summaryrefslogtreecommitdiff
AgeCommit message (Collapse)Author
2017-04-209p: Convert to separately allocated bdiJan Kara
Allocate struct backing_dev_info separately instead of embedding it inside session. This unifies handling of bdi among users. CC: Eric Van Hensbergen <ericvh@gmail.com> CC: Ron Minnich <rminnich@sandia.gov> CC: Latchesar Ionkov <lucho@ionkov.net> CC: v9fs-developer@lists.sourceforge.net Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-20lustre: Convert to separately allocated bdiJan Kara
Allocate struct backing_dev_info separately instead of embedding it inside superblock. This unifies handling of bdi among users. CC: Oleg Drokin <oleg.drokin@intel.com> CC: Andreas Dilger <andreas.dilger@intel.com> CC: James Simmons <jsimmons@infradead.org> CC: lustre-devel@lists.lustre.org Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-20fs: Get proper reference for s_bdiJan Kara
So far we just relied on block device to hold a bdi reference for us while the filesystem is mounted. While that works perfectly fine, it is a bit awkward that we have a pointer to a refcounted structure in the superblock without proper reference. So make s_bdi hold a proper reference to block device's BDI. No filesystem using mount_bdev() actually changes s_bdi so this is safe and will make bdev filesystems work the same way as filesystems needing to set up their private bdi. Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-20fs: Provide infrastructure for dynamic BDIs in filesystemsJan Kara
Provide helper functions for setting up dynamically allocated backing_dev_info structures for filesystems and cleaning them up on superblock destruction. CC: linux-mtd@lists.infradead.org CC: linux-nfs@vger.kernel.org CC: Petr Vandrovec <petr@vandrovec.name> CC: linux-nilfs@vger.kernel.org CC: cluster-devel@redhat.com CC: osd-dev@open-osd.org CC: codalist@coda.cs.cmu.edu CC: linux-afs@lists.infradead.org CC: ecryptfs@vger.kernel.org CC: linux-cifs@vger.kernel.org CC: ceph-devel@vger.kernel.org CC: linux-btrfs@vger.kernel.org CC: v9fs-developer@lists.sourceforge.net CC: lustre-devel@lists.lustre.org Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-20bdi: Export bdi_alloc_node() and bdi_put()Jan Kara
MTD will want to call bdi_alloc_node() and bdi_put() directly. Export these functions. Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-20block: Unregister bdi on last reference dropJan Kara
Most users will want to unregister bdi when dropping last reference to a bdi. Only a few users (like block devices) want to play more complex tricks with bdi registration and unregistration. So unregister bdi when the last reference to bdi is dropped and just make sure we don't unregister the bdi the second time if it is already unregistered. Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-20bdi: Provide bdi_register_va() and bdi_alloc()Jan Kara
Add function that registers bdi and takes va_list instead of variable number of arguments. Add bdi_alloc() as simple wrapper for NUMA-unaware users allocating BDI. Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-20Merge tag 'mac80211-for-davem-2017-04-18' of ↵David S. Miller
git://git.kernel.org/pub/scm/linux/kernel/git/jberg/mac80211 Johannes Berg says: ==================== A single fix, for the MU-MIMO monitor mode, that fixes bad SKB accesses if the SKB was paged, which is the case for the only driver supporting this - iwlwifi. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-20blk-throttle: fix unused variable warning with BLK_DEV_THROTTLING_LOW=nJens Axboe
We trigger this warning: block/blk-throttle.c: In function ‘blk_throtl_bio’: block/blk-throttle.c:2042:6: warning: variable ‘ret’ set but not used [-Wunused-but-set-variable] int ret; ^~~ since we only assign 'ret' if BLK_DEV_THROTTLING_LOW is off, we never check it. Reported-by: Bart Van Assche <bart.vanassche@sandisk.com> Reviewed-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-20bfq: fix compile error if CONFIG_CGROUPS=nJens Axboe
If we don't have CGROUPS enabled, the compile ends in the following misery: In file included from ../block/bfq-iosched.c:105:0: ../block/bfq-iosched.h:819:22: error: array type has incomplete element type extern struct cftype bfq_blkcg_legacy_files[]; ^ ../block/bfq-iosched.h:820:22: error: array type has incomplete element type extern struct cftype bfq_blkg_files[]; ^ Move the declarations under the right ifdef. Reported-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-20block, bfq: don't dereference bic before null checking itColin Ian King
The call to bfq_check_ioprio_change will dereference bic, however, the null check for bic is after this call. Move the the null check on bic to before the call to avoid any potential null pointer dereference issues. Detected by CoverityScan, CID#1430138 ("Dereference before null check") Signed-off-by: Colin Ian King <colin.king@canonical.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-20ligtnvm: fix double blk_put_queue on same queueRakesh Pandit
On an error path in NVM_DEV_CREATE ioctl blk_put_queue is being called twice: one via blk_cleanup_queue and another via put_disk. Straight fix seems to remove queue pointer so that disk_release never ends up caling blk_put_queue again. [ 391.808827] WARNING: CPU: 1 PID: 1250 at lib/refcount.c:128 refcount_sub_and_test+0x70/0x80 [ 391.808830] refcount_t: underflow; use-after-free. [ 391.808832] Modules linked in: nf_conntrack_netbios_ns............ [ 391.809052] CPU: 1 PID: 1250 Comm: nvme Not tainted......... [ 391.809057] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014 [ 391.809060] Call Trace: [ 391.809079] dump_stack+0x63/0x86 [ 391.809094] __warn+0xcb/0xf0 [ 391.809103] warn_slowpath_fmt+0x5f/0x80 [ 391.809118] refcount_sub_and_test+0x70/0x80 [ 391.809125] refcount_dec_and_test+0x11/0x20 [ 391.809136] kobject_put+0x1f/0x60 [ 391.809149] blk_put_queue+0x15/0x20 [ 391.809159] disk_release+0xae/0xf0 [ 391.809172] device_release+0x32/0x90 [ 391.809184] kobject_release+0x6a/0x170 [ 391.809196] kobject_put+0x2f/0x60 [ 391.809206] put_disk+0x17/0x20 [ 391.809219] nvm_ioctl_dev_create.isra.16+0x897/0xa30 [ 391.809236] nvm_ctl_ioctl+0x23c/0x4c0 [ 391.809248] do_vfs_ioctl+0xa3/0x5f0 [ 391.809258] SyS_ioctl+0x79/0x90 [ 391.809271] entry_SYSCALL_64_fastpath+0x1a/0xa9 [ 391.809280] RIP: 0033:0x7f5d3ef363c7 [ 391.809286] RSP: 002b:00007ffc72ed8d78 EFLAGS: 00000206 ORIG_RAX: 0000000000000010 [ 391.809296] RAX: ffffffffffffffda RBX: 00007ffc72edb552 RCX: 00007f5d3ef363c7 [ 391.809301] RDX: 00007ffc72ed8d90 RSI: 0000000040804c22 RDI: 0000000000000003 [ 391.809306] RBP: 0000000000000001 R08: 0000000000000020 R09: 0000000000000001 [ 391.809311] R10: 000000000000053f R11: 0000000000000206 R12: 0000000000000000 [ 391.809316] R13: 0000000000000000 R14: 00007ffc72edb58d R15: 00007ffc72edb581 Signed-off-by: Rakesh Pandit <rakesh@tuxera.com> Reviewed-by: Matias Bjørling <matias@cnexlabs.com> Fixes: 7d1ef2f408ab "lightnvm: fix cleanup order of disk on init error" Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-20genirq/affinity: Fix calculating vectors to assignKeith Busch
The vectors_per_node is calculated from the remaining available vectors. The current vector starts after pre_vectors, so we need to subtract that from the current to properly account for the number of remaining vectors to assign. Fixes: 3412386b531 ("irq/affinity: Fix extra vecs calculation") Reported-by: Andrei Vagin <avagin@virtuozzo.com> Signed-off-by: Keith Busch <keith.busch@intel.com> Link: http://lkml.kernel.org/r/1492645870-13019-1-git-send-email-keith.busch@intel.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-04-20mmc: sdhci-esdhc-imx: increase the pad I/O drive strength for DDR50 cardHaibo Chen
Currently for DDR50 card, it need tuning in default. We meet tuning fail issue for DDR50 card and some data CRC error when DDR50 sd card works. This is because the default pad I/O drive strength can't make sure DDR50 card work stable. So increase the pad I/O drive strength for DDR50 card, and use pins_100mhz. This fixes DDR50 card support for IMX since DDR50 tuning was enabled from commit 9faac7b95ea4 ("mmc: sdhci: enable tuning for DDR50") Tested-and-reported-by: Tim Harvey <tharvey@gateworks.com> Signed-off-by: Haibo Chen <haibo.chen@nxp.com> Cc: stable@vger.kernel.org # v4.4+ Acked-by: Dong Aisheng <aisheng.dong@nxp.com> Acked-by: Adrian Hunter <adrian.hunter@intel.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2017-04-20HID: wacom: Override incorrect logical maximum contact identifierJason Gerecke
It apears that devices designed around Wacom's G11 chipset (e.g. Lenovo ThinkPad Yoga 260, Lenovo ThinkPad X1 Yoga, Dell XPS 12 9250, Dell Venue 8 Pro 5855, etc.) suffer from a common issue in their HID descriptors. The logical maximum is not updated for the "Contact Identifier" usage, leaving it as just "1" despite these devices being capable of tracking far more touches. Commit 60a221869803 began ignoring usages with out-of-range values, causing problems for devices based on this chipset. Touches after the first will have an out-of-range Contact Identifier, and ignoring that usage will cause the kernel to incorrectly slot each finger's events (along with all the knock-on userspace effects that entails). This commit checks for these buggy descriptors and updates the maximum where required. Prior chipsets have used "255" as the maximum (and the G11, at least, doesn't seem to actually use IDs outside the range of 1..CONTACTMAX) so continue using this value. Cc: stable@vger.kernel.org Fixes: 60a221869803 ("HID: wacom: generic: add support for touchring") Signed-off-by: Jason Gerecke <jason.gerecke@wacom.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-04-19ring-buffer: Have ring_buffer_iter_empty() return true when emptySteven Rostedt (VMware)
I noticed that reading the snapshot file when it is empty no longer gives a status. It suppose to show the status of the snapshot buffer as well as how to allocate and use it. For example: ># cat snapshot # tracer: nop # # # * Snapshot is allocated * # # Snapshot commands: # echo 0 > snapshot : Clears and frees snapshot buffer # echo 1 > snapshot : Allocates snapshot buffer, if not already allocated. # Takes a snapshot of the main buffer. # echo 2 > snapshot : Clears snapshot buffer (but does not allocate or free) # (Doesn't have to be '2' works with any number that # is not a '0' or '1') But instead it just showed an empty buffer: ># cat snapshot # tracer: nop # # entries-in-buffer/entries-written: 0/0 #P:4 # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / delay # TASK-PID CPU# |||| TIMESTAMP FUNCTION # | | | |||| | | What happened was that it was using the ring_buffer_iter_empty() function to see if it was empty, and if it was, it showed the status. But that function was returning false when it was empty. The reason was that the iter header page was on the reader page, and the reader page was empty, but so was the buffer itself. The check only tested to see if the iter was on the commit page, but the commit page was no longer pointing to the reader page, but as all pages were empty, the buffer is also. Cc: stable@vger.kernel.org Fixes: 651e22f2701b ("ring-buffer: Always reset iterator to reader page") Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2017-04-19Merge tag 'clk-fixes-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/clk/linux Pull clk fixes from Stephen Boyd" - one stm32f4 fix for a change that introduced the PLL_I2S and PLL_SAI boards - two Allwinner clk driver build fixes - two Allwinner CPU clk driver fixes where we see random CPUFreq crashes because the CPU's PLL locks up sometimes when we change the rate * tag 'clk-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/clk/linux: clk: sunxi-ng: a33: gate then ungate PLL CPU clk after rate change clk: sunxi-ng: Add clk notifier to gate then ungate PLL clocks clk: sunxi-ng: fix build failure in ccu-sun9i-a80 driver clk: sunxi-ng: fix build error without CONFIG_RESET_CONTROLLER clk: stm32f4: fix: exclude values 0 and 1 for PLLQ
2017-04-19Merge branch 'for-next' of git://git.samba.org/sfrench/cifs-2.6Linus Torvalds
Pull CIFS fix from Steve French: "One more cifs fix for stable" * 'for-next' of git://git.samba.org/sfrench/cifs-2.6: cifs: Do not send echoes before Negotiate is complete
2017-04-19block: Optimize ioprio_best()Bart Van Assche
Since ioprio_best() translates IOPRIO_CLASS_NONE into IOPRIO_CLASS_BE and since lower numerical priority values represent a higher priority a simple numerical comparison is sufficient. Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Reviewed-by: Adam Manzanares <adam.manzanares@wdc.com> Tested-by: Adam Manzanares <adam.manzanares@wdc.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Matias Bjørling <m@bjorling.me> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-19block: Inline blk_rq_set_prio()Bart Van Assche
Since only a single caller remains, inline blk_rq_set_prio(). Initialize req->ioprio even if no I/O priority has been set in the bio nor in the I/O context. Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Reviewed-by: Adam Manzanares <adam.manzanares@wdc.com> Tested-by: Adam Manzanares <adam.manzanares@wdc.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Matias Bjørling <m@bjorling.me> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-19lightnvm: Use blk_init_request_from_bio() instead of open-coding itBart Van Assche
This patch changes the behavior of the lightnvm driver as follows: * REQ_FAILFAST_MASK is set for read-ahead requests. * If no I/O priority has been set in the bio, the I/O priority is copied from the I/O context. * The rq_disk member is initialized if bio->bi_bdev != NULL. * The bio sector offset is copied into req->__sector instead of retaining the value -1 set by blk_mq_alloc_request(). * req->errors is initialized to zero. Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Matias Bjørling <m@bjorling.me> Cc: Adam Manzanares <adam.manzanares@wdc.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-19null_blk: Use blk_init_request_from_bio() instead of open-coding itBart Van Assche
This patch changes the behavior of the null_blk driver for the LightNVM mode as follows: * REQ_FAILFAST_MASK is set for read-ahead requests. * If no I/O priority has been set in the bio, the I/O priority is copied from the I/O context. * The rq_disk member is initialized if bio->bi_bdev != NULL. * req->errors is initialized to zero. Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Matias Bjørling <m@bjorling.me> Cc: Adam Manzanares <adam.manzanares@wdc.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-19block: Export blk_init_request_from_bio()Bart Van Assche
Export this function such that it becomes available to block drivers. Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Matias Bjørling <m@bjorling.me> Cc: Adam Manzanares <adam.manzanares@wdc.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-19nsfs: mark dentry with DCACHE_RCUACCESSCong Wang
Andrey reported a use-after-free in __ns_get_path(): spin_lock include/linux/spinlock.h:299 [inline] lockref_get_not_dead+0x19/0x80 lib/lockref.c:179 __ns_get_path+0x197/0x860 fs/nsfs.c:66 open_related_ns+0xda/0x200 fs/nsfs.c:143 sock_ioctl+0x39d/0x440 net/socket.c:1001 vfs_ioctl fs/ioctl.c:45 [inline] do_vfs_ioctl+0x1bf/0x1780 fs/ioctl.c:685 SYSC_ioctl fs/ioctl.c:700 [inline] SyS_ioctl+0x8f/0xc0 fs/ioctl.c:691 We are under rcu read lock protection at that point: rcu_read_lock(); d = atomic_long_read(&ns->stashed); if (!d) goto slow; dentry = (struct dentry *)d; if (!lockref_get_not_dead(&dentry->d_lockref)) goto slow; rcu_read_unlock(); but don't use a proper RCU API on the free path, therefore a parallel __d_free() could free it at the same time. We need to mark the stashed dentry with DCACHE_RCUACCESS so that __d_free() will be called after all readers leave RCU. Fixes: e149ed2b805f ("take the targets of /proc/*/ns/* symlinks to separate fs") Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Reported-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-04-19mm: make mm_percpu_wq non freezableMichal Hocko
Geert has reported a freeze during PM resume and some additional debugging has shown that the device_resume worker cannot make a forward progress because it waits for an event which is stuck waiting in drain_all_pages: INFO: task kworker/u4:0:5 blocked for more than 120 seconds. Not tainted 4.11.0-rc7-koelsch-00029-g005882e53d62f25d-dirty #3476 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kworker/u4:0 D 0 5 2 0x00000000 Workqueue: events_unbound async_run_entry_fn __schedule schedule schedule_timeout wait_for_common dpm_wait_for_superior device_resume async_resume async_run_entry_fn process_one_work worker_thread kthread [...] bash D 0 1703 1694 0x00000000 __schedule schedule schedule_timeout wait_for_common flush_work drain_all_pages start_isolate_page_range alloc_contig_range cma_alloc __alloc_from_contiguous cma_allocator_alloc __dma_alloc arm_dma_alloc sh_eth_ring_init sh_eth_open sh_eth_resume dpm_run_callback device_resume dpm_resume dpm_resume_end suspend_devices_and_enter pm_suspend state_store kernfs_fop_write __vfs_write vfs_write SyS_write [...] Showing busy workqueues and worker pools: [...] workqueue mm_percpu_wq: flags=0xc pwq 2: cpus=1 node=0 flags=0x0 nice=0 active=0/0 delayed: drain_local_pages_wq, vmstat_update pwq 0: cpus=0 node=0 flags=0x0 nice=0 active=0/0 delayed: drain_local_pages_wq BAR(1703), vmstat_update Tetsuo has properly noted that mm_percpu_wq is created as WQ_FREEZABLE so it is frozen this early during resume so we are effectively deadlocked. Fix this by dropping WQ_FREEZABLE when creating mm_percpu_wq. We really want to have it operational all the time. Fixes: ce612879ddc7 ("mm: move pcp and lru-pcp draining into single wq") Reported-and-tested-by: Geert Uytterhoeven <geert@linux-m68k.org> Debugged-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-04-19Merge tag 'backlight-for-v4.11' of ↵Linus Torvalds
git://git.linaro.org/people/daniel.thompson/linux Pull backlight fix from Daniel Thompson: "Normally pull requests for backlight come from Lee Jones (and will continue to do so) but the bug fixed here is annoying for few people so I'm providing a little holiday cover. Fix a single bug in the PWM backlight driver and make it play nice with a wider range of GPIO devices. This bug is a regression and was independently discovered by Geert Uytterhoevan and Paul Kocialkowski (and is tested by both)" * tag 'backlight-for-v4.11' of git://git.linaro.org/people/daniel.thompson/linux: backlight: pwm_bl: Fix GPIO out for unimplemented .get_direction()
2017-04-19ACPI / power: Avoid maybe-uninitialized warningArnd Bergmann
gcc -O2 cannot always prove that the loop in acpi_power_get_inferred_state() is enterered at least once, so it assumes that cur_state might not get initialized: drivers/acpi/power.c: In function 'acpi_power_get_inferred_state': drivers/acpi/power.c:222:9: error: 'cur_state' may be used uninitialized in this function [-Werror=maybe-uninitialized] This sets the variable to zero at the start of the loop, to ensure that there is well-defined behavior even for an empty list. This gets rid of the warning. The warning first showed up when the -Os flag got removed in a bug fix patch in linux-4.11-rc5. I would suggest merging this addon patch on top of that bug fix to avoid introducing a new warning in the stable kernels. Fixes: 61b79e16c68d (ACPI: Fix incompatibility with mcount-based function graph tracing) Cc: All applicable <stable@vger.kernel.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-04-19mtip32xx: pass BLK_MQ_F_NO_SCHEDMing Lei
The recent introduced MQ IO scheduler breaks mtip32xx in the following way. mtip32xx use the 'request_index' passed to .init_request() as hardware tag index for initializing hardware queue, and it actually require that rq->tag is always same with 'request_index' passed to .init_request(). Current blk-mq IO scheduler can't guarantee this point, so this patch passes BLK_MQ_F_NO_SCHED and at least make mtip32xx working. This patch fixes the following strange hardware failure. The issue can be triggered easily when doing I/O with mq-deadline enabled. [ 186.972578] {1}[Hardware Error]: Hardware error from APEI Generic Hardware Error Source: 32993 [ 186.972578] {1}[Hardware Error]: event severity: fatal [ 186.972579] {1}[Hardware Error]: Error 0, type: fatal [ 186.972580] {1}[Hardware Error]: section_type: PCIe error [ 186.972580] {1}[Hardware Error]: port_type: 0, PCIe end point [ 186.972581] {1}[Hardware Error]: version: 1.0 [ 186.972581] {1}[Hardware Error]: command: 0x0407, status: 0x0010 [ 186.972582] {1}[Hardware Error]: device_id: 0000:07:00.0 [ 186.972582] {1}[Hardware Error]: slot: 4 [ 186.972583] {1}[Hardware Error]: secondary_bus: 0x00 [ 186.972583] {1}[Hardware Error]: vendor_id: 0x1344, device_id: 0x5150 [ 186.972584] {1}[Hardware Error]: class_code: 008001 [ 186.972585] Kernel panic - not syncing: Fatal hardware error! Reported-by: Jozef Mikovic <jmikovic@redhat.com> Signed-off-by: Ming Lei <ming.lei@redhat.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-19block: respect BLK_MQ_F_NO_SCHEDMing Lei
If one driver claims that it doesn't support io scheduler via BLK_MQ_F_NO_SCHED, we should not allow to change and show the availabe io schedulers. This patch adds check to enhance this behaviour. Signed-off-by: Ming Lei <ming.lei@redhat.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-19backlight: pwm_bl: Fix GPIO out for unimplemented .get_direction()Geert Uytterhoeven
Commit 7613c922315e308a ("backlight: pwm_bl: Move the checks for initial power state to a separate function") not just moved some code, but made slight changes in semantics. If a gpiochip doesn't implement the optional .get_direction() callback, gpiod_get_direction always returns -EINVAL, which is never equal to GPIOF_DIR_IN, leading to the GPIO not being configured for output. To avoid this, invert the test and check for not GPIOF_DIR_OUT instead, like the original code did. This restores the display on r8a7740/armadillo. Fixes: 7613c922315e308a ("backlight: pwm_bl: Move the checks for initial power state to a separate function") Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be> Reviewed-by: Peter Ujfalusi <peter.ujfalusi@ti.com> Acked-by: Philipp Zabel <p.zabel@pengutronix.de> Acked-by: Daniel Thompson <daniel.thompson@linaro.org> Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
2017-04-19tracing: Allocate the snapshot buffer before enabling probeSteven Rostedt (VMware)
Currently the snapshot trigger enables the probe and then allocates the snapshot. If the probe triggers before the allocation, it could cause the snapshot to fail and turn tracing off. It's best to allocate the snapshot buffer first, and then enable the trigger. If something goes wrong in the enabling of the trigger, the snapshot buffer is still allocated, but it can also be freed by the user by writting zero into the snapshot buffer file. Also add a check of the return status of alloc_snapshot(). Cc: stable@vger.kernel.org Fixes: 77fd5c15e3 ("tracing: Add snapshot trigger to function probes") Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2017-04-19lightnvm: assume 64-bit lba numbersArnd Bergmann
The driver uses both u64 and sector_t to refer to offsets, and assigns between the two. This causes one harmless warning when sector_t is 32-bit: drivers/lightnvm/pblk-rb.c: In function 'pblk_rb_write_entry_gc': include/linux/lightnvm.h:215:20: error: large integer implicitly truncated to unsigned type [-Werror=overflow] drivers/lightnvm/pblk-rb.c:324:22: note: in expansion of macro 'ADDR_EMPTY' As the driver is already doing this inconsistently, changing the type won't make it worse and is an easy way to avoid the warning. Fixes: a4bd217b4326 ("lightnvm: physical block device (pblk) target") Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-19block: make __blk_end_bidi_request privateChristoph Hellwig
blk_insert_flush should be using __blk_end_request to start with. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-19block: remove blk_end_request_curChristoph Hellwig
This function is not used anywhere in the kernel. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-19block: remove blk_end_request_err and __blk_end_request_errChristoph Hellwig
Both functions are entirely unused. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-19block: remove the osdblk driverChristoph Hellwig
This was just a proof of concept user for the SCSI OSD library, and never had any real users. Signed-off-by: Christoph Hellwig <hch@lst.de> Acked-by: Boaz Harrosh <ooo@electrozaur.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-19block: Make writeback throttling defaults consistent for SQ devicesJan Kara
When CFQ is used as an elevator, it disables writeback throttling because they don't play well together. Later when a different elevator is chosen for the device, writeback throttling doesn't get enabled again as it should. Make sure CFQ enables writeback throttling (if it should be enabled by default) when we switch from it to another IO scheduler. Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-19block, bfq: split bfq-iosched.c into multiple source filesPaolo Valente
The BFQ I/O scheduler features an optimal fair-queuing (proportional-share) scheduling algorithm, enriched with several mechanisms to boost throughput and reduce latency for interactive and real-time applications. This makes BFQ a large and complex piece of code. This commit addresses this issue by splitting BFQ into three main, independent components, and by moving each component into a separate source file: 1. Main algorithm: handles the interaction with the kernel, and decides which requests to dispatch; it uses the following two further components to achieve its goals. 2. Scheduling engine (Hierarchical B-WF2Q+ scheduling algorithm): computes the schedule, using weights and budgets provided by the above component. 3. cgroups support: handles group operations (creation, destruction, move, ...). Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-19block, bfq: remove all get and put of I/O contextsPaolo Valente
When a bfq queue is set in service and when it is merged, a reference to the I/O context associated with the queue is taken. This reference is then released when the queue is deselected from service or split. More precisely, the release of the reference is postponed to when the scheduler lock is released, to avoid nesting between the scheduler and the I/O-context lock. In fact, such nesting would lead to deadlocks, because of other code paths that take the same locks in the opposite order. This postponing of I/O-context releases does complicate code. This commit addresses these issue by modifying involved operations in such a way to not need to get the above I/O-context references any more. Then it also removes any get and release of these references. Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-19block, bfq: handle bursts of queue activationsArianna Avanzini
Many popular I/O-intensive services or applications spawn or reactivate many parallel threads/processes during short time intervals. Examples are systemd during boot or git grep. These services or applications benefit mostly from a high throughput: the quicker the I/O generated by their processes is cumulatively served, the sooner the target job of these services or applications gets completed. As a consequence, it is almost always counterproductive to weight-raise any of the queues associated to the processes of these services or applications: in most cases it would just lower the throughput, mainly because weight-raising also implies device idling. To address this issue, an I/O scheduler needs, first, to detect which queues are associated with these services or applications. In this respect, we have that, from the I/O-scheduler standpoint, these services or applications cause bursts of activations, i.e., activations of different queues occurring shortly after each other. However, a shorter burst of activations may be caused also by the start of an application that does not consist in a lot of parallel I/O-bound threads (see the comments on the function bfq_handle_burst for details). In view of these facts, this commit introduces: 1) an heuristic to detect (only) bursts of queue activations caused by services or applications consisting in many parallel I/O-bound threads; 2) the prevention of device idling and weight-raising for the queues belonging to these bursts. Signed-off-by: Arianna Avanzini <avanzini.arianna@gmail.com> Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-19block, bfq: boost the throughput with random I/O on NCQ-capable HDDsPaolo Valente
This patch is basically the counterpart, for NCQ-capable rotational devices, of the previous patch. Exactly as the previous patch does on flash-based devices and for any workload, this patch disables device idling on rotational devices, but only for random I/O. In fact, only with these queues disabling idling boosts the throughput on NCQ-capable rotational devices. To not break service guarantees, idling is disabled for NCQ-enabled rotational devices only when the same symmetry conditions considered in the previous patches hold. Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Arianna Avanzini <avanzini.arianna@gmail.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-19block, bfq: boost the throughput on NCQ-capable flash-based devicesPaolo Valente
This patch boosts the throughput on NCQ-capable flash-based devices, while still preserving latency guarantees for interactive and soft real-time applications. The throughput is boosted by just not idling the device when the in-service queue remains empty, even if the queue is sync and has a non-null idle window. This helps to keep the drive's internal queue full, which is necessary to achieve maximum performance. This solution to boost the throughput is a port of commits a68bbdd and f7d7b7a for CFQ. As already highlighted in a previous patch, allowing the device to prefetch and internally reorder requests trivially causes loss of control on the request service order, and hence on service guarantees. Fortunately, as discussed in detail in the comments on the function bfq_bfqq_may_idle(), if every process has to receive the same fraction of the throughput, then the service order enforced by the internal scheduler of a flash-based device is relatively close to that enforced by BFQ. In particular, it is close enough to let service guarantees be substantially preserved. Things change in an asymmetric scenario, i.e., if not every process has to receive the same fraction of the throughput. In this case, to guarantee the desired throughput distribution, the device must be prevented from prefetching requests. This is exactly what this patch does in asymmetric scenarios. Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Arianna Avanzini <avanzini.arianna@gmail.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-19block, bfq: reduce idling only in symmetric scenariosArianna Avanzini
A seeky queue (i..e, a queue containing random requests) is assigned a very small device-idling slice, for throughput issues. Unfortunately, given the process associated with a seeky queue, this behavior causes the following problem: if the process, say P, performs sync I/O and has a higher weight than some other processes doing I/O and associated with non-seeky queues, then BFQ may fail to guarantee to P its reserved share of the throughput. The reason is that idling is key for providing service guarantees to processes doing sync I/O [1]. This commit addresses this issue by allowing the device-idling slice to be reduced for a seeky queue only if the scenario happens to be symmetric, i.e., if all the queues are to receive the same share of the throughput. [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O Scheduler", Proceedings of the First Workshop on Mobile System Technologies (MST-2015), May 2015. http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf Signed-off-by: Arianna Avanzini <avanzini.arianna@gmail.com> Signed-off-by: Riccardo Pizzetti <riccardo.pizzetti@gmail.com> Signed-off-by: Samuele Zecchini <samuele.zecchini92@gmail.com> Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-19block, bfq: add Early Queue Merge (EQM)Arianna Avanzini
A set of processes may happen to perform interleaved reads, i.e., read requests whose union would give rise to a sequential read pattern. There are two typical cases: first, processes reading fixed-size chunks of data at a fixed distance from each other; second, processes reading variable-size chunks at variable distances. The latter case occurs for example with QEMU, which splits the I/O generated by a guest into multiple chunks, and lets these chunks be served by a pool of I/O threads, iteratively assigning the next chunk of I/O to the first available thread. CFQ denotes as 'cooperating' a set of processes that are doing interleaved I/O, and when it detects cooperating processes, it merges their queues to obtain a sequential I/O pattern from the union of their I/O requests, and hence boost the throughput. Unfortunately, in the following frequent case, the mechanism implemented in CFQ for detecting cooperating processes and merging their queues is not responsive enough to handle also the fluctuating I/O pattern of the second type of processes. Suppose that one process of the second type issues a request close to the next request to serve of another process of the same type. At that time the two processes would be considered as cooperating. But, if the request issued by the first process is to be merged with some other already-queued request, then, from the moment at which this request arrives, to the moment when CFQ controls whether the two processes are cooperating, the two processes are likely to be already doing I/O in distant zones of the disk surface or device memory. CFQ uses however preemption to get a sequential read pattern out of the read requests performed by the second type of processes too. As a consequence, CFQ uses two different mechanisms to achieve the same goal: boosting the throughput with interleaved I/O. This patch introduces Early Queue Merge (EQM), a unified mechanism to get a sequential read pattern with both types of processes. The main idea is to immediately check whether a newly-arrived request lets some pair of processes become cooperating, both in the case of actual request insertion and, to be responsive with the second type of processes, in the case of request merge. Both types of processes are then handled by just merging their queues. Signed-off-by: Arianna Avanzini <avanzini.arianna@gmail.com> Signed-off-by: Mauro Andreolini <mauro.andreolini@unimore.it> Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-19block, bfq: reduce latency during request-pool saturationPaolo Valente
This patch introduces an heuristic that reduces latency when the I/O-request pool is saturated. This goal is achieved by disabling device idling, for non-weight-raised queues, when there are weight- raised queues with pending or in-flight requests. In fact, as explained in more detail in the comment on the function bfq_bfqq_may_idle(), this reduces the rate at which processes associated with non-weight-raised queues grab requests from the pool, thereby increasing the probability that processes associated with weight-raised queues get a request immediately (or at least soon) when they need one. Along the same line, if there are weight-raised queues, then this patch halves the service rate of async (write) requests for non-weight-raised queues. Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Arianna Avanzini <avanzini.arianna@gmail.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-19block, bfq: preserve a low latency also with NCQ-capable drivesPaolo Valente
I/O schedulers typically allow NCQ-capable drives to prefetch I/O requests, as NCQ boosts the throughput exactly by prefetching and internally reordering requests. Unfortunately, as discussed in detail and shown experimentally in [1], this may cause fairness and latency guarantees to be violated. The main problem is that the internal scheduler of an NCQ-capable drive may postpone the service of some unlucky (prefetched) requests as long as it deems serving other requests more appropriate to boost the throughput. This patch addresses this issue by not disabling device idling for weight-raised queues, even if the device supports NCQ. This allows BFQ to start serving a new queue, and therefore allows the drive to prefetch new requests, only after the idling timeout expires. At that time, all the outstanding requests of the expired queue have been most certainly served. [1] P. Valente and M. Andreolini, "Improving Application Responsiveness with the BFQ Disk I/O Scheduler", Proceedings of the 5th Annual International Systems and Storage Conference (SYSTOR '12), June 2012. Slightly extended version: http://algogroup.unimore.it/people/paolo/disk_sched/bfq-v1-suite- results.pdf Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Arianna Avanzini <avanzini.arianna@gmail.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-19block, bfq: reduce I/O latency for soft real-time applicationsPaolo Valente
To guarantee a low latency also to the I/O requests issued by soft real-time applications, this patch introduces a further heuristic, which weight-raises (in the sense explained in the previous patch) also the queues associated to applications deemed as soft real-time. To be deemed as soft real-time, an application must meet two requirements. First, the application must not require an average bandwidth higher than the approximate bandwidth required to playback or record a compressed high-definition video. Second, the request pattern of the application must be isochronous, i.e., after issuing a request or a batch of requests, the application must stop issuing new requests until all its pending requests have been completed. After that, the application may issue a new batch, and so on. As for the second requirement, it is critical to require also that, after all the pending requests of the application have been completed, an adequate minimum amount of time elapses before the application starts issuing new requests. This prevents also greedy (i.e., I/O-bound) applications from being incorrectly deemed, occasionally, as soft real-time. In fact, if *any amount of time* is fine, then even a greedy application may, paradoxically, meet both the above requirements, if: (1) the application performs random I/O and/or the device is slow, and (2) the CPU load is high. The reason is the following. First, if condition (1) is true, then, during the service of the application, the throughput may be low enough to let the application meet the bandwidth requirement. Second, if condition (2) is true as well, then the application may occasionally behave in an apparently isochronous way, because it may simply stop issuing requests while the CPUs are busy serving other processes. To address this issue, the heuristic leverages the simple fact that greedy applications issue *all* their requests as quickly as they can, whereas soft real-time applications spend some time processing data after each batch of requests is completed. In particular, the heuristic works as follows. First, according to the above isochrony requirement, the heuristic checks whether an application may be soft real-time, thereby giving to the application the opportunity to be deemed as such, only when both the following two conditions happen to hold: 1) the queue associated with the application has expired and is empty, 2) there is no outstanding request of the application. Suppose that both conditions hold at time, say, t_c and that the application issues its next request at time, say, t_i. At time t_c the heuristic computes the next time instant, called soft_rt_next_start in the code, such that, only if t_i >= soft_rt_next_start, then both the next conditions will hold when the application issues its next request: 1) the application will meet the above bandwidth requirement, 2) a given minimum time interval, say Delta, will have elapsed from time t_c (so as to filter out greedy application). The current value of Delta is a little bit higher than the value that we have found, experimentally, to be adequate on a real, general-purpose machine. In particular we had to increase Delta to make the filter quite precise also in slower, embedded systems, and in KVM/QEMU virtual machines (details in the comments on the code). If the application actually issues its next request after time soft_rt_next_start, then its associated queue will be weight-raised for a relatively short time interval. If, during this time interval, the application proves again to meet the bandwidth and isochrony requirements, then the end of the weight-raising period for the queue is moved forward, and so on. Note that an application whose associated queue never happens to be empty when it expires will never have the opportunity to be deemed as soft real-time. Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Arianna Avanzini <avanzini.arianna@gmail.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-19block, bfq: improve responsivenessPaolo Valente
This patch introduces a simple heuristic to load applications quickly, and to perform the I/O requested by interactive applications just as quickly. To this purpose, both a newly-created queue and a queue associated with an interactive application (we explain in a moment how BFQ decides whether the associated application is interactive), receive the following two special treatments: 1) The weight of the queue is raised. 2) The queue unconditionally enjoys device idling when it empties; in fact, if the requests of a queue are sync, then performing device idling for the queue is a necessary condition to guarantee that the queue receives a fraction of the throughput proportional to its weight (see [1] for details). For brevity, we call just weight-raising the combination of these two preferential treatments. For a newly-created queue, weight-raising starts immediately and lasts for a time interval that: 1) depends on the device speed and type (rotational or non-rotational), and 2) is equal to the time needed to load (start up) a large-size application on that device, with cold caches and with no additional workload. Finally, as for guaranteeing a fast execution to interactive, I/O-related tasks (such as opening a file), consider that any interactive application blocks and waits for user input both after starting up and after executing some task. After a while, the user may trigger new operations, after which the application stops again, and so on. Accordingly, the low-latency heuristic weight-raises again a queue in case it becomes backlogged after being idle for a sufficiently long (configurable) time. The weight-raising then lasts for the same time as for a just-created queue. According to our experiments, the combination of this low-latency heuristic and of the improvements described in the previous patch allows BFQ to guarantee a high application responsiveness. [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O Scheduler", Proceedings of the First Workshop on Mobile System Technologies (MST-2015), May 2015. http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Arianna Avanzini <avanzini.arianna@gmail.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-19block, bfq: add more fairness with writes and slow processesPaolo Valente
This patch deals with two sources of unfairness, which can also cause high latencies and throughput loss. The first source is related to write requests. Write requests tend to starve read requests, basically because, on one side, writes are slower than reads, whereas, on the other side, storage devices confuse schedulers by deceptively signaling the completion of write requests immediately after receiving them. This patch addresses this issue by just throttling writes. In particular, after a write request is dispatched for a queue, the budget of the queue is decremented by the number of sectors to write, multiplied by an (over)charge coefficient. The value of the coefficient is the result of our tuning with different devices. The second source of unfairness has to do with slowness detection: when the in-service queue is expired, BFQ also controls whether the queue has been "too slow", i.e., has consumed its last-assigned budget at such a low rate that it would have been impossible to consume all of this budget within the maximum time slice T_max (Subsec. 3.5 in [1]). In this case, the queue is always (over)charged the whole budget, to reduce its utilization of the device. Both this overcharge and the slowness-detection criterion may cause unfairness. First, always charging a full budget to a slow queue is too coarse. It is much more accurate, and this patch lets BFQ do so, to charge an amount of service 'equivalent' to the amount of time during which the queue has been in service. As explained in more detail in the comments on the code, this enables BFQ to provide time fairness among slow queues. Secondly, because of ZBR, a queue may be deemed as slow when its associated process is performing I/O on the slowest zones of a disk. However, unless the process is truly too slow, not reducing the disk utilization of the queue is more profitable in terms of disk throughput than the opposite. A similar problem is caused by logical block mapping on non-rotational devices. For this reason, this patch lets a queue be charged time, and not budget, only if the queue has consumed less than 2/3 of its assigned budget. As an additional, important benefit, this tolerance allows BFQ to preserve enough elasticity to still perform bandwidth, and not time, distribution with little unlucky or quasi-sequential processes. Finally, for the same reasons as above, this patch makes slowness detection itself much less harsh: a queue is deemed slow only if it has consumed its budget at less than half of the peak rate. [1] P. Valente and M. Andreolini, "Improving Application Responsiveness with the BFQ Disk I/O Scheduler", Proceedings of the 5th Annual International Systems and Storage Conference (SYSTOR '12), June 2012. Slightly extended version: http://algogroup.unimore.it/people/paolo/disk_sched/bfq-v1-suite- results.pdf Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Arianna Avanzini <avanzini.arianna@gmail.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-19block, bfq: modify the peak-rate estimatorPaolo Valente
Unless the maximum budget B_max that BFQ can assign to a queue is set explicitly by the user, BFQ automatically updates B_max. In particular, BFQ dynamically sets B_max to the number of sectors that can be read, at the current estimated peak rate, during the maximum time, T_max, allowed before a budget timeout occurs. In formulas, if we denote as R_est the estimated peak rate, then B_max = T_max ∗ R_est. Hence, the higher R_est is with respect to the actual device peak rate, the higher the probability that processes incur budget timeouts unjustly is. Besides, a too high value of B_max unnecessarily increases the deviation from an ideal, smooth service. Unfortunately, it is not trivial to estimate the peak rate correctly: because of the presence of sw and hw queues between the scheduler and the device components that finally serve I/O requests, it is hard to say exactly when a given dispatched request is served inside the device, and for how long. As a consequence, it is hard to know precisely at what rate a given set of requests is actually served by the device. On the opposite end, the dispatch time of any request is trivially available, and, from this piece of information, the "dispatch rate" of requests can be immediately computed. So, the idea in the next function is to use what is known, namely request dispatch times (plus, when useful, request completion times), to estimate what is unknown, namely in-device request service rate. The main issue is that, because of the above facts, the rate at which a certain set of requests is dispatched over a certain time interval can vary greatly with respect to the rate at which the same requests are then served. But, since the size of any intermediate queue is limited, and the service scheme is lossless (no request is silently dropped), the following obvious convergence property holds: the number of requests dispatched MUST become closer and closer to the number of requests completed as the observation interval grows. This is the key property used in this new version of the peak-rate estimator. Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Arianna Avanzini <avanzini.arianna@gmail.com> Signed-off-by: Jens Axboe <axboe@fb.com>