC. avic_init_vcpu() bails early if the APIC is not
in-kernel, and KVM disallows enabling an in-kernel APIC after vCPUs have
been created, i.e. it should be impossible to reach
avic_init_backing_page() without the vAPIC being allocated.
Tested-by: Sairaj Kodilkar <sarunkod@amd.com>
Reviewed-by: Naveen N Rao (AMD) <naveen@kernel.org>
Link: https://lore.kernel.org/r/20250611224604.313496-13-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Add a helper to get the physical address of the AVIC backing page, both
to deduplicate code and to prepare for getting the address directly from
apic->regs, at which point it won't be all that obvious that the address
in question is what SVM calls the AVIC backing page.
No functional change intended.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Tested-by: Sairaj Kodilkar <sarunkod@amd.com>
Reviewed-by: Naveen N Rao (AMD) <naveen@kernel.org>
Link: https://lore.kernel.org/r/20250611224604.313496-12-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Drop AVIC_HPA_MASK and all its users, the mask is just the 4KiB-aligned
maximum theoretical physical address for x86-64 CPUs, as x86-64 is
currently defined (going beyond PA52 would require an entirely new paging
mode, which would arguably create a new, different architecture).
All usage in KVM masks the result of page_to_phys(), which on x86-64 is
guaranteed to be 4KiB aligned and a legal physical address; if either of
those requirements doesn't hold true, KVM has far bigger problems.
Drop masking the avic_backing_page with
AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK for all the same reasons, but
keep the macro even though it's unused in functional code. It's a
distinct architectural define, and having the definition in software
helps visualize the layout of an entry. And to be hyper-paranoid about
MAXPA going beyond 52, add a compile-time assert to ensure the kernel's
maximum supported physical address stays in bounds.
The unnecessary masking in avic_init_vmcb() also incorrectly assumes that
SME's C-bit resides between bits 51:11; that holds true for current CPUs,
but isn't required by AMD's architecture:
In some implementations, the bit used may be a physical address bit
Key word being "may".
Opportunistically use the GENMASK_ULL() version for
AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK, which is far more readable
than a set of repeating Fs.
Tested-by: Sairaj Kodilkar <sarunkod@amd.com>
Reviewed-by: Naveen N Rao (AMD) <naveen@kernel.org>
Link: https://lore.kernel.org/r/20250611224604.313496-11-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Drop VMCB_AVIC_APIC_BAR_MASK, it's just a regurgitation of the maximum
theoretical 4KiB-aligned physical address, i.e. is not novel in any way,
and its only usage is to mask the default APIC base, which is 4KiB aligned
and (obviously) a legal physical address.
No functional change intended.
Tested-by: Sairaj Kodilkar <sarunkod@amd.com>
Reviewed-by: Naveen N Rao (AMD) <naveen@kernel.org>
Link: https://lore.kernel.org/r/20250611224604.313496-10-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Delete the IRTE link from the previous vCPU irrespective of the new
routing state, i.e. even if the IRTE won't be configured to post IRQs to a
vCPU. Whether or not the new route is postable as no bearing on the *old*
route. Failure to delete the link can result in KVM incorrectly updating
the IRTE, e.g. if the "old" vCPU is scheduled in/out.
Fixes: 411b44ba80ab ("svm: Implements update_pi_irte hook to setup posted interrupt")
Tested-by: Sairaj Kodilkar <sarunkod@amd.com>
Link: https://lore.kernel.org/r/20250611224604.313496-9-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Delete the amd_ir_data.prev_ga_tag field now that all usage is
superfluous.
Reviewed-by: Vasant Hegde <vasant.hegde@amd.com>
Tested-by: Sairaj Kodilkar <sarunkod@amd.com>
Link: https://lore.kernel.org/r/20250611224604.313496-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Delete the previous per-vCPU IRTE link prior to modifying the IRTE. If
forcing the IRTE back to remapped mode fails, the IRQ is already broken;
keeping stale metadata won't change that, and the IOMMU should be
sufficiently paranoid to sanitize the IRTE when the IRQ is freed and
reallocated.
This will allow hoisting the vCPU tracking to common x86, which in turn
will allow most of the IRTE update code to be deduplicated.
Tested-by: Sairaj Kodilkar <sarunkod@amd.com>
Link: https://lore.kernel.org/r/20250611224604.313496-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Track the IRTEs that are posting to an SVM vCPU via the associated irqfd
structure and GSI routing instead of dynamically allocating a separate
data structure. In addition to eliminating an atomic allocation, this
will allow hoisting much of the IRTE update logic to common x86.
Cc: Sairaj Kodilkar <sarunkod@amd.com>
Link: https://lore.kernel.org/r/20250611224604.313496-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
When updating IRTEs in response to a GSI routing or IRQ bypass change,
pass the new/current routing information along with the associated irqfd.
This will allow KVM x86 to harden, simplify, and deduplicate its code.
Since adding/removing a bypass producer is now conveniently protected with
irqfds.lock, i.e. can't run concurrently with kvm_irq_routing_update(),
use the routing information cached in the irqfd instead of looking up
the information in the current GSI routing tables.
Opportunistically convert an existing printk() to pr_info() and put its
string onto a single line (old code that strictly adhered to 80 chars).
Link: https://lore.kernel.org/r/20250611224604.313496-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Drop irq_comm.c, a.k.a. common IRQ APIs, as there has been no non-x86 user
since commit 003f7de62589 ("KVM: ia64: remove") (at the time, irq_comm.c
lived in virt/kvm, not arch/x86/kvm).
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20250611213557.294358-19-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Move the IRQ mask logic to ioapic.c as KVM's only user is its in-kernel
I/O APIC emulation. In addition to encapsulating more I/O APIC specific
code, trimming down irq_comm.c helps pave the way for removing it entirely.
Acked-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20250611213557.294358-18-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
unsupported
Now that KVM x86 allows compiling out support for in-kernel I/O APIC (and
PIC and PIT) emulation, i.e. allows disabling KVM_CREATE_IRQCHIP for all
intents and purposes, fall back to a split IRQ chip for x86 if creating
the full in-kernel version fails with ENOTTY.
Acked-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20250611213557.294358-17-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Squash two #idef CONFIG_HAVE_KVM_IRQCHIP regions in KVM's trace events, as
the only code outside of the #idefs depends on CONFIG_KVM_IOAPIC, and that
Kconfig only exists for x86, which unconditionally selects HAVE_KVM_IRQCHIP.
No functional change intended.
Acked-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20250611213557.294358-16-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Add a Kconfig to allow building KVM without support for emulating a I/O
APIC, PIC, and PIT, which is desirable for deployments that effectively
don't support a fully in-kernel IRQ chip, i.e. never expect any VMM to
create an in-kernel I/O APIC. E.g. compiling out support eliminates a few
thousand lines of guest-facing code and gives security folks warm fuzzies.
As a bonus, wrapping relevant paths with CONFIG_KVM_IOAPIC #ifdefs makes
it much easier for readers to understand which bits and pieces exist
specifically for fully in-kernel IRQ chips.
Opportunistically convert all two in-kernel uses of __KVM_HAVE_IOAPIC to
CONFIG_KVM_IOAPIC, e.g. rather than add a second #ifdef to generate a stub
for kvm_arch_post_irq_routing_update().
Acked-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20250611213557.294358-15-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Move the I/O APIC tracepoints and trace_kvm_msi_set_irq() to x86, as
__KVM_HAVE_IOAPIC is just code for "x86", and trace_kvm_msi_set_irq()
isn't unique to I/O APIC emulation.
Opportunistically clean up the absurdly messy #includes in ioapic.c.
No functional change intended.
Acked-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20250611213557.294358-14-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Explicitly check for an in-kernel PIC when checking for a pending ExtINT
in the PIC. Effectively swapping the split vs. full irqchip logic will
allow guarding the in-kernel I/O APIC (and PIC) emulation with a Kconfig,
and also makes it more obvious that kvm_pic_read_irq() won't result in a
NULL pointer dereference.
Opportunistically add WARNs in the fallthrough path, mostly to document
that the userspace ExtINT logic is only relevant to split IRQ chips.
Acked-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20250611213557.294358-13-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Don't bother clearing the PIT's IRQ line status when destroying the PIT,
as userspace can't possibly rely on KVM to lower the IRQ line in any sane
use case, and it's not at all obvious that clearing the PIT's IRQ line is
correct/desirable in kvm_create_pit()'s error path.
When called from kvm_arch_pre_destroy_vm(), the entire VM is being torn
down and thus {kvm_pic,kvm_ioapic}.irq_states are unreachable.
As for the error path in kvm_create_pit(), the only way the PIT's bit in
irq_states can be set is if userspace raises the associated IRQ before
KVM_CREATE_PIT{2} completes. Forcefully clearing the bit would clobber
userspace's input, nonsensical though that input may be. Not to mention
that no known VMM will continue on if PIT creation fails.
Acked-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20250611213557.294358-12-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Hardcode the PIT's source IRQ ID to '2' instead of "finding" that bit 2
is always the first available bit in irq_sources_bitmap. Bits 0 and 1 are
set/reserved by kvm_arch_init_vm(), i.e. long before kvm_create_pit() can
be invoked, and KVM allows at most one in-kernel PIT instance, i.e. it's
impossible for the PIT to find a different free bit (there are no other
users of kvm_request_irq_source_id().
Delete the now-defunct irq_sources_bitmap and all its associated code.
Acked-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20250611213557.294358-11-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Move kvm_{request,free}_irq_source_id() to i8254.c, i.e. the dedicated PIT
emulation file, in anticipation of removing them entirely in favor of
hardcoding the PIT's "requested" source ID (the source ID can only ever be
'2', and the request can never fail).
No functional change intended.
Acked-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20250611213557.294358-10-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Move the default IRQ routing table used for in-kernel I/O APIC and PIC
routing to irq.c, and tweak the name to make it explicitly clear what
routing is being initialized.
In addition to making it more obvious that the so called "default" routing
only applies to an in-kernel I/O APIC, getting it out of irq_comm.c will
allow removing irq_comm.c entirely. And placing the function alongside
other I/O APIC and PIC code will allow for guarding KVM's in-kernel I/O
APIC and PIC emulation with a Kconfig with minimal #ifdefs.
No functional change intended.
Cc: Kai Huang <kai.huang@intel.com>
Acked-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20250611213557.294358-9-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Rename irqchip_kernel() to irqchip_full(), as "kernel" is very ambiguous
due to the existence of split IRQ chip support, where only some of the
"irqchip" is in emulated by the kernel/KVM. E.g. irqchip_kernel() often
gets confused with irqchip_in_kernel().
Opportunistically hoist the definition up in irq.h so that it's
co-located with other "full" irqchip code in anticipation of wrapping it
all with a Kconfig/#ifdef.
No functional change intended.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20250611213557.294358-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Move the ioctl helpers for getting/setting fully in-kernel IRQ chip state
to irq.c, partly to trim down x86.c, but mostly in preparation for adding
a Kconfig to control support for in-kernel I/O APIC, PIC, and PIT
emulation.
No functional change intended.
Acked-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20250611213557.294358-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Move the PIT ioctl helpers to i8254.c, i.e. to the file that implements
PIT emulation. Eliminating PIT code in x86.c will allow adding a Kconfig
to control support for in-kernel I/O APIC, PIC, and PIT emulation with
minimal #ifdefs.
Opportunistically make kvm_pit_set_reinject() and kvm_pit_load_count()
local to i8254.c as they were only publicly visible to make them available
to the ioctl helpers.
No functional change intended.
Acked-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20250611213557.294358-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Drop the superfluous kvm_hv_set_sint() and instead wire up ->set() directly
to its final destination, kvm_hv_synic_set_irq(). Keep hv_synic_set_irq()
instead of kvm_hv_set_sint() to provide some amount of consistency in the
->set() helpers, e.g. to match kvm_pic_set_irq() and kvm_ioapic_set_irq().
kvm_set_msi() is arguably the oddball, e.g. kvm_set_msi_irq() should be
something like kvm_msi_to_lapic_irq() so that kvm_set_msi() can instead be
kvm_set_msi_irq(), but that's a future problem to solve.
No functional change intended.
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Kai Huang <kai.huang@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Acked-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20250611213557.294358-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Drop the superfluous and confusing kvm_set_ioapic_irq() and instead wire
up ->set() directly to its final destination.
No functional change intended.
Acked-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20250611213557.294358-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Drop the superfluous and confusing kvm_set_pic_irq() => kvm_pic_set_irq()
wrapper, and instead wire up ->set() directly to its final destination.
Opportunistically move the declaration kvm_pic_set_irq() to irq.h to
start gathering more of the in-kernel APIC/IO-APIC logic in irq.{c,h}.
No functional change intended.
Acked-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20250611213557.294358-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Trigger the I/O APIC route rescan that's performed for a split IRQ chip
after userspace updates IRQ routes in kvm_arch_irq_routing_update(), i.e.
before dropping kvm->irq_lock. Calling kvm_make_all_cpus_request() under
a mutex is perfectly safe, and the smp_wmb()+smp_mb__after_atomic() pair
in __kvm_make_request()+kvm_check_request() ensures the new routing is
visible to vCPUs prior to the request being visible to vCPUs.
In all likelihood, commit b053b2aef25d ("KVM: x86: Add EOI exit bitmap
inference") somewhat arbitrarily made the request outside of irq_lock to
avoid holding irq_lock any longer than is strictly necessary. And then
commit abdb080f7ac8 ("kvm/irqchip: kvm_arch_irq_routing_update renaming
split") took the easy route of adding another arch hook instead of risking
a functional change.
Note, the call to synchronize_srcu_expedited() does NOT provide ordering
guarantees with respect to vCPUs scanning the new routing; as above, the
request infrastructure provides the necessary ordering. I.e. there's no
need to wait for kvm_scan_ioapic_routes() to complete if it's actively
running, because regardless of whether it grabs the old or new table, the
vCPU will have another KVM_REQ_SCAN_IOAPIC pending, i.e. will rescan again
and see the new mappings.
Acked-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20250611213557.294358-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Pass in the Linux IRQ associated with an IRQ bypass producer instead of
relying on the caller to set the field prior to registration, as there's
no benefit to relying on callers to do the right thing.
Take care to set producer->irq before __connect(), as KVM expects the IRQ
to be valid as soon as a connection is possible.
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Link: https://lore.kernel.org/r/20250516230734.2564775-9-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Track IRQ bypass producers and consumers using an xarray to avoid the O(2n)
insertion time associated with walking a list to check for duplicate
entries, and to search for an partner.
At low (tens or few hundreds) total producer/consumer counts, using a list
is faster due to the need to allocate backing storage for xarray. But as
count creeps into the thousands, xarray wins easily, and can provide
several orders of magnitude better latency at high counts. E.g. hundreds
of nanoseconds vs. hundreds of milliseconds.
Cc: Oliver Upton <oliver.upton@linux.dev>
Cc: David Matlack <dmatlack@google.com>
Cc: Like Xu <like.xu.linux@gmail.com>
Cc: Binbin Wu <binbin.wu@linux.intel.com>
Reported-by: Yong He <alexyonghe@tencent.com>
Closes: https://bugzilla.kernel.org/show_bug.cgi?id=217379
Link: https://lore.kernel.org/all/20230801115646.33990-1-likexu@tencent.com
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Alex Williamson <alex.williamson@redhat.com>
Link: https://lore.kernel.org/r/20250516230734.2564775-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Use guard(mutex) to clean up irqbypass's error handling.
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Alex Williamson <alex.williamson@redhat.com>
Link: https://lore.kernel.org/r/20250516230734.2564775-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Use the paired consumer/producer information to disconnect IRQ bypass
producers/consumers in O(1) time (ignoring the cost of __disconnect()).
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Alex Williamson <alex.williamson@redhat.com>
Link: https://lore.kernel.org/r/20250516230734.2564775-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Explicitly track IRQ bypass producer:consumer bindings. This will allow
making removal an O(1) operation; searching through the list to find
information that is trivially tracked (and useful for debug) is wasteful.
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Alex Williamson <alex.williamson@redhat.com>
Link: https://lore.kernel.org/r/20250516230734.2564775-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Move ownership of IRQ bypass token tracking into irqbypass.ko, and
explicitly require callers to pass an eventfd_ctx structure instead of a
completely opaque token. Relying on producers and consumers to set the
token appropriately is error prone, and hiding the fact that the token must
be an eventfd_ctx pointer (for all intents and purposes) unnecessarily
obfuscates the code and makes it more brittle.
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Alex Williamson <alex.williamson@redhat.com>
Link: https://lore.kernel.org/r/20250516230734.2564775-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Drop superfluous might_sleep() annotations from irqbypass, mutex_lock()
provides all of the necessary tracking.
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Alex Williamson <alex.williamson@redhat.com>
Link: https://lore.kernel.org/r/20250516230734.2564775-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Drop irqbypass.ko's superfluous and misleading get/put calls on
THIS_MODULE. A module taking a reference to itself is useless; no amount
of checks will prevent doom and destruction if the caller hasn't already
guaranteed the liveliness of the module (this goes for any module). E.g.
if try_module_get() fails because irqbypass.ko is being unloaded, then the
kernel has already hit a use-after-free by virtue of executing code whose
lifecycle is tied to irqbypass.ko.
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Alex Williamson <alex.williamson@redhat.com>
Link: https://lore.kernel.org/r/20250516230734.2564775-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
When unmapping a vLPI, WARN if nullifying vCPU affinity fails, not just if
failure occurs when freeing an ITE. If undoing vCPU affinity fails, then
odds are very good that vLPI state tracking has has gotten out of whack,
i.e. that KVM and the GIC disagree on the state of an IRQ/vLPI. At best,
inconsistent state means there is a lurking bug/flaw somewhere. At worst,
the inconsistency could eventually be fatal to the host, e.g. if an ITS
command fails because KVM's view of things doesn't match reality/hardware.
Note, only the call from kvm_arch_irq_bypass_del_producer() by way of
kvm_vgic_v4_unset_forwarding() doesn't already WARN. Common KVM's
kvm_irq_routing_update() WARNs if kvm_arch_update_irqfd_routing() fails.
For that path, if its_unmap_vlpi() fails in kvm_vgic_v4_unset_forwarding(),
the only possible causes are that the GIC doesn't have a v4 ITS (from
its_irq_set_vcpu_affinity()):
/* Need a v4 ITS */
if (!is_v4(its_dev->its))
return -EINVAL;
guard(raw_spinlock)(&its_dev->event_map.vlpi_lock);
/* Unmap request? */
if (!info)
return its_vlpi_unmap(d);
or that KVM has gotten out of sync with the GIC/ITS (from its_vlpi_unmap()):
if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
return -EINVAL;
All of the above failure scenarios are warnable offences, as they should
never occur absent a kernel/KVM bug.
Acked-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/all/aFWY2LTVIxz5rfhh@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Allow userspace to advertise TDG.VP.VMCALL subfunctions that the
kernel also supports. For each output register of GetTdVmCallInfo's
leaf 1, add two fields to KVM_TDX_CAPABILITIES: one for kernel-supported
TDVMCALLs (userspace can set those blindly) and one for user-supported
TDVMCALLs (userspace can set those if it knows how to handle them).
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Exit to userspace for TDG.VP.VMCALL<GetTdVmCallInfo> via KVM_EXIT_TDX,
to allow userspace to provide information about the support of
TDVMCALLs when r12 is 1 for the TDVMCALLs beyond the GHCI base API.
GHCI spec defines the GHCI base TDVMCALLs: <GetTdVmCallInfo>, <MapGPA>,
<ReportFatalError>, <Instruction.CPUID>, <#VE.RequestMMIO>,
<Instruction.HLT>, <Instruction.IO>, <Instruction.RDMSR> and
<Instruction.WRMSR>. They must be supported by VMM to support TDX guests.
For GetTdVmCallInfo
- When leaf (r12) to enumerate TDVMCALL functionality is set to 0,
successful execution indicates all GHCI base TDVMCALLs listed above are
supported.
Update the KVM TDX document with the set of the GHCI base APIs.
- When leaf (r12) to enumerate TDVMCALL functionality is set to 1, it
indicates the TDX guest is querying the supported TDVMCALLs beyond
the GHCI base TDVMCALLs.
Exit to userspace to let userspace set the TDVMCALL sub-function bit(s)
accordingly to the leaf outputs. KVM could set the TDVMCALL bit(s)
supported by itself when the TDVMCALLs don't need support from userspace
after returning from userspace and before entering guest. Currently, no
such TDVMCALLs implemented, KVM just sets the values returned from
userspace.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
[Adjust userspace API. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Handle TDVMCALL for GetQuote to generate a TD-Quote.
GetQuote is a doorbell-like interface used by TDX guests to request VMM
to generate a TD-Quote signed by a service hosting TD-Quoting Enclave
operating on the host. A TDX guest passes a TD Report (TDREPORT_STRUCT) in
a shared-memory area as parameter. Host VMM can access it and queue the
operation for a service hosting TD-Quoting enclave. When completed, the
Quote is returned via the same shared-memory area.
KVM only checks the GPA from the TDX guest has the shared-bit set and drops
the shared-bit before exiting to userspace to avoid bleeding the shared-bit
into KVM's exit ABI. KVM forwards the request to userspace VMM (e.g. QEMU)
and userspace VMM queues the operation asynchronously. KVM sets the return
code according to the 'ret' field set by userspace to notify the TDX guest
whether the request has been queued successfully or not. When the request
has been queued successfully, the TDX guest can poll the status field in
the shared-memory area to check whether the Quote generation is completed
or not. When completed, the generated Quote is returned via the same
buffer.
Add KVM_EXIT_TDX as a new exit reason to userspace. Userspace is
required to handle the KVM exit reason as the initial support for TDX,
by reentering KVM to ensure that the TDVMCALL is complete. While at it,
add a note that KVM_EXIT_HYPERCALL also requires reentry with KVM_RUN.
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Tested-by: Mikko Ylinen <mikko.ylinen@linux.intel.com>
Acked-by: Kai Huang <kai.huang@intel.com>
[Adjust userspace API. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add the new TDVMCALL status code TDVMCALL_STATUS_SUBFUNC_UNSUPPORTED and
return it for unimplemented TDVMCALL subfunctions.
Returning TDVMCALL_STATUS_INVALID_OPERAND when a subfunction is not
implemented is vague because TDX guests can't tell the error is due to
the subfunction is not supported or an invalid input of the subfunction.
New GHCI spec adds TDVMCALL_STATUS_SUBFUNC_UNSUPPORTED to avoid the
ambiguity. Use it instead of TDVMCALL_STATUS_INVALID_OPERAND.
Before the change, for common guest implementations, when a TDX guest
receives TDVMCALL_STATUS_INVALID_OPERAND, it has two cases:
1. Some operand is invalid. It could change the operand to another value
retry.
2. The subfunction is not supported.
For case 1, an invalid operand usually means the guest implementation bug.
Since the TDX guest can't tell which case is, the best practice for
handling TDVMCALL_STATUS_INVALID_OPERAND is stopping calling such leaf,
treating the failure as fatal if the TDVMCALL is essential or ignoring
it if the TDVMCALL is optional.
With this change, TDVMCALL_STATUS_SUBFUNC_UNSUPPORTED could be sent to
old TDX guest that do not know about it, but it is expected that the
guest will make the same action as TDVMCALL_STATUS_INVALID_OPERAND.
Currently, no known TDX guest checks TDVMCALL_STATUS_INVALID_OPERAND
specifically; for example Linux just checks for success.
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
[Return it for untrapped KVM_HC_MAP_GPA_RANGE. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
into HEAD
KVM/riscv fixes for 6.16, take #1
- Fix the size parameter check in SBI SFENCE calls
- Don't treat SBI HFENCE calls as NOPs
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 fixes for 6.16, take #3
- Fix another set of FP/SIMD/SVE bugs affecting NV, and plugging some
missing synchronisation
- A small fix for the irqbypass hook fixes, tightening the check and
ensuring that we only deal with MSI for both the old and the new
route entry
- Rework the way the shadow LRs are addressed in a nesting
configuration, plugging an embarrassing bug as well as simplifying
the whole process
- Add yet another fix for the dreaded arch_timer_edge_cases selftest
|
|
The VHE hyp code has recently gained a few ISBs. Simplify this to one
unconditional ISB in __kvm_vcpu_run_vhe(), and remove the unnecessary
ISB from the kvm_call_hyp_ret() macro.
While kvm_call_hyp_ret() is also used to invoke
__vgic_v3_get_gic_config(), but no ISB is necessary in that case either.
For the moment, an ISB is left in kvm_call_hyp(), as there are many more
users, and removing the ISB would require a more thorough audit.
Suggested-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Oliver Upton <oliver.upton@linux.dev>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20250617133718.4014181-8-mark.rutland@arm.com
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
We no longer use cpacr_clear_set().
Remove cpacr_clear_set() and its helper functions.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Oliver Upton <oliver.upton@linux.dev>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20250617133718.4014181-7-mark.rutland@arm.com
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
The hyp code FPSIMD/SVE/SME trap handling logic has some rather messy
open-coded manipulation of CPTR/CPACR. This is benign for non-nested
guests, but broken for nested guests, as the guest hypervisor's CPTR
configuration is not taken into account.
Consider the case where L0 provides FPSIMD+SVE to an L1 guest
hypervisor, and the L1 guest hypervisor only provides FPSIMD to an L2
guest (with L1 configuring CPTR/CPACR to trap SVE usage from L2). If the
L2 guest triggers an FPSIMD trap to the L0 hypervisor,
kvm_hyp_handle_fpsimd() will see that the vCPU supports FPSIMD+SVE, and
will configure CPTR/CPACR to NOT trap FPSIMD+SVE before returning to the
L2 guest. Consequently the L2 guest would be able to manipulate SVE
state even though the L1 hypervisor had configured CPTR/CPACR to forbid
this.
Clean this up, and fix the nested virt issue by always using
__deactivate_cptr_traps() and __activate_cptr_traps() to manage the CPTR
traps. This removes the need for the ad-hoc fixup in
kvm_hyp_save_fpsimd_host(), and ensures that any guest hypervisor
configuration of CPTR/CPACR is taken into account.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Oliver Upton <oliver.upton@linux.dev>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20250617133718.4014181-6-mark.rutland@arm.com
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
There's no need for fpsimd_sve_sync() to write to CPTR/CPACR. All
relevant traps are always disabled earlier within __kvm_vcpu_run(), when
__deactivate_cptr_traps() configures CPTR/CPACR.
With irrelevant details elided, the flow is:
handle___kvm_vcpu_run(...)
{
flush_hyp_vcpu(...) {
fpsimd_sve_flush(...);
}
__kvm_vcpu_run(...) {
__activate_traps(...) {
__activate_cptr_traps(...);
}
do {
__guest_enter(...);
} while (...);
__deactivate_traps(....) {
__deactivate_cptr_traps(...);
}
}
sync_hyp_vcpu(...) {
fpsimd_sve_sync(...);
}
}
Remove the unnecessary write to CPTR/CPACR. An ISB is still necessary,
so a comment is added to describe this requirement.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Oliver Upton <oliver.upton@linux.dev>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20250617133718.4014181-5-mark.rutland@arm.com
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
The NVHE/HVHE and VHE modes have separate implementations of
__activate_cptr_traps() and __deactivate_cptr_traps() in their
respective switch.c files. There's some duplication of logic, and it's
not currently possible to reuse this logic elsewhere.
Move the logic into the common switch.h header so that it can be reused,
and de-duplicate the common logic.
This rework changes the way SVE traps are deactivated in VHE mode,
aligning it with NVHE/HVHE modes:
* Before this patch, VHE's __deactivate_cptr_traps() would
unconditionally enable SVE for host EL2 (but not EL0), regardless of
whether the ARM64_SVE cpucap was set.
* After this patch, VHE's __deactivate_cptr_traps() will take the
ARM64_SVE cpucap into account. When ARM64_SVE is not set, SVE will be
trapped from EL2 and below.
The old and new behaviour are both benign:
* When ARM64_SVE is not set, the host will not touch SVE state, and will
not reconfigure SVE traps. Host EL0 access to SVE will be trapped as
expected.
* When ARM64_SVE is set, the host will configure EL0 SVE traps before
returning to EL0 as part of reloading the EL0 FPSIMD/SVE/SME state.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Oliver Upton <oliver.upton@linux.dev>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20250617133718.4014181-4-mark.rutland@arm.com
Signed-off-by: Marc Zyngier <maz@kernel.org>
|