summaryrefslogtreecommitdiff
AgeCommit message (Collapse)Author
2013-09-26mac80211: add support for CSA in IBSS modeSimon Wunderlich
This function adds the channel switch announcement implementation for the IBSS code. It is triggered by userspace (mac80211/cfg) or by external channel switch announcement, which have to be adopted. Both CSAs in beacons and action frames are supported. As for AP mode, the channel switch is applied after some time. However in IBSS mode, the channel switch IEs are generated in the kernel. Signed-off-by: Simon Wunderlich <siwu@hrz.tu-chemnitz.de> Signed-off-by: Mathias Kretschmer <mathias.kretschmer@fokus.fraunhofer.de> Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2013-09-26mac80211: split off ibss disconnectSimon Wunderlich
IBSS CSA will require to disconnect if a channel switch fails, but mac80211 should search and re-connect after this disconnect. To allow such usage, split off the ibss disconnect process in a separate function which only performs the disconnect without overwriting nl80211-supplied parameters. Signed-off-by: Simon Wunderlich <siwu@hrz.tu-chemnitz.de> Signed-off-by: Mathias Kretschmer <mathias.kretschmer@fokus.fraunhofer.de> Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2013-09-26mac80211: split off channel switch parsing functionSimon Wunderlich
The channel switch parsing function can be re-used for the IBSS code, put the common part into an extra function. Signed-off-by: Simon Wunderlich <siwu@hrz.tu-chemnitz.de> Signed-off-by: Mathias Kretschmer <mathias.kretschmer@fokus.fraunhofer.de> [also move/rename chandef_downgrade] Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2013-09-26cfg80211: export cfg80211_chandef_dfs_requiredSimon Wunderlich
It will be used later by the IBSS CSA implementation of mac80211. Signed-off-by: Simon Wunderlich <siwu@hrz.tu-chemnitz.de> Signed-off-by: Mathias Kretschmer <mathias.kretschmer@fokus.fraunhofer.de> Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2013-09-26mac80211: do not override fixed_rate_idx in minstrel_ht_update_statsLorenzo Bianconi
Do not override max_tp_rate, max_tp_rate2 and max_prob_rate configured according to fixed_rate in minstrel_ht_update_stats throughput computation Signed-off-by: Lorenzo Bianconi <lorenzo.bianconi83@gmail.com> Acked-by: Felix Fietkau <nbd@openwrt.org> Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2013-09-26mac80211: add fixed_rate management to minstrel rcLorenzo Bianconi
Add the capability to use a fixed modulation rate to minstrel rate controller Signed-off-by: Lorenzo Bianconi <lorenzo.bianconi83@gmail.com> Acked-by: Felix Fietkau <nbd@openwrt.org> Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2013-09-26mac80211: change beacon/connection pollingStanislaw Gruszka
Since when we detect beacon lost we do active AP probing (using nullfunc frame or probe request) there is no need to have beacon polling. Flags IEEE80211_STA_BEACON_POLL seems to be used just for historical reasons. Change also make that after we start connection poll due to beacon loss, next received beacon will abort the poll. Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com> Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2013-09-26cfg80211: use the correct macro to check for active monitor supportLuciano Coelho
Use MONITOR_FLAG_ACTIVE, which is a flag mask, instead of NL80211_MNTR_FLAG_ACTIVE, which is a flag index, when checking if the hardware supports active monitoring. Cc: stable@vger.kernel.org Signed-off-by: Luciano Coelho <luciano.coelho@intel.com> Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2013-09-26mac80211: Remove superfluous is_multicast_ether_addr() callSergey Ryazanov
Remove superfluous call and use locally stored previous result. Signed-off-by: Sergey Ryazanov <ryazanov.s.a@gmail.com> Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2013-09-26mac80211: use ERR_CAST()Johannes Berg
No need for ERR_PTR(PTR_ERR()) since there's ERR_CAST, use it. Reported-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2013-09-26mac80211: add ieee80211_iterate_active_interfaces_rtnl()Johannes Berg
If it is needed to disconnect multiple virtual interfaces after (WoWLAN-) suspend, the most obvious approach would be to iterate all interfaces by calling ieee80211_iterate_active_interfaces() and then call ieee80211_resume_disconnect() for each one. This is what the iwlmvm driver does. Unfortunately, this causes a locking dependency from mac80211's iflist_mtx to the key_mtx. This is problematic as the former is intentionally never held while calling any driver operation to allow drivers to iterate with their own locks held. The key_mtx is held while installing a key into the driver though, so this new lock dependency means drivers implementing the logic above can no longer hold their own lock while iterating. To fix this, add a new ieee80211_iterate_active_interfaces_rtnl() function that iterates while the RTNL is already held. This is true during suspend/resume, so that then the locking dependency isn't introduced. While at it, also refactor the various interface iterators and keep only a single implementation called by the various cases. Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2013-09-26ath10k: align RX frames properlyMichal Kazior
Ethernet-like decapping mode leaves IP protocol frame not aligned to 4-byte boundaries. This leads to re-aligning in mac80211 which in turn leads to poor CPU cache behaviour on some machines. Since HW doesn't allow to change payload offset properly the solution is to force HW to decap in Native Wifi mode which always has 24-bytes long 802.11 header (even for QoS frames). This means IP frame is properly aligned in this decap mode. Signed-off-by: Michal Kazior <michal.kazior@tieto.com> Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2013-09-26ath10k: fix Native Wifi decap mode RXMichal Kazior
NWifi decap mode always reports 802.11 Data Frames, even when QoS Data Frames are actually received. This made mac80211 not report frame priority properly (since there was no QoS Control field). Signed-off-by: Michal Kazior <michal.kazior@tieto.com> Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2013-09-26ath10k: cleanup RX decap handlingMichal Kazior
Simplify decapping code and make it easier to understand. Signed-off-by: Michal Kazior <michal.kazior@tieto.com> Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2013-09-26ath10k: document decap modesMichal Kazior
Clarify how each decap mode works in one place. Signed-off-by: Michal Kazior <michal.kazior@tieto.com> Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2013-09-26ath10k: report A-MSDU subframes individuallyMichal Kazior
HW reports each A-MSDU subframe as a separate sk_buff. It is impossible to configure it to behave differently. Until now ath10k was reconstructing A-MSDUs from subframes which involved a lot of memory operations. This proved to be a significant contributor to degraded RX performance. Signed-off-by: Michal Kazior <michal.kazior@tieto.com> Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2013-09-25Bluetooth: Add new mgmt_set_advertising commandJohan Hedberg
This patch adds a new mgmt command for enabling and disabling LE advertising. The command depends on the LE setting being enabled first and will return a "rejected" response otherwise. The patch also adds safeguards so that there will ever only be one set_le or set_advertising command pending per adapter. The response handling and new_settings event sending is done in an asynchronous request callback, meaning raw HCI access from user space to enable advertising (e.g. hciconfig leadv) will not trigger the new_settings event. This is intentional since trying to support mixed raw HCI and mgmt access would mean adding extra state tracking or new helper functions, essentially negating the benefit of using the asynchronous request framework. The HCI_LE_ENABLED and HCI_LE_PERIPHERAL flags however are updated correctly even with raw HCI access so this will not completely break subsequent access over mgmt. Signed-off-by: Johan Hedberg <johan.hedberg@intel.com> Acked-by: Marcel Holtmann <marcel@holtmann.org> Signed-off-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk>
2013-09-25Bluetooth: Add new mgmt setting for LE advertisingJohan Hedberg
This patch adds a new mgmt setting for LE advertising and hooks up the necessary places in the mgmt code to operate on the HCI_LE_PERIPHERAL flag (which corresponds to this setting). This patch does not yet add any new command for enabling the setting - that is left for a subsequent patch. Signed-off-by: Johan Hedberg <johan.hedberg@intel.com> Acked-by: Marcel Holtmann <marcel@holtmann.org> Signed-off-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk>
2013-09-25Bluetooth: Use async request for LE enable/disableJohan Hedberg
This patch updates the code to use an asynchronous request for handling the enabling and disabling of LE support. This refactoring is necessary as a preparation for adding advertising support, since when LE is disabled we should also disable advertising, and the cleanest way to do this is to perform the two respective HCI commands in the same asynchronous request. Signed-off-by: Johan Hedberg <johan.hedberg@intel.com> Acked-by: Marcel Holtmann <marcel@holtmann.org> Signed-off-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk>
2013-09-25Bluetooth: Move mgmt response convenience functions to a better locationJohan Hedberg
The settings_rsp and cmd_status_rsp functions can be useful for all mgmt command handlers when asynchronous request callbacks are used. They will e.g. be used by subsequent patches to change set_le to use an async request as well as a new set_advertising command. Therefore, move them higher up in the mgmt.c file to avoid unnecessary forward declarations or mixing this trivial change with other patches. Signed-off-by: Johan Hedberg <johan.hedberg@intel.com> Acked-by: Marcel Holtmann <marcel@holtmann.org> Signed-off-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk>
2013-09-25Bluetooth: Fix busy return for mgmt_set_powered in some casesJohan Hedberg
We should return a "busy" error always when there is another mgmt_set_powered operation in progress. Previously when powering on while the auto off timer was still set the code could have let two or more pending power on commands to be queued. This patch fixes the issue by moving the check for duplicate commands to an earlier point in the set_powered handler. Signed-off-by: Johan Hedberg <johan.hedberg@intel.com> Acked-by: Marcel Holtmann <marcel@holtmann.org> Signed-off-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk>
2013-09-25Bluetooth: Clean up socket locking in l2cap_sock_recvmsgJohan Hedberg
This patch cleans up the locking login in l2cap_sock_recvmsg by pairing up each lock_sock call with a release_sock call. The function already has a "done" label that handles releasing the socket and returning from the function so the fix is rather simple. Signed-off-by: Johan Hedberg <johan.hedberg@intel.com> Acked-by: Marcel Holtmann <marcel@holtmann.org> Signed-off-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk>
2013-09-25Bluetooth: Add clarifying comment to bt_sock_wait_state()Johan Hedberg
The bt_sock_wait_state requires the sk lock to be held (through lock_sock) so document it clearly in the code. Signed-off-by: Johan Hedberg <johan.hedberg@intel.com> Acked-by: Marcel Holtmann <marcel@holtmann.org> Signed-off-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk>
2013-09-25NFC: pn533: Target mode Tx fragmentation supportOlivier Guiter
In target mode, when we want to send frames larger than the max length (PN533_CMD_DATAEXCH_DATA_MAXLEN), we have to split the frame in smaller chunks and send them, using a specific working queue, with the TgSetMetaData command. TgSetMetaData sets his own MI bit in the PFB. The last chunk is sent using the TgSetData command. Signed-off-by: Olivier Guiter <olivier.guiter@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25NFC: pn533: Add support for incoming fragmented frame in target modeOlivier Guiter
This code processes, for Target Mode, incoming fragmented frames. If the MI bit is present, we start a working queue to grab and aggregate all the parts (using TmGetData between each parts). On the last one, as there's no more MI bit, we jump on the usual behavior. Signed-off-by: Olivier Guiter <olivier.guiter@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25NFC: pn533: Add MI/TG bits only when in Initiator modeOlivier Guiter
The fragmentation routine (used to split big frames) could be used in target or initiator mode (TgSetMetaData vs InDataExchange), but the MI/TG bytes are not needed in target mode (TgSetMetaData), so we add a check on the mode Signed-off-by: Olivier Guiter <olivier.guiter@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25NFC: NCI: Modify NCI SPI to implement CS/INT handshake per the specEric Lapuyade
The NFC Forum NCI specification defines both a hardware and software protocol when using a SPI physical transport to connect an NFC NCI Chipset. The hardware requirement is that, after having raised the chip select line, the SPI driver must wait for an INT line from the NFC chipset to raise before it sends the data. The chip select must be raised first though, because this is the signal that the NFC chipset will detect to wake up and then raise its INT line. If the INT line doesn't raise in a timely fashion, the SPI driver should abort operation. When data is transferred from Device host (DH) to NFC Controller (NFCC), the signaling sequence is the following: Data Transfer from DH to NFCC • 1-Master asserts SPI_CSN • 2-Slave asserts SPI_INT • 3-Master sends NCI-over-SPI protocol header and payload data • 4-Slave deasserts SPI_INT • 5-Master deasserts SPI_CSN When data must be transferred from NFCC to DH, things are a little bit different. Data Transfer from NFCC to DH • 1-Slave asserts SPI_INT -> NFC chipset irq handler called -> process reading from SPI • 2-Master asserts SPI_CSN • 3-Master send 2-octet NCI-over-SPI protocol header • 4-Slave sends 2-octet NCI-over-SPI protocol payload length • 5-Slave sends NCI-over-SPI protocol payload • 6-Master deasserts SPI_CSN In this case, SPI driver should function normally as it does today. Note that the INT line can and will be lowered anytime between beginning of step 3 and end of step 5. A low INT is therefore valid after chip select has been raised. This would be easily implemented in a single driver. Unfortunately, we don't write the SPI driver and I had to imagine some workaround trick to get the SPI and NFC drivers to work in a synchronized fashion. The trick is the following: - send an empty spi message: this will raise the chip select line, and send nothing. We expect the /CS line will stay arisen because we asked for it in the spi_transfer cs_change field - wait for a completion, that will be completed by the NFC driver IRQ handler when it knows we are in the process of sending data (NFC spec says that we use SPI in a half duplex mode, so we are either sending or receiving). - when completed, proceed with the normal data send. This has been tested and verified to work very consistently on a Nexus 10 (spi-s3c64xx driver). It may not work the same with other spi drivers. The previously defined nci_spi_ops{} whose intended purpose were to address this problem are not used anymore and therefore totally removed. The nci_spi_send() takes a new optional write_handshake_completion completion pointer. If non NULL, the nci spi layer will run the above trick when sending data to the NFC Chip. If NULL, the data is sent normally all at once and it is then the NFC driver responsibility to know what it's doing. Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25NFC: NCI: nci_spi_recv_frame() now returns (not forward) the read frameEric Lapuyade
Previously, nci_spi_recv_frame() would directly transmit incoming frames to the NCI Core. However, it turns out that some NFC NCI Chips will add additional proprietary headers that must be handled/removed before NCI Core gets a chance to handle the frame. With this modification, the chip phy or driver are now responsible to transmit incoming frames to NCI Core after proper treatment, and NCI SPI becomes a driver helper instead of sitting between the NFC driver and NCI Core. As a general rule in NFC, *_recv_frame() APIs are used to deliver an incoming frame to an upper layer. To better suit the actual purpose of nci_spi_recv_frame(), and go along with its nci_spi_send() counterpart, the function is renamed to nci_spi_read() The skb is returned as the function result Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25NFC: NCI: zero struct spi_transfer variables before usageEric Lapuyade
Using ARM compiler, and without zero-ing spi_transfer, spi-s3c64xx driver would issue abnormal errors due to bpw field value being set to unexpected value. This structure MUST be set to all zeros except for those field specifically used. Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25NFC: netlink: SE API implementationSamuel Ortiz
Implementation of the NFC_CMD_SE_IO command for sending ISO7816 APDUs to NFC embedded secure elements. The reply is forwarded to user space through NFC_CMD_SE_IO as well. Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25NFC: Define secure element IO API and commandsSamuel Ortiz
In order to send and receive ISO7816 APDUs to and from NFC embedded secure elements, we define a specific netlink command. On a typical SE use case, host applications will send very few APDUs (Less than 10) per transaction. This is why we decided to go for a simple netlink API. Defining another NFC socket protocol for such low traffic would have been overengineered. Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25NFC: Document NFC targets sens_res fieldSamuel Ortiz
SENS_RES has no specific endiannes attached to it, the kernel ABI is the following one: Byte 2 (As described by the NFC Forum Digital spec) is the u16 most significant byte. Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25NFC: digital: Fix sens_res endiannes handlingThierry Escande
This was triggered by the following sparse warning: net/nfc/digital_technology.c:272:20: sparse: cast to restricted __be16 The SENS_RES response must be treated as __le16 with the first byte received as LSB and the second one as MSB. This is the way neard handles it in the sens_res field of the nfc_target structure which is treated as u16 in cpu endianness. So le16_to_cpu() is used on the received SENS_RES instead of memcpy'ing it. SENS_RES test macros have also been fixed accordingly. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25NFC: rawsock: Fix a memory leakThierry Escande
In the rawsock data exchange callback, the sk_buff is not freed on error. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25NFC: pn533: Staticize local symbolsSachin Kamat
Local symbols used only in this file are made static. Signed-off-by: Sachin Kamat <sachin.kamat@linaro.org> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25NFC: nfcwilink: Remove redundant dev_set_drvdataSachin Kamat
Driver core sets driver data to NULL upon failure or remove. Cc: Ilan Elias <ilane@ti.com> Signed-off-by: Sachin Kamat <sachin.kamat@linaro.org> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25NFC: digital: digital_tg_send_sensf_res() can be staticFengguang Wu
Fixes sparse hint: net/nfc/digital_technology.c:640:5: sparse: symbol 'digital_tg_send_sensf_res' was not declared. Should it be static? Cc: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25NFC: digital: Add newline to pr_* callsSamuel Ortiz
We do not add the newline to the pr_fmt macro, in order to give more flexibility to the caller and to keep the logging style consistent with the rest of the NFC and kernel code. Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25NFC: digital: Remove PR_ERR and PR_DBG macrosSamuel Ortiz
They can be replaced by the standard pr_err and pr_debug one after defining the right pr_fmt macro. Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25NFC: NCI: Store the spi device pointer from the spi instanceEric Lapuyade
Storing the spi device was forgotten in the original implementation, which would pretty obviously cause some kind of serious crash when actually trying to send something through that device. Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25NFC Digital: Add target NFC-DEP supportThierry Escande
This adds support for NFC-DEP target mode for NFC-A and NFC-F technologies. If the driver provides it, the stack uses an automatic mode for technology detection and automatic anti-collision. Otherwise the stack tries to use non-automatic synchronization and listens for SENS_REQ and SENSF_REQ commands. The detection, activation, and data exchange procedures work exactly the same way as in initiator mode, as described in the previous commits, except that the digital stack waits for commands and sends responses back to the peer device. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25NFC Digital: Add initiator NFC-DEP supportThierry Escande
This adds support for NFC-DEP protocol in initiator mode for NFC-A and NFC-F technologies. When a target is detected, the process flow is as follow: For NFC-A technology: 1 - The digital stack receives a SEL_RES as the reply of the SEL_REQ command. 2 - If b7 of SEL_RES is set, the peer device is configure for NFC-DEP protocol. NFC core is notified through nfc_targets_found(). Execution continues at step 4. 3 - Otherwise, it's a tag and the NFC core is notified. Detection ends. 4 - The digital stacks sends an ATR_REQ command containing a randomly generated NFCID3 and the general bytes obtained from the LLCP layer of NFC core. For NFC-F technology: 1 - The digital stack receives a SENSF_RES as the reply of the SENSF_REQ command. 2 - If B1 and B2 of NFCID2 are 0x01 and 0xFE respectively, the peer device is configured for NFC-DEP protocol. NFC core is notified through nfc_targets_found(). Execution continues at step 4. 3 - Otherwise it's a type 3 tag. NFC core is notified. Detection ends. 4 - The digital stacks sends an ATR_REQ command containing the NFC-F NFCID2 as NFCID3 and the general bytes obtained from the LLCP layer of NFC core. For both technologies: 5 - The digital stacks receives the ATR_RES response containing the NFCID3 and the general bytes of the peer device. 6 - The digital stack notifies NFC core that the DEP link is up through nfc_dep_link_up(). 7 - The NFC core performs data exchange through tm_transceive(). 8 - The digital stack sends a DEP_REQ command containing an I PDU with the data from NFC core. 9 - The digital stack receives a DEP_RES command 10 - If the DEP_RES response contains a supervisor PDU with timeout extension request (RTOX) the digital stack sends a DEP_REQ command containing a supervisor PDU acknowledging the RTOX request. The execution continues at step 9. 11 - If the DEP_RES response contains an I PDU, the response data is passed back to NFC core through the response callback. The execution continues at step 8. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25NFC Digital: Add NFC-F technology supportThierry Escande
This adds polling support for NFC-F technology at 212 kbits/s and 424 kbits/s. A user space application like neard can send type 3 tag commands through the NFC core. Process flow for NFC-F detection is as follow: 1 - The digital stack sends the SENSF_REQ command to the NFC device. 2 - A peer device replies with a SENSF_RES response. 3 - The digital stack notifies the NFC core of the presence of a target in the operation field and passes the target NFCID2. This also adds support for CRC calculation of type CRC-F. The CRC calculation is handled by the digital stack if the NFC device doesn't support it. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25NFC Digital: Add NFC-A technology supportThierry Escande
This adds support for NFC-A technology at 106 kbits/s. The stack can detect tags of type 1 and 2. There is no support for collision detection. Tags can be read and written by using a user space application or a daemon like neard. The flow of polling operations for NFC-A detection is as follow: 1 - The digital stack sends the SENS_REQ command to the NFC device. 2 - The NFC device receives a SENS_RES response from a peer device and passes it to the digital stack. 3 - If the SENS_RES response identifies a type 1 tag, detection ends. NFC core is notified through nfc_targets_found(). 4 - Otherwise, the digital stack sets the cascade level of NFCID1 to CL1 and sends the SDD_REQ command. 5 - The digital stack selects SEL_CMD and SEL_PAR according to the cascade level and sends the SDD_REQ command. 4 - The digital stack receives a SDD_RES response for the cascade level passed in the SDD_REQ command. 5 - The digital stack analyses (part of) NFCID1 and verify BCC. 6 - The digital stack sends the SEL_REQ command with the NFCID1 received in the SDD_RES. 6 - The peer device replies with a SEL_RES response 7 - Detection ends if NFCID1 is complete. NFC core notified of new target by nfc_targets_found(). 8 - If NFCID1 is not complete, the cascade level is incremented (up to and including CL3) and the execution continues at step 5 to get the remaining bytes of NFCID1. Once target detection is done, type 1 and 2 tag commands must be handled by a user space application (i.e neard) through the NFC core. Responses for type 1 tag are returned directly to user space via NFC core. Responses of type 2 commands are handled differently. The digital stack doesn't analyse the type of commands sent through im_transceive() and must differentiate valid responses from error ones. The response process flow is as follow: 1 - If the response length is 16 bytes, it is a valid response of a READ command. the packet is returned to the NFC core through the callback passed to im_transceive(). Processing stops. 2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a valid response of a WRITE command for example. First packet byte is set to 0 for no-error and passed back to the NFC core. Processing stops. 3 - Any other response is treated as an error and -EIO error code is returned to the NFC core through the response callback. Moreover, since the driver can't differentiate success response from a NACK response, the digital stack has to handle CRC calculation. Thus, this patch also adds support for CRC calculation. If the driver doesn't handle it, the digital stack will calculate CRC and will add it to sent frames. CRC will also be checked and removed from received frames. Pointers to the correct CRC calculation functions are stored in the digital stack device structure when a target is detected. This avoids the need to check the current target type for every call to im_transceive() and for every response received from a peer device. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25NFC Digital: Implement driver commands mechanismThierry Escande
This implements the mechanism used to send commands to the driver in initiator mode through in_send_cmd(). Commands are serialized and sent to the driver by using a work item on the system workqueue. Responses are handled asynchronously by another work item. Once the digital stack receives the response through the command_complete callback, the next command is sent to the driver. This also implements the polling mechanism. It's handled by a work item cycling on all supported protocols. The start poll command for a given protocol is sent to the driver using the mechanism described above. The process continues until a peer is discovered or stop_poll is called. This patch implements the poll function for NFC-A that sends a SENS_REQ command and waits for the SENS_RES response. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25NFC: Digital Protocol stack implementationThierry Escande
This is the initial commit of the NFC Digital Protocol stack implementation. It offers an interface for devices that don't have an embedded NFC Digital protocol stack. The driver instantiates the digital stack by calling nfc_digital_allocate_device(). Within the nfc_digital_ops structure, the driver specifies a set of function pointers for driver operations. These functions must be implemented by the driver and are: in_configure_hw: Hardware configuration for RF technology and communication framing in initiator mode. This is a synchronous function. in_send_cmd: Initiator mode data exchange using RF technology and framing previously set with in_configure_hw. The peer response is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_configure_hw: Hardware configuration for RF technology and communication framing in target mode. This is a synchronous function. tg_send_cmd: Target mode data exchange using RF technology and framing previously set with tg_configure_hw. The peer next command is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_listen: Put the device in listen mode waiting for data from the peer device. This is an asynchronous function. tg_listen_mdaa: If supported, put the device in automatic listen mode with mode detection and automatic anti-collision. In this mode, the device automatically detects the RF technology and executes the anti-collision detection using the command responses specified in mdaa_params. The mdaa_params structure contains SENS_RES, NFCID1, and SEL_RES for 106A RF tech. NFCID2 and system code (sc) for 212F and 424F. The driver returns the NFC-DEP ATR_REQ command through cb. The digital stack deducts the RF tech by analyzing the SoD of the frame containing the ATR_REQ command. This is an asynchronous function. switch_rf: Turns device radio on or off. The stack does not call explicitly switch_rf to turn the radio on. A call to in|tg_configure_hw must turn the device radio on. abort_cmd: Discard the last sent command. Then the driver registers itself against the digital stack by using nfc_digital_register_device() which in turn registers the digital stack against the NFC core layer. The digital stack implements common NFC operations like dev_up(), dev_down(), start_poll(), stop_poll(), etc. This patch is only a skeleton and NFC operations are just stubs. Signed-off-by: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25NFC: pn533: Start listen timer from start_pollSamuel Ortiz
If we start the polling loop from a listening cycle, we need to start the corresponding timer as well. This bug showed up after commit dfccd0f5 as it was impossible to start from a listening cycle before it. Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25NFC: pn533: Send ATR_REQ directly for active device detectionSamuel Ortiz
In order to improve active devices detection, we send an ATR_REQ between each passive detection cycle. Without this algorithm, Android 4.3 based devices running the Broadcom stack are hardly detected. Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25NFC: Set active target upon DEP up event receptionSamuel Ortiz
As we can potentially get DEP up events without having sent a netlink command, we need to set the active target properly from dep_link_is_up. Spontaneous DEP up events can come from devices that detected an active p2p target. In that case there is no need to call the netlink DEP up command as the link is already up and running. Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2013-09-25NFC: NCI: Simplify NCI SPI to become a simple framing/checking layerEric Lapuyade
NCI SPI layer should not manage the nci dev, this is the job of the nci chipset driver. This layer should be limited to frame/deframe nci packets, and optionnaly check integrity (crc) and manage the ack/nak protocol. The NCI SPI must not be mixed up with an NCI dev. spi_[dev|device] are therefore renamed to a simple spi for more clarity. The header and crc sizes are moved to nci.h so that drivers can use them to reserve space in outgoing skbs. nci_spi_send() is exported to be accessible by drivers. Signed-off-by: Eric Lapuyade <eric.lapuyade@intel.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>