Age | Commit message (Collapse) | Author |
|
git://git.infradead.org/users/vkoul/slave-dma
Pull dmaengine fix from Vinod Koul:
- qcom bam runtime_pm fix
- email update for Vinod
* tag 'dmaengine-fix-4.17-rc6' of git://git.infradead.org/users/vkoul/slave-dma:
dmaengine: qcom: bam_dma: check if the runtime pm enabled
dmaengine: Update email address for Vinod
|
|
Commit be83bbf80682 ("mmap: introduce sane default mmap limits") was
introduced to catch problems in various ad-hoc character device drivers
doing mmap and getting the size limits wrong. In the process, it used
"known good" limits for the normal cases of mapping regular files and
block device drivers.
It turns out that the "s_maxbytes" limit was less "known good" than I
thought. In particular, /proc doesn't set it, but exposes one regular
file to mmap: /proc/vmcore. As a result, that file got limited to the
default MAX_INT s_maxbytes value.
This went unnoticed for a while, because apparently the only thing that
needs it is the s390 kernel zfcpdump, but there might be other tools
that use this too.
Vasily suggested just changing s_maxbytes for all of /proc, which isn't
wrong, but makes me nervous at this stage. So instead, just make the
new mmap limit always be MAX_LFS_FILESIZE for regular files, which won't
affect anything else. It wasn't the regular file case I was worried
about.
I'd really prefer for maxsize to have been per-inode, but that is not
how things are today.
Fixes: be83bbf80682 ("mmap: introduce sane default mmap limits")
Reported-by: Vasily Gorbik <gor@linux.ibm.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Not all configurations magically include asm/apic.h, but the Hyper-V code
requires it. Include it explicitely.
Fixes: 6b48cb5f8347 ("X86/Hyper-V: Enlighten APIC access")
Reported-by: kbuild test robot <lkp@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: K. Y. Srinivasan <kys@microsoft.com>
Cc: Michael Kelley <mikelley@microsoft.com>
|
|
We used rdmsr_safe_on_cpu() to make sure we're reading the proper CPU's
MISC block addresses. However, that caused trouble with CPU hotplug due to
the _on_cpu() helper issuing an IPI while IRQs are disabled.
But we don't have to do that: the block addresses are the same on any CPU
so we can read them on any CPU. (What practically happens is, we read them
on the BSP and cache them, and for later reads, we service them from the
cache).
Suggested-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Pick up urgent fix as pending patch depends on it.
|
|
... into a global, two-dimensional array and service subsequent reads from
that cache to avoid rdmsr_on_cpu() calls during CPU hotplug (IPIs with IRQs
disabled).
In addition, this fixes a KASAN slab-out-of-bounds read due to wrong usage
of the bank->blocks pointer.
Fixes: 27bd59502702 ("x86/mce/AMD: Get address from already initialized block")
Reported-by: Johannes Hirte <johannes.hirte@datenkhaos.de>
Tested-by: Johannes Hirte <johannes.hirte@datenkhaos.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Yazen Ghannam <yazen.ghannam@amd.com>
Link: http://lkml.kernel.org/r/20180414004230.GA2033@probook
|
|
Trivial fix to spelling mistake in module parameter description text
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: kernel-janitors@vger.kernel.org
Cc: "H . Peter Anvin" <hpa@zytor.com>
Link: https://lkml.kernel.org/r/20180428092448.6493-1-colin.king@canonical.com
|
|
The x86 platform operations are fairly isolated, so it's easy to change
them from using timespec to timespec64. It has been checked that all the
users and callers are safe, and there is only one critical function that is
broken beyond 2106:
pvclock_read_wallclock() uses a 32-bit number of seconds since the epoch
to communicate the boot time between host and guest in a virtual
environment. This will work until 2106, but fixing this is outside the
scope of this change, Add a comment at least.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Acked-by: Radim Krčmář <rkrcmar@redhat.com>
Acked-by: Jan Kiszka <jan.kiszka@siemens.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: jailhouse-dev@googlegroups.com
Cc: Borislav Petkov <bp@suse.de>
Cc: kvm@vger.kernel.org
Cc: y2038@lists.linaro.org
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: xen-devel@lists.xenproject.org
Cc: John Stultz <john.stultz@linaro.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Link: https://lkml.kernel.org/r/20180427201435.3194219-1-arnd@arndb.de
|
|
The set of APIs we provide has a few holes for coarse times, e.g. we
provide ktime_get_coarse_boottime() and ktime_get_boottime_ts64(),
but not the combination of the two.
This adds four new functions:
ktime_get_coarse_boottime_ts64()
ktime_get_boottime_seconds()
ktime_get_coarse_clocktai_ts64()
ktime_get_clocktai_seconds()
to fill in some of the missing pieces. I have missed only the
ktime_get_boottime_seconds() accessor in a few occasions in
the past, but it seems better to just provide all four together,
as there is very little cost to having them.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: y2038@lists.linaro.org
Cc: John Stultz <john.stultz@linaro.org>
Link: https://lkml.kernel.org/r/20180427134016.2525989-6-arnd@arndb.de
|
|
I have run into a couple of drivers using current_kernel_time()
suffering from the y2038 problem, and they could be converted
to using ktime_t, but don't have interfaces that skip the nanosecond
calculation at the moment.
This introduces ktime_get_coarse_with_offset() as a simpler
variant of ktime_get_with_offset(), and adds wrappers for the
three time domains we support with the existing function.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: y2038@lists.linaro.org
Cc: John Stultz <john.stultz@linaro.org>
Link: https://lkml.kernel.org/r/20180427134016.2525989-5-arnd@arndb.de
|
|
The current_kernel_time64, get_monotonic_coarse64, getrawmonotonic64,
get_monotonic_boottime64 and timekeeping_clocktai64 interfaces have
rather inconsistent naming, and they differ in the calling conventions
by passing the output either by reference or as a return value.
Rename them to ktime_get_coarse_real_ts64, ktime_get_coarse_ts64,
ktime_get_raw_ts64, ktime_get_boottime_ts64 and ktime_get_clocktai_ts64
respectively, and provide the interfaces with macros or inline
functions as needed.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: y2038@lists.linaro.org
Cc: John Stultz <john.stultz@linaro.org>
Link: https://lkml.kernel.org/r/20180427134016.2525989-4-arnd@arndb.de
|
|
In a move to make ktime_get_*() the preferred driver interface into the
timekeeping code, sanitizes ktime_get_real_ts64() to be a proper exported
symbol rather than an alias for getnstimeofday64().
The internal __getnstimeofday64() is no longer used, so remove that
and merge it into ktime_get_real_ts64().
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: y2038@lists.linaro.org
Cc: John Stultz <john.stultz@linaro.org>
Link: https://lkml.kernel.org/r/20180427134016.2525989-3-arnd@arndb.de
|
|
At this point, we have converted most of the kernel to use timespec64
consistently in place of timespec, so it seems it's time to make
timespec64 the native structure and define timespec in terms of that
one on 64-bit architectures.
Starting with gcc-5, the compiler can completely optimize away the
timespec_to_timespec64 and timespec64_to_timespec functions on 64-bit
architectures. With older compilers, we introduce a couple of extra
copies of local variables, but those are easily avoided by using
the timespec64 based interfaces consistently, as we do in most of the
important code paths already.
The main upside of removing the hack is that printing the tv_sec
field of a timespec64 structure can now use the %lld format
string on all architectures without a cast to time64_t. Without
this patch, the field is a 'long' type and would have to be printed
using %ld on 64-bit architectures.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: y2038@lists.linaro.org
Cc: John Stultz <john.stultz@linaro.org>
Link: https://lkml.kernel.org/r/20180427134016.2525989-2-arnd@arndb.de
|
|
Merge upstream to pick up changes on which pending patches depend on.
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/acme/linux into perf/core
Pull perf/core improvements and fixes from Arnaldo Carvalho de Melo:
- Record min/max LBR cycles (>= Skylake) and add 'perf annotate' TUI
hotkey to show it (c) (Jin Yao)
- Fix machine->kernel_start for PTI on x86 (Adrian Hunter)
- Make machine->env->arch always available, e.g. in 'perf top', not
just when reading that info from perf.data files (Adrian Hunter)
- Reduce the number of files read at 'perf' start, leaving information such as
cacheline size, tracefs mount point determination, max_stack, etc, to be
lazily read as tools needs then (Arnaldo Carvalho de Melo)
- Fix up BPF include and examples install messages (Arnaldo Carvalho de Melo)
- Fix up callchain addresses and symbol offsets in 'perf script', to help
correlating with objdump output (Sandipan Das)
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Consolidate the allocation of the hypercall input page.
Signed-off-by: K. Y. Srinivasan <kys@microsoft.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Cc: olaf@aepfle.de
Cc: sthemmin@microsoft.com
Cc: gregkh@linuxfoundation.org
Cc: jasowang@redhat.com
Cc: Michael.H.Kelley@microsoft.com
Cc: hpa@zytor.com
Cc: apw@canonical.com
Cc: devel@linuxdriverproject.org
Cc: vkuznets@redhat.com
Link: https://lkml.kernel.org/r/20180516215334.6547-5-kys@linuxonhyperv.com
|
|
Consolidate code for converting cpumask to vpset.
Signed-off-by: K. Y. Srinivasan <kys@microsoft.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Cc: olaf@aepfle.de
Cc: sthemmin@microsoft.com
Cc: gregkh@linuxfoundation.org
Cc: jasowang@redhat.com
Cc: Michael.H.Kelley@microsoft.com
Cc: hpa@zytor.com
Cc: apw@canonical.com
Cc: devel@linuxdriverproject.org
Cc: vkuznets@redhat.com
Link: https://lkml.kernel.org/r/20180516215334.6547-4-kys@linuxonhyperv.com
|
|
Support enhanced IPI enlightenments (to target more than 64 CPUs).
Signed-off-by: K. Y. Srinivasan <kys@microsoft.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Cc: olaf@aepfle.de
Cc: sthemmin@microsoft.com
Cc: gregkh@linuxfoundation.org
Cc: jasowang@redhat.com
Cc: Michael.H.Kelley@microsoft.com
Cc: hpa@zytor.com
Cc: apw@canonical.com
Cc: devel@linuxdriverproject.org
Cc: vkuznets@redhat.com
Link: https://lkml.kernel.org/r/20180516215334.6547-3-kys@linuxonhyperv.com
|
|
Hyper-V supports hypercalls to implement IPI; use them.
Signed-off-by: K. Y. Srinivasan <kys@microsoft.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Cc: olaf@aepfle.de
Cc: sthemmin@microsoft.com
Cc: gregkh@linuxfoundation.org
Cc: jasowang@redhat.com
Cc: Michael.H.Kelley@microsoft.com
Cc: hpa@zytor.com
Cc: apw@canonical.com
Cc: devel@linuxdriverproject.org
Cc: vkuznets@redhat.com
Link: https://lkml.kernel.org/r/20180516215334.6547-2-kys@linuxonhyperv.com
|
|
Hyper-V supports MSR based APIC access; implement
the enlightenment.
Signed-off-by: K. Y. Srinivasan <kys@microsoft.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Cc: olaf@aepfle.de
Cc: sthemmin@microsoft.com
Cc: gregkh@linuxfoundation.org
Cc: jasowang@redhat.com
Cc: Michael.H.Kelley@microsoft.com
Cc: hpa@zytor.com
Cc: apw@canonical.com
Cc: devel@linuxdriverproject.org
Cc: vkuznets@redhat.com
Link: https://lkml.kernel.org/r/20180516215334.6547-1-kys@linuxonhyperv.com
|
|
mba_sc is a feedback loop where we periodically read MBM counters and
try to restrict the bandwidth below a max value so the below is always
true:
"current bandwidth(cur_bw) < user specified bandwidth(user_bw)"
The frequency of these checks is currently 1s and we just tag along the
MBM overflow timer to do the updates. Doing it once in a second also
makes the calculation of bandwidth easy. The steps of increase or
decrease of bandwidth is the minimum granularity specified by the
hardware.
Although the MBA's goal is to restrict the bandwidth below a maximum,
there may be a need to even increase the bandwidth. Since MBA controls
the L2 external bandwidth where as MBM measures the L3 external
bandwidth, we may end up restricting some rdtgroups unnecessarily. This
may happen in the sequence where rdtgroup (set of jobs) had high
"L3 <-> memory traffic" in initial phases -> mba_sc kicks in and reduced
bandwidth percentage values -> but after some it has mostly "L2 <-> L3"
traffic. In this scenario mba_sc increases the bandwidth percentage when
there is lesser memory traffic.
Signed-off-by: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: ravi.v.shankar@intel.com
Cc: tony.luck@intel.com
Cc: fenghua.yu@intel.com
Cc: vikas.shivappa@intel.com
Cc: ak@linux.intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/1524263781-14267-7-git-send-email-vikas.shivappa@linux.intel.com
|
|
This is a preparatory patch for the mba feedback loop. Add support to
measure the "bandwidth in MBps" and the "delta bandwidth". Measure it by
reading the MBM IA32_QM_CTR MSRs and calculating the amount of "bytes"
moved. There is no user space interface for this and will only be used by
the feedback loop patch.
Signed-off-by: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: ravi.v.shankar@intel.com
Cc: tony.luck@intel.com
Cc: fenghua.yu@intel.com
Cc: vikas.shivappa@intel.com
Cc: ak@linux.intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/1524263781-14267-6-git-send-email-vikas.shivappa@linux.intel.com
|
|
Currently when user updates the "schemata" with new MBA percentage
values, kernel writes the corresponding bandwidth percentage values to
the IA32_MBA_THRTL_MSR.
When MBA is expressed in MBps, the schemata format is changed to have the
per package memory bandwidth in MBps instead of being specified in
percentage. Do not write the IA32_MBA_THRTL_MSRs when the schemata is
updated as that is handled separately.
Signed-off-by: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: ravi.v.shankar@intel.com
Cc: tony.luck@intel.com
Cc: fenghua.yu@intel.com
Cc: vikas.shivappa@intel.com
Cc: ak@linux.intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/1524263781-14267-5-git-send-email-vikas.shivappa@linux.intel.com
|
|
When MBA software controller is enabled, a per domain storage is required
for user specified bandwidth in "MBps" and the "percentage" values which
are programmed into the IA32_MBA_THRTL_MSR. Add support for these data
structures and initialization.
The MBA percentage values have a default max value of 100 but however the
max value in MBps is not available from the hardware so it's set to
U32_MAX.
This simply says that the control group can use all bandwidth by default
but does not say what is the actual max bandwidth available. The actual
bandwidth that is available may depend on lot of factors like QPI link,
number of memory channels, memory channel frequency, its width and memory
speed, how many channels are configured and also if memory interleaving is
enabled. So there is no way to determine the maximum at runtime reliably.
Signed-off-by: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: ravi.v.shankar@intel.com
Cc: tony.luck@intel.com
Cc: fenghua.yu@intel.com
Cc: vikas.shivappa@intel.com
Cc: ak@linux.intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/1524263781-14267-4-git-send-email-vikas.shivappa@linux.intel.com
|
|
Currently user does memory bandwidth allocation(MBA) by specifying the
bandwidth in percentage via the resctrl schemata file:
"/sys/fs/resctrl/schemata"
Add a new mount option "mba_MBps" to enable the user to specify MBA
in MBps:
$mount -t resctrl resctrl [-o cdp[,cdpl2][mba_MBps]] /sys/fs/resctrl
Signed-off-by: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: ravi.v.shankar@intel.com
Cc: tony.luck@intel.com
Cc: fenghua.yu@intel.com
Cc: vikas.shivappa@intel.com
Cc: ak@linux.intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/1524263781-14267-3-git-send-email-vikas.shivappa@linux.intel.com
|
|
Add documentation about the feedback loop mechanism (MBA software
controller) which lets the user specify the memory bandwidth allocation
in MBps. This includes some changes to "schemata" formati with
examples.
Signed-off-by: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: ravi.v.shankar@intel.com
Cc: tony.luck@intel.com
Cc: fenghua.yu@intel.com
Cc: vikas.shivappa@intel.com
Cc: ak@linux.intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/1524263781-14267-2-git-send-email-vikas.shivappa@linux.intel.com
|
|
Since do_undefinstr() uses get_user to get the undefined
instruction, it can be called before kprobes processes
recursive check. This can cause an infinit recursive
exception.
Prohibit probing on get_user functions.
Fixes: 24ba613c9d6c ("ARM kprobes: core code")
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Cc: stable@vger.kernel.org
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
Prohibit kprobes on do_undefinstr because kprobes on
arm is implemented by undefined instruction. This means
if we probe do_undefinstr(), it can cause infinit
recursive exception.
Fixes: 24ba613c9d6c ("ARM kprobes: core code")
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Cc: stable@vger.kernel.org
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
Prohibit probing on optimized_callback() because
it is called from kprobes itself. If we put a kprobes
on it, that will cause a recursive call loop.
Mark it NOKPROBE_SYMBOL.
Fixes: 0dc016dbd820 ("ARM: kprobes: enable OPTPROBES for ARM 32")
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Cc: stable@vger.kernel.org
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
Since get_kprobe_ctlblk() uses smp_processor_id() to access
per-cpu variable, it hits smp_processor_id sanity check as below.
[ 7.006928] BUG: using smp_processor_id() in preemptible [00000000] code: swapper/0/1
[ 7.007859] caller is debug_smp_processor_id+0x20/0x24
[ 7.008438] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 4.16.0-rc1-00192-g4eb17253e4b5 #1
[ 7.008890] Hardware name: Generic DT based system
[ 7.009917] [<c0313f0c>] (unwind_backtrace) from [<c030e6d8>] (show_stack+0x20/0x24)
[ 7.010473] [<c030e6d8>] (show_stack) from [<c0c64694>] (dump_stack+0x84/0x98)
[ 7.010990] [<c0c64694>] (dump_stack) from [<c071ca5c>] (check_preemption_disabled+0x138/0x13c)
[ 7.011592] [<c071ca5c>] (check_preemption_disabled) from [<c071ca80>] (debug_smp_processor_id+0x20/0x24)
[ 7.012214] [<c071ca80>] (debug_smp_processor_id) from [<c03335e0>] (optimized_callback+0x2c/0xe4)
[ 7.013077] [<c03335e0>] (optimized_callback) from [<bf0021b0>] (0xbf0021b0)
To fix this issue, call get_kprobe_ctlblk() right after
irq-disabled since that disables preemption.
Fixes: 0dc016dbd820 ("ARM: kprobes: enable OPTPROBES for ARM 32")
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Cc: stable@vger.kernel.org
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
You can build a kernel in a cross compiling environment that doesn't
have perl in the $PATH. Commit 429f7a062e3b broke that for 32 bit
ARM. Fix it.
As reported by Stephen Rothwell, it appears that the symbols can be
either part of the BSS section or absolute symbols depending on the
binutils version. When they're an absolute symbol, the $(( ))
operator errors out and the build fails. Fix this as well.
Fixes: 429f7a062e3b ("ARM: decompressor: fix BSS size calculation")
Reported-by: Rob Landley <rob@landley.net>
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Rob Landley <rob@landley.net>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
How we got to machine_crash_nonpanic_core() (iow, from an IPI, etc) is
not interesting for debugging a crash. The more interesting context
is the parent context prior to the IPI being received.
Record the parent context register state rather than the register state
in machine_crash_nonpanic_core(), which is more relevant to the failing
condition.
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
When a panic() occurs, the kexec code uses smp_send_stop() to stop
the other CPUs, but this results in the CPU register state not being
saved, and gdb is unable to inspect the state of other CPUs.
Commit 0ee59413c967 ("x86/panic: replace smp_send_stop() with kdump
friendly version in panic path") addressed the issue on x86, but
ignored other architectures. Address the issue on ARM by splitting
out the crash stop implementation to crash_smp_send_stop() and
adding the necessary protection.
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
The hypervisor setup before __enter_kernel destroys the value
sotred in r1. The value needs to be restored just before the jump.
Fixes: 6b52f7bdb888 ("ARM: hyp-stub: Use r1 for the soft-restart address")
Signed-off-by: Łukasz Stelmach <l.stelmach@samsung.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
In commit 639da5ee374b ("ARM: add an extra temp register to the low
level debugging addruart macro") an additional temporary register was
added to the addruart macro, but the decompressor code wasn't updated.
Fixes: 639da5ee374b ("ARM: add an extra temp register to the low level debugging addruart macro")
Signed-off-by: Łukasz Stelmach <l.stelmach@samsung.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
The x86 mmap() code selects the mmap base for an allocation depending on
the bitness of the syscall. For 64bit sycalls it select mm->mmap_base and
for 32bit mm->mmap_compat_base.
exec() calls mmap() which in turn uses in_compat_syscall() to check whether
the mapping is for a 32bit or a 64bit task. The decision is made on the
following criteria:
ia32 child->thread.status & TS_COMPAT
x32 child->pt_regs.orig_ax & __X32_SYSCALL_BIT
ia64 !ia32 && !x32
__set_personality_x32() was dropping TS_COMPAT flag, but
set_personality_64bit() has kept compat syscall flag making
in_compat_syscall() return true during the first exec() syscall.
Which in result has user-visible effects, mentioned by Alexey:
1) It breaks ASAN
$ gcc -fsanitize=address wrap.c -o wrap-asan
$ ./wrap32 ./wrap-asan true
==1217==Shadow memory range interleaves with an existing memory mapping. ASan cannot proceed correctly. ABORTING.
==1217==ASan shadow was supposed to be located in the [0x00007fff7000-0x10007fff7fff] range.
==1217==Process memory map follows:
0x000000400000-0x000000401000 /home/izbyshev/test/gcc/asan-exec-from-32bit/wrap-asan
0x000000600000-0x000000601000 /home/izbyshev/test/gcc/asan-exec-from-32bit/wrap-asan
0x000000601000-0x000000602000 /home/izbyshev/test/gcc/asan-exec-from-32bit/wrap-asan
0x0000f7dbd000-0x0000f7de2000 /lib64/ld-2.27.so
0x0000f7fe2000-0x0000f7fe3000 /lib64/ld-2.27.so
0x0000f7fe3000-0x0000f7fe4000 /lib64/ld-2.27.so
0x0000f7fe4000-0x0000f7fe5000
0x7fed9abff000-0x7fed9af54000
0x7fed9af54000-0x7fed9af6b000 /lib64/libgcc_s.so.1
[snip]
2) It doesn't seem to be great for security if an attacker always knows
that ld.so is going to be mapped into the first 4GB in this case
(the same thing happens for PIEs as well).
The testcase:
$ cat wrap.c
int main(int argc, char *argv[]) {
execvp(argv[1], &argv[1]);
return 127;
}
$ gcc wrap.c -o wrap
$ LD_SHOW_AUXV=1 ./wrap ./wrap true |& grep AT_BASE
AT_BASE: 0x7f63b8309000
AT_BASE: 0x7faec143c000
AT_BASE: 0x7fbdb25fa000
$ gcc -m32 wrap.c -o wrap32
$ LD_SHOW_AUXV=1 ./wrap32 ./wrap true |& grep AT_BASE
AT_BASE: 0xf7eff000
AT_BASE: 0xf7cee000
AT_BASE: 0x7f8b9774e000
Fixes: 1b028f784e8c ("x86/mm: Introduce mmap_compat_base() for 32-bit mmap()")
Fixes: ada26481dfe6 ("x86/mm: Make in_compat_syscall() work during exec")
Reported-by: Alexey Izbyshev <izbyshev@ispras.ru>
Bisected-by: Alexander Monakov <amonakov@ispras.ru>
Investigated-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Dmitry Safonov <dima@arista.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Alexander Monakov <amonakov@ispras.ru>
Cc: Dmitry Safonov <0x7f454c46@gmail.com>
Cc: stable@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Link: https://lkml.kernel.org/r/20180517233510.24996-1-dima@arista.com
|
|
__pgtable_l5_enabled shouldn't be needed after system has booted.
All preparation is done. We can now mark it as __initdata.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20180518103528.59260-8-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
__pgtable_l5_enabled shouldn't be needed after system has booted, we can
mark it as __initdata, but it requires preparation.
KASAN initialization code is a user of USE_EARLY_PGTABLE_L5, so all
pgtable_l5_enabled() translated to __pgtable_l5_enabled there, including
the one in p4d_offset().
It may lead to section mismatch, if a compiler would not inline
p4d_offset(), but leave it as a standalone function: p4d_offset() is not
marked as __init.
Marking p4d_offset() as __always_inline fixes the issue.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20180518103528.59260-7-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
This kernel parameter allows to force kernel to use 4-level paging even
if hardware and kernel support 5-level paging.
The option may be useful to work around regressions related to 5-level
paging.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20180518103528.59260-5-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
pgtable_l5_enabled is defined using cpu_feature_enabled() but we refer
to it as a variable. This is misleading.
Make pgtable_l5_enabled() a function.
We cannot literally define it as a function due to circular dependencies
between header files. Function-alike macros is close enough.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20180518103528.59260-4-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Usually pgtable_l5_enabled is defined using cpu_feature_enabled().
cpu_feature_enabled() is not available in early boot code. We use
several different preprocessor tricks to get around it. It's messy.
Unify them all.
If cpu_feature_enabled() is not yet available, USE_EARLY_PGTABLE_L5 can
be defined before all includes. It makes pgtable_l5_enabled rely on
__pgtable_l5_enabled variable instead. This approach fits all early
users.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20180518103528.59260-3-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Hugh noticied that we calculate the address of the trampoline page table
incorrectly in cleanup_trampoline().
TRAMPOLINE_32BIT_PGTABLE_OFFSET has to be divided by sizeof(unsigned long),
since trampoline_32bit is an 'unsigned long' pointer.
TRAMPOLINE_32BIT_PGTABLE_OFFSET is zero so the bug doesn't have a
visible effect.
Reported-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Fixes: e9d0e6330eb8 ("x86/boot/compressed/64: Prepare new top-level page table for trampoline")
Link: http://lkml.kernel.org/r/20180518103528.59260-2-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Opickn x86_64, PTI entry trampolines are less than the start of kernel text,
but still above 2^63. So leave kernel_start = 1ULL << 63 for x86_64.
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Tested-by: Jiri Olsa <jolsa@kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86@kernel.org
Link: http://lkml.kernel.org/r/1526548928-20790-7-git-send-email-adrian.hunter@intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
|
|
Add a function to identify the machine architecture.
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Tested-by: Jiri Olsa <jolsa@kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86@kernel.org
Link: http://lkml.kernel.org/r/1526548928-20790-6-git-send-email-adrian.hunter@intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
|
|
Before:
INSTALL lib
install include/bpf/*.h '/home/acme/lib/include/perf/bpf'
INSTALL lib
install examples/bpf/*.c '/home/acme/lib/examples/perf/bpf'
After:
INSTALL lib
INSTALL include/bpf
INSTALL lib
INSTALL examples/bpf
Reported-by: Ingo Molnar <mingo@kernel.org>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Wang Nan <wangnan0@huawei.com>
Fixes: dd8e4ead6e98 ("perf bpf: Add bpf.h to be used in eBPF proggies")
Fixes: 8f12a2ff00e5 ("perf bpf: Add 'examples' directories")
Link: https://lkml.kernel.org/n/tip-icljqe87e8pak8mu6mkki9d4@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
|
|
In the 'perf annotate' view, a new hotkey 'c' is created for showing the
min/max cycles.
For example, when press 'c', the annotate view is:
Percent│ IPC Cycle(min/max)
│
│
│ Disassembly of section .text:
│
│ 000000000003aab0 <random@@GLIBC_2.2.5>:
8.22 │3.92 sub $0x18,%rsp
│3.92 mov $0x1,%esi
│3.92 xor %eax,%eax
│3.92 cmpl $0x0,argp_program_version_hook@@G
│3.92 1(2/1) ↓ je 20
│ lock cmpxchg %esi,__abort_msg@@GLIBC_P
│ ↓ jne 29
│ ↓ jmp 43
│1.10 20: cmpxchg %esi,__abort_msg@@GLIBC_PRIVATE+
8.93 │1.10 1(5/1) ↓ je 43
When press 'c' again, the annotate view is switched back:
Percent│ IPC Cycle
│
│
│ Disassembly of section .text:
│
│ 000000000003aab0 <random@@GLIBC_2.2.5>:
8.22 │3.92 sub $0x18,%rsp
│3.92 mov $0x1,%esi
│3.92 xor %eax,%eax
│3.92 cmpl $0x0,argp_program_version_hook@@GLIBC_2.2.5+0x
│3.92 1 ↓ je 20
│ lock cmpxchg %esi,__abort_msg@@GLIBC_PRIVATE+0x8a0
│ ↓ jne 29
│ ↓ jmp 43
│1.10 20: cmpxchg %esi,__abort_msg@@GLIBC_PRIVATE+0x8a0
8.93 │1.10 1 ↓ je 43
Signed-off-by: Jin Yao <yao.jin@linux.intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1526569118-14217-3-git-send-email-yao.jin@linux.intel.com
[ Rename all maxmin to minmax ]
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
|
|
Switch to the generic noncoherent direct mapping implementation.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Mark Salter <msalter@redhat.com>
|
|
Switch to the generic noncoherent direct mapping implementation.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Tested-by: Alexey Brodkin <abrodkin@synopsys.com>
Acked-by: Vineet Gupta <vgupta@synopsys.com>
|
|
These functions should perform the same cache synchronoization as calling
arc_dma_sync_single_for_{cpu,device} in addition to doing any required
address translation or mapping [1]. Ensure they actually do that by calling
arc_dma_sync_single_for_{cpu,device} instead of passing the dir argument
along to _dma_cache_sync.
The now unused _dma_cache_sync function is removed as well.
[1] in fact various drivers rely on that by passing DMA_ATTR_SKIP_CPU_SYNC
to the map/unmap routines and doing the cache synchronization manually.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Tested-by: Alexey Brodkin <abrodkin@synopsys.com>
Acked-by: Vineet Gupta <vgupta@synopsys.com>
|
|
These functions should perform the same functionality as calling
arc_dma_sync_single_for_{cpu,device} on each S/G list element. Ensure
they actually do that by calling arc_dma_sync_single_for_{cpu,device}.
Otherwise we could be passing a different dir argument.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Tested-by: Alexey Brodkin <abrodkin@synopsys.com>
Acked-by: Vineet Gupta <vgupta@synopsys.com>
|