Age | Commit message (Collapse) | Author |
|
Recent kernels have been reported to panic using the bochs_drm
framebuffer under qemu-system-sparc64 which was bisected to
commit 7a0483ac4ffc ("drm/bochs: switch to generic drm fbdev emulation").
The backtrace indicates that the shadow framebuffer copy in
drm_fb_helper_dirty_blit_real() is trying to access the real
framebuffer using a virtual address rather than use an IO access
typically implemented using a physical (ASI_PHYS) access on SPARC.
The fix is to replace the memcpy with memcpy_toio() from io.h.
memcpy_toio() uses writeb() where the original fbdev code
used sbus_memcpy_toio(). The latter uses sbus_writeb().
The difference between writeb() and sbus_memcpy_toio() is
that writeb() writes bytes in little-endian, where sbus_writeb() writes
bytes in big-endian. As endian does not matter for byte writes they are
the same. So we can safely use memcpy_toio() here.
Note that this only fixes bochs, in general fbdev helpers still have
issues with mixing up system memory and __iomem space. Fixing that will
require a lot more work.
v3:
- Improved changelog (Daniel)
- Added FIXME to fbdev_use_iomem (Daniel)
v2:
- Added missing __iomem cast (kernel test robot)
- Made changelog readable and fix typos (Mark)
- Add flag to select iomem - and set it in the bochs driver
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Reported-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Reported-by: kernel test robot <lkp@intel.com>
Tested-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Cc: Thomas Zimmermann <tzimmermann@suse.de>
Cc: Gerd Hoffmann <kraxel@redhat.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: sparclinux@vger.kernel.org
Link: https://patchwork.freedesktop.org/patch/msgid/20200709193016.291267-1-sam@ravnborg.org
Link: https://patchwork.freedesktop.org/patch/msgid/20200725191012.GA434957@ravnborg.org
|
|
Recently introduced irqchip flags lack the corresponding printouts in
debugfs. Add them.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/874kpvydxc.wl-maz@kernel.org
|
|
John reported that on a RK3288 system the perf per CPU interrupts are all
affine to CPU0 and provided the analysis:
"It looks like what happens is that because the interrupts are not per-CPU
in the hardware, armpmu_request_irq() calls irq_force_affinity() while
the interrupt is deactivated and then request_irq() with IRQF_PERCPU |
IRQF_NOBALANCING.
Now when irq_startup() runs with IRQ_STARTUP_NORMAL, it calls
irq_setup_affinity() which returns early because IRQF_PERCPU and
IRQF_NOBALANCING are set, leaving the interrupt on its original CPU."
This was broken by the recent commit which blocked interrupt affinity
setting in hardware before activation of the interrupt. While this works in
general, it does not work for this particular case. As contrary to the
initial analysis not all interrupt chip drivers implement an activate
callback, the safe cure is to make the deferred interrupt affinity setting
at activation time opt-in.
Implement the necessary core logic and make the two irqchip implementations
for which this is required opt-in. In hindsight this would have been the
right thing to do, but ...
Fixes: baedb87d1b53 ("genirq/affinity: Handle affinity setting on inactive interrupts correctly")
Reported-by: John Keeping <john@metanate.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Marc Zyngier <maz@kernel.org>
Acked-by: Marc Zyngier <maz@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/87blk4tzgm.fsf@nanos.tec.linutronix.de
|
|
Silence documentation build warnings by correcting kernel-doc comment
for spi_transfer struct.
Signed-off-by: Colton Lewis <colton.w.lewis@protonmail.com>
Link: https://lore.kernel.org/r/20200725050242.279548-1-colton.w.lewis@protonmail.com
Signed-off-by: Mark Brown <broonie@kernel.org>
|
|
The spi-sun4i driver already has the ability to do large transfers.
However, the max transfer size reported is still fifo depth - 1.
Update the max transfer size reported to the max value possible.
Fixes: 196737912da5 ("spi: sun4i: Allow transfers larger than FIFO size")
Signed-off-by: Jonathan Liu <net147@gmail.com>
Acked-by: Maxime Ripard <mripard@kernel.org>
Link: https://lore.kernel.org/r/20200727072328.510798-1-net147@gmail.com
Signed-off-by: Mark Brown <broonie@kernel.org>
|
|
Enable runtime pm support for spi-imx driver.
Signed-off-by: Clark Wang <xiaoning.wang@nxp.com>
Link: https://lore.kernel.org/r/20200727063354.17031-1-xiaoning.wang@nxp.com
Signed-off-by: Mark Brown <broonie@kernel.org>
|
|
The standard attributes were only introduced after the ones from
thinkpad_acpi in commit 813cab8f3994 ("power: supply: core:
Add CHARGE_CONTROL_{START_THRESHOLD,END_THRESHOLD} properties").
The new standard attributes are aliased to their previous names,
preserving backwards compatibility.
Signed-off-by: Thomas Weißschuh <linux@weissschuh.net>
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
|
|
They were never used.
Signed-off-by: Thomas Weißschuh <linux@weissschuh.net>
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
|
|
Since the host command number 0x012B conflicts with other EC host
command, add one to all regulator control related host command.
Also fix a wrong alignment on struct and sync the comment with the one
in ChromeOS EC codebase.
Fixes: dff08caf35ec ("platform/chrome: cros_ec: Add command for regulator control.")
Signed-off-by: Pi-Hsun Shih <pihsun@chromium.org>
Acked-by: Enric Balletbo i Serra <enric.balletbo@collabora.com>
Link: https://lore.kernel.org/r/20200724080358.619245-1-pihsun@chromium.org
Signed-off-by: Mark Brown <broonie@kernel.org>
|
|
Use module_i2c_driver to simplify driver init boilerplate.
Signed-off-by: Axel Lin <axel.lin@ingics.com>
Link: https://lore.kernel.org/r/20200725014414.1825183-1-axel.lin@ingics.com
Signed-off-by: Mark Brown <broonie@kernel.org>
|
|
This reverts commit bc0f0d4a5853e32ba97a0318f774570428fc5634.
It was not meant to be applied yet.
Cc: Minas Harutyunyan <hminas@synopsys.com>
Cc: Amelie Delaunay <amelie.delaunay@st.com>
Cc: Felipe Balbi <balbi@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Drop the repeated word "for" in a comment.
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: platform-driver-x86@vger.kernel.org
Cc: Darren Hart <dvhart@infradead.org>
Cc: Andy Shevchenko <andy@infradead.org>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
|
|
STM32MP15 SoCs"
This reverts commit 916f8b627288039d9e771a9b2ab1b3c79b303039.
This was not meant to be applied as-is at the moment.
Cc: Minas Harutyunyan <hminas@synopsys.com>
Cc: Amelie Delaunay <amelie.delaunay@st.com>
Cc: Felipe Balbi <balbi@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
The variable rc is being initialized with a value that is
never read and it is being updated later with a new value. The
initialization is redundant and can be removed.
Addresses-Coverity: ("Unused value")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
acpi_map_pxm_to_node() will never return a NUMA node greater than
MAX_NUMNODES, so the 'node >= MAX_NUMNODES' check is not needed.
Remove it.
Signed-off-by: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
In acpi_parse_entries_array(), the subtable entries (entry.hdr)
will never be NULL, so for ACPI subtable handler in struct
acpi_subtable_proc, will never handle NULL subtable entries.
Remove those useless subtable pointer checks in the callback
handlers.
Signed-off-by: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
acpi_disabled, pointer id and table_header are checked in
acpi_table_parse_entries_array(), and acpi_parse_entries_array() is
only called by acpi_table_parse_entries_array(), so those checks in
acpi_parse_entries_array() are duplicate.
Remove those duplicated checks and move the table_size check to
acpi_table_parse_entries_array() as well.
Signed-off-by: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Prior to commit:
859d069ee1dd ("lockdep: Prepare for NMI IRQ state tracking")
IRQ state tracking was disabled in NMIs due to nmi_enter()
doing lockdep_off() -- with the obvious requirement that NMI entry
call nmi_enter() before trace_hardirqs_off().
[ AFAICT, PowerPC and SH violate this order on their NMI entry ]
However, that commit explicitly changed lockdep_hardirqs_*() to ignore
lockdep_off() and breaks every architecture that has irq-tracing in
it's NMI entry that hasn't been fixed up (x86 being the only fixed one
at this point).
The reason for this change is that by ignoring lockdep_off() we can:
- get rid of 'current->lockdep_recursion' in lockdep_assert_irqs*()
which was going to to give header-recursion issues with the
seqlock rework.
- allow these lockdep_assert_*() macros to function in NMI context.
Restore the previous state of things and allow an architecture to
opt-in to the NMI IRQ tracking support, however instead of relying on
lockdep_off(), rely on in_nmi(), both are part of nmi_enter() and so
over-all entry ordering doesn't need to change.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200727124852.GK119549@hirez.programming.kicks-ass.net
|
|
hdr.vmx.flags is meant for future extensions to the ABI, rejecting
invalid flags is necessary to avoid broken half-loads of the
nVMX state.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
A missing VMCS12 was not causing -EINVAL (it was just read with
copy_from_user, so it is not a security issue, but it is still
wrong). Test for VMCS12 validity and reject the nested state
if a VMCS12 is required but not present.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Setting KVM_STATE_NESTED_GUEST_MODE enables various consistency checks
on VMCS12 and therefore causes KVM_SET_NESTED_STATE to fail spuriously
with -EINVAL. Do not set the flag so that we're sure to cover the
conditions included by the test, and cover the case where VMCS12 is
set and KVM_SET_NESTED_STATE is called with invalid VMCS12 contents.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
ACPICA commit c1adb9a2a775df7a85df0103342ebf090e1b2016
Version 20200717.
Link: https://github.com/acpica/acpica/commit/c1adb9a2
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Erik Kaneda <erik.kaneda@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
ACPICA commit e17b28cfcc31918d0db9547b6b274b09c413eb70
Object reference counts are used as a part of ACPICA's garbage
collection mechanism. This mechanism keeps track of references to
heap-allocated structures such as the ACPI operand objects.
Recent server firmware has revealed that this reference count can
overflow on large servers that declare many field units under the
same operation_region. This occurs because each field unit declaration
will add a reference count to the source operation_region.
This change solves the reference count overflow for operation_regions
objects by preventing fieldunits from incrementing their
operation_region's reference count. Each operation_region's reference
count will not be changed by named objects declared under the Field
operator. During namespace deletion, the operation_region namespace
node will be deleted and each fieldunit will be deleted without
touching the deleted operation_region object.
Link: https://github.com/acpica/acpica/commit/e17b28cf
Signed-off-by: Erik Kaneda <erik.kaneda@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
ACPICA commit 7ba2f3d91a32f104765961fda0ed78b884ae193d
The current codebase makes use of one-element arrays in the following
form:
struct something {
int length;
u8 data[1];
};
struct something *instance;
instance = kmalloc(sizeof(*instance) + size, GFP_KERNEL);
instance->length = size;
memcpy(instance->data, source, size);
but the preferred mechanism to declare variable-length types such as
these ones is a flexible array member[1][2], introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure,
which will help us prevent some kind of undefined behavior bugs from
being inadvertently introduced[3] to the linux codebase from now on.
This issue was found with the help of Coccinelle and audited _manually_.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Link: https://github.com/acpica/acpica/commit/7ba2f3d9
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Signed-off-by: Erik Kaneda <erik.kaneda@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Rationale:
Reduces attack surface on kernel devs opening the links for MITM
as HTTPS traffic is much harder to manipulate.
Deterministic algorithm:
For each file:
If not .svg:
For each line:
If doesn't contain `\bxmlns\b`:
For each link, `\bhttp://[^# \t\r\n]*(?:\w|/)`:
If neither `\bgnu\.org/license`, nor `\bmozilla\.org/MPL\b`:
If both the HTTP and HTTPS versions
return 200 OK and serve the same content:
Replace HTTP with HTTPS.
Signed-off-by: Alexander A. Klimov <grandmaster@al2klimov.de>
Acked-by: Vishal Verma <vishal.l.verma@intel.com>
Acked-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/at91/linux into arm/defconfig
AT91 defconfig for 5.9
- Add ClassD, KSZ ethernet switches, brdige, vlan to sama5_defconfig
- Reenable CAN support in sama5_defconfig
* tag 'at91-defconfig-5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/at91/linux:
ARM: configs: at91: sama5: enable CAN PLATFORM driver
ARM: configs: at91: sama5: enable bridge and VLAN filtering
ARM: configs: at91: sama5: add support for KSZ ethernet switches
ARM: configs: at91: sama5: Enable CLASSD
Link: https://lore.kernel.org/r/20200726192810.GA181818@piout.net
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/ssantosh/linux-keystone into arm/drivers
SOC: TI Keystone driver update for v5.9
- TI K3 Ring Accelerator updates
- Few non critical warining fixes
* tag 'drivers_soc_for_5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/ssantosh/linux-keystone:
soc: TI knav_qmss: make symbol 'knav_acc_range_ops' static
firmware: ti_sci: Replace HTTP links with HTTPS ones
soc: ti/ti_sci_protocol.h: drop a duplicated word + clarify
soc: ti: k3: fix semicolon.cocci warnings
soc: ti: k3-ringacc: fix: warn: variable dereferenced before check 'ring'
dmaengine: ti: k3-udma: Switch to k3_ringacc_request_rings_pair
soc: ti: k3-ringacc: separate soc specific initialization
soc: ti: k3-ringacc: add request pair of rings api.
soc: ti: k3-ringacc: add ring's flags to dump
soc: ti: k3-ringacc: Move state tracking variables under a struct
dt-bindings: soc: ti: k3-ringacc: convert bindings to json-schema
Link: https://lore.kernel.org/r/1595711814-7015-1-git-send-email-santosh.shilimkar@oracle.com
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
Modern Intel Mobile platforms support power limit4 (PL4), which is
the SoC package level maximum power limit (in Watts). It can be used
to preemptively limits potential SoC power to prevent power spikes
from tripping the power adapter and battery over-current protection.
This patch enables this feature by exposing package level peak power
capping control to userspace via RAPL sysfs interface. With this,
application like DTPF can modify PL4 power limit, the similar way
of other package power limit (PL1).
As this feature is not tested on previous generations, here it is
enabled only for the platform that has been verified to work,
for safety concerns.
Signed-off-by: Sumeet Pawnikar <sumeet.r.pawnikar@intel.com>
Co-developed-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Reviewed-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Tested-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Currently, acpi.info is an invalid link to access ACPI specification,
the new valid link is https://uefi.org/specifications.
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
board (alc256)
Intel requires to enable power saving mode for intel reference board (alc256)
Signed-off-by: PeiSen Hou <pshou@realtek.com>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/20200727115647.10967-1-tiwai@suse.de
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
Use the newly introduced pm_ptr() macro to simplify the code.
Signed-off-by: Paul Cercueil <paul@crapouillou.net>
Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
This way, when the dev_pm_ops instance is not referenced anywhere, it
will simply be dropped by the compiler without a warning.
Signed-off-by: Paul Cercueil <paul@crapouillou.net>
Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
This macro is analogous to the infamous of_match_ptr(). If CONFIG_PM
is enabled, this macro will resolve to its argument, otherwise to NULL.
Signed-off-by: Paul Cercueil <paul@crapouillou.net>
Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
In previous patches that added support for new iowarrior devices, the
handling of the report size was not done correct.
Fix that up and update the copyright date for the driver
Reworked from an original patch written by Christoph Jung.
Fixes: bab5417f5f01 ("USB: misc: iowarrior: add support for the 100 device")
Fixes: 5f6f8da2d7b5 ("USB: misc: iowarrior: add support for the 28 and 28L devices")
Fixes: 461d8deb26a7 ("USB: misc: iowarrior: add support for 2 OEMed devices")
Cc: stable <stable@kernel.org>
Reported-by: Christoph Jung <jung@codemercs.com>
Link: https://lore.kernel.org/r/20200726094939.1268978-1-gregkh@linuxfoundation.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/balbi/usb into usb-next
Felipe writes:
USB: changes for v5.9 merge window
CDNS3 got several improvements, most of which are non-critical fixes.
DWC3 has a reset fix for the meson platform, while dwc2 has
improvements for role switch on STM32MP15 SoCs.
Apart from these, we have the usual set of non-critical fixes all over
the place and support for new Ingenic SoC to their PHY driver.
* tag 'usb-for-v5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/balbi/usb: (38 commits)
usb: dwc3: gadget: when the started list is empty stop the active xfer
usb: dwc3: gadget: make starting isoc transfers more robust
usb: dwc3: gadget: add frame number mask
usb: gadget: function: printer: Interface is disabled and returns error
usb: gadget: f_uac2: fix AC Interface Header Descriptor wTotalLength
dt-bindings: usb: ti,keystone-dwc3.yaml: Improve schema
usb: bdc: Use devm_clk_get_optional()
usb: bdc: Halt controller on suspend
usb: bdc: driver runs out of buffer descriptors on large ADB transfers
usb: bdc: Adb shows offline after resuming from S2
bdc: Fix bug causing crash after multiple disconnects
usb: bdc: Add compatible string for new style USB DT nodes
dt-bindings: usb: bdc: Update compatible strings
USB: PHY: JZ4770: Reformat the code to align it.
USB: PHY: JZ4770: Add support for new Ingenic SoCs.
USB: PHY: JZ4770: Unify code style and simplify code.
dt-bindings: USB: Add bindings for new Ingenic SoCs.
usb: gadget: net2280: fix memory leak on probe error handling paths
usb: cdns3: drd: simplify *switch_gadet and *switch_host
usb: cdns3: core: removed overwriting some error code
...
|
|
Important fixes:
- in s2idle, use timekeeping_freeze trace mark instead of
machine_suspend to denote entry into s2idle mode.
- in s2idle, use machine_suspend trace mark to create a new virtual
device called "s2idle_enter_<n>x". It denotes an s2idle_enter call
loop of <n> iterations where s2idle was never actually achieved.
It isn't counted as "freeze time" in the header.
- in s2idle, only show multiple freeze times if s2idle went in and
out of resume_noirq. Otherwise multiple freezes are shown with
"waking" time subtracted (waking time is time spent outside s2idle
dealing with wakeups).
- in s2idle summaries, include "FREEZEWAKE" as an issue when at
least 1ms is spent waking from s2idle. A clean run should only
wake for the rtc timer.
- add support for device callbacks with matching names in the same
phase. In rare cases some devices register multiple callbacks from
separate drivers using the same name. Without this fix only one is
shown.
- add kparamsfmt string back to fix bootgraph
General updates:
- when suspend_machine is missing, error says "failed in
suspend_machine"
- extract target count/time and add to summary title if -multi
used
- include any instances of "timeout" in dmesg as issues to be
logged.
- fix ftrace parse to handle any number of flags (instead of
just 4).
- remove sync/async_device string from device detail, remains in
hover.
- when using callgraph (-f) add driver name to callgraph titles.
Signed-off-by: Todd Brandt <todd.e.brandt@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
When removing an extent map at try_release_extent_mapping(), called through
the page release callback (btrfs_releasepage()), we always set the full
sync flag on the inode, which forces the next fsync to use a slower code
path.
This hurts performance for workloads that dirty an amount of data that
exceeds or is very close to the system's RAM memory and do frequent fsync
operations (like database servers can for example). In particular if there
are concurrent fsyncs against different files, by falling back to a full
fsync we do a lot more checksum lookups in the checksums btree, as we do
it for all the extents created in the current transaction, instead of only
the new ones since the last fsync. These checksums lookups not only take
some time but, more importantly, they also cause contention on the
checksums btree locks due to the concurrency with checksum insertions in
the btree by ordered extents from other inodes.
We actually don't need to set the full sync flag on the inode, because we
only remove extent maps that are in the list of modified extents if they
were created in a past transaction, in which case an fsync skips them as
it's pointless to log them. So stop setting the full fsync flag on the
inode whenever we remove an extent map.
This patch is part of a patchset that consists of 3 patches, which have
the following subjects:
1/3 btrfs: fix race between page release and a fast fsync
2/3 btrfs: release old extent maps during page release
3/3 btrfs: do not set the full sync flag on the inode during page release
Performance tests were ran against a branch (misc-next) containing the
whole patchset. The test exercises a workload where there are multiple
processes writing to files and fsyncing them (each writing and fsyncing
its own file), and in total the amount of data dirtied ranges from 2x to
4x the system's RAM memory (16GiB), so that the page release callback is
invoked frequently.
The following script, using fio, was used to perform the tests:
$ cat test-fsync.sh
#!/bin/bash
DEV=/dev/sdk
MNT=/mnt/sdk
MOUNT_OPTIONS="-o ssd"
MKFS_OPTIONS="-d single -m single"
if [ $# -ne 3 ]; then
echo "Use $0 NUM_JOBS FILE_SIZE FSYNC_FREQ"
exit 1
fi
NUM_JOBS=$1
FILE_SIZE=$2
FSYNC_FREQ=$3
cat <<EOF > /tmp/fio-job.ini
[writers]
rw=write
fsync=$FSYNC_FREQ
fallocate=none
group_reporting=1
direct=0
bs=64k
ioengine=sync
size=$FILE_SIZE
directory=$MNT
numjobs=$NUM_JOBS
thread
EOF
echo "Using config:"
echo
cat /tmp/fio-job.ini
echo
mkfs.btrfs -f $MKFS_OPTIONS $DEV &> /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
fio /tmp/fio-job.ini
umount $MNT
The tests were performed for different numbers of jobs, file sizes and
fsync frequency. A qemu VM using kvm was used, with 8 cores (the host has
12 cores, with cpu governance set to performance mode on all cores), 16GiB
of ram (the host has 64GiB) and using a NVMe device directly (without an
intermediary filesystem in the host). While running the tests, the host
was not used for anything else, to avoid disturbing the tests.
The obtained results were the following, and the last line printed by
fio is pasted (includes aggregated throughput and test run time).
*****************************************************
**** 1 job, 32GiB file, fsync frequency 1 ****
*****************************************************
Before patchset:
WRITE: bw=29.1MiB/s (30.5MB/s), 29.1MiB/s-29.1MiB/s (30.5MB/s-30.5MB/s), io=32.0GiB (34.4GB), run=1127557-1127557msec
After patchset:
WRITE: bw=29.3MiB/s (30.7MB/s), 29.3MiB/s-29.3MiB/s (30.7MB/s-30.7MB/s), io=32.0GiB (34.4GB), run=1119042-1119042msec
(+0.7% throughput, -0.8% run time)
*****************************************************
**** 2 jobs, 16GiB files, fsync frequency 1 ****
*****************************************************
Before patchset:
WRITE: bw=33.5MiB/s (35.1MB/s), 33.5MiB/s-33.5MiB/s (35.1MB/s-35.1MB/s), io=32.0GiB (34.4GB), run=979000-979000msec
After patchset:
WRITE: bw=39.9MiB/s (41.8MB/s), 39.9MiB/s-39.9MiB/s (41.8MB/s-41.8MB/s), io=32.0GiB (34.4GB), run=821283-821283msec
(+19.1% throughput, -16.1% runtime)
*****************************************************
**** 4 jobs, 8GiB files, fsync frequency 1 ****
*****************************************************
Before patchset:
WRITE: bw=52.1MiB/s (54.6MB/s), 52.1MiB/s-52.1MiB/s (54.6MB/s-54.6MB/s), io=32.0GiB (34.4GB), run=629130-629130msec
After patchset:
WRITE: bw=71.8MiB/s (75.3MB/s), 71.8MiB/s-71.8MiB/s (75.3MB/s-75.3MB/s), io=32.0GiB (34.4GB), run=456357-456357msec
(+37.8% throughput, -27.5% runtime)
*****************************************************
**** 8 jobs, 4GiB files, fsync frequency 1 ****
*****************************************************
Before patchset:
WRITE: bw=76.1MiB/s (79.8MB/s), 76.1MiB/s-76.1MiB/s (79.8MB/s-79.8MB/s), io=32.0GiB (34.4GB), run=430708-430708msec
After patchset:
WRITE: bw=133MiB/s (140MB/s), 133MiB/s-133MiB/s (140MB/s-140MB/s), io=32.0GiB (34.4GB), run=245458-245458msec
(+74.7% throughput, -43.0% run time)
*****************************************************
**** 16 jobs, 2GiB files, fsync frequency 1 ****
*****************************************************
Before patchset:
WRITE: bw=74.7MiB/s (78.3MB/s), 74.7MiB/s-74.7MiB/s (78.3MB/s-78.3MB/s), io=32.0GiB (34.4GB), run=438625-438625msec
After patchset:
WRITE: bw=184MiB/s (193MB/s), 184MiB/s-184MiB/s (193MB/s-193MB/s), io=32.0GiB (34.4GB), run=177864-177864msec
(+146.3% throughput, -59.5% run time)
*****************************************************
**** 32 jobs, 2GiB files, fsync frequency 1 ****
*****************************************************
Before patchset:
WRITE: bw=72.6MiB/s (76.1MB/s), 72.6MiB/s-72.6MiB/s (76.1MB/s-76.1MB/s), io=64.0GiB (68.7GB), run=902615-902615msec
After patchset:
WRITE: bw=227MiB/s (238MB/s), 227MiB/s-227MiB/s (238MB/s-238MB/s), io=64.0GiB (68.7GB), run=288936-288936msec
(+212.7% throughput, -68.0% run time)
*****************************************************
**** 64 jobs, 1GiB files, fsync frequency 1 ****
*****************************************************
Before patchset:
WRITE: bw=98.8MiB/s (104MB/s), 98.8MiB/s-98.8MiB/s (104MB/s-104MB/s), io=64.0GiB (68.7GB), run=663126-663126msec
After patchset:
WRITE: bw=294MiB/s (308MB/s), 294MiB/s-294MiB/s (308MB/s-308MB/s), io=64.0GiB (68.7GB), run=222940-222940msec
(+197.6% throughput, -66.4% run time)
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
When removing an extent map at try_release_extent_mapping(), called through
the page release callback (btrfs_releasepage()), we never release an extent
map that is in the list of modified extents. This is to prevent races with
a concurrent fsync using the fast path, which could lead to not logging an
extent created in the current transaction.
However we can safely remove an extent map created in a past transaction
that is still in the list of modified extents (because no one fsynced yet
the inode after that transaction got commited), because such extents are
skipped during an fsync as it is pointless to log them. This change does
that.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
When releasing an extent map, done through the page release callback, we
can race with an ongoing fast fsync and cause the fsync to miss a new
extent and not log it. The steps for this to happen are the following:
1) A page is dirtied for some inode I;
2) Writeback for that page is triggered by a path other than fsync, for
example by the system due to memory pressure;
3) When the ordered extent for the extent (a single 4K page) finishes,
we unpin the corresponding extent map and set its generation to N,
the current transaction's generation;
4) The btrfs_releasepage() callback is invoked by the system due to
memory pressure for that no longer dirty page of inode I;
5) At the same time, some task calls fsync on inode I, joins transaction
N, and at btrfs_log_inode() it sees that the inode does not have the
full sync flag set, so we proceed with a fast fsync. But before we get
into btrfs_log_changed_extents() and lock the inode's extent map tree:
6) Through btrfs_releasepage() we end up at try_release_extent_mapping()
and we remove the extent map for the new 4Kb extent, because it is
neither pinned anymore nor locked. By calling remove_extent_mapping(),
we remove the extent map from the list of modified extents, since the
extent map does not have the logging flag set. We unlock the inode's
extent map tree;
7) The task doing the fast fsync now enters btrfs_log_changed_extents(),
locks the inode's extent map tree and iterates its list of modified
extents, which no longer has the 4Kb extent in it, so it does not log
the extent;
8) The fsync finishes;
9) Before transaction N is committed, a power failure happens. After
replaying the log, the 4K extent of inode I will be missing, since
it was not logged due to the race with try_release_extent_mapping().
So fix this by teaching try_release_extent_mapping() to not remove an
extent map if it's still in the list of modified extents.
Fixes: ff44c6e36dc9dc ("Btrfs: do not hold the write_lock on the extent tree while logging")
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
When we're (re)mounting a btrfs filesystem we set the
BTRFS_FS_STATE_REMOUNTING state in fs_info to serialize against async
reclaim or defrags.
This flag is set in btrfs_remount_prepare() called by btrfs_remount().
As btrfs_remount_prepare() does nothing but setting this flag and
doesn't have a second caller, we can just open-code the flag setting in
btrfs_remount().
Similarly do for so clearing of the flag by moving it out of
btrfs_remount_cleanup() into btrfs_remount() to be symmetrical.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Previously we depended on some weird behavior in our chunk allocator to
force the allocation of new stripes, so by the time we got to doing the
reduce we would usually already have a chunk with the proper target.
However that behavior causes other problems and needs to be removed.
First however we need to remove this check to only restripe if we
already have those available profiles, because if we're allocating our
first chunk it obviously will not be available. Simply use the target
as specified, and if that fails it'll be because we're out of space.
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
btrfs/061 has been failing consistently for me recently with a
transaction abort. We run out of space in the system chunk array, which
means we've allocated way too many system chunks than we need.
Chris added this a long time ago for balance as a poor mans restriping.
If you had a single disk and then added another disk and then did a
balance, update_block_group_flags would then figure out which RAID level
you needed.
Fast forward to today and we have restriping behavior, so we can
explicitly tell the fs that we're trying to change the raid level. This
is accomplished through the normal get_alloc_profile path.
Furthermore this code actually causes btrfs/061 to fail, because we do
things like mkfs -m dup -d single with multiple devices. This trips
this check
alloc_flags = update_block_group_flags(fs_info, cache->flags);
if (alloc_flags != cache->flags) {
ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
in btrfs_inc_block_group_ro. Because we're balancing and scrubbing, but
not actually restriping, we keep forcing chunk allocation of RAID1
chunks. This eventually causes us to run out of system space and the
file system aborts and flips read only.
We don't need this poor mans restriping any more, simply use the normal
get_alloc_profile helper, which will get the correct alloc_flags and
thus make the right decision for chunk allocation. This keeps us from
allocating a billion system chunks and falling over.
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
When running with -o enospc_debug you can get the following splat if one
of the dump_space_info's trip
======================================================
WARNING: possible circular locking dependency detected
5.8.0-rc5+ #20 Tainted: G OE
------------------------------------------------------
dd/563090 is trying to acquire lock:
ffff9e7dbf4f1e18 (&ctl->tree_lock){+.+.}-{2:2}, at: btrfs_dump_free_space+0x2b/0xa0 [btrfs]
but task is already holding lock:
ffff9e7e2284d428 (&cache->lock){+.+.}-{2:2}, at: btrfs_dump_space_info+0xaa/0x120 [btrfs]
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #3 (&cache->lock){+.+.}-{2:2}:
_raw_spin_lock+0x25/0x30
btrfs_add_reserved_bytes+0x3c/0x3c0 [btrfs]
find_free_extent+0x7ef/0x13b0 [btrfs]
btrfs_reserve_extent+0x9b/0x180 [btrfs]
btrfs_alloc_tree_block+0xc1/0x340 [btrfs]
alloc_tree_block_no_bg_flush+0x4a/0x60 [btrfs]
__btrfs_cow_block+0x122/0x530 [btrfs]
btrfs_cow_block+0x106/0x210 [btrfs]
commit_cowonly_roots+0x55/0x300 [btrfs]
btrfs_commit_transaction+0x4ed/0xac0 [btrfs]
sync_filesystem+0x74/0x90
generic_shutdown_super+0x22/0x100
kill_anon_super+0x14/0x30
btrfs_kill_super+0x12/0x20 [btrfs]
deactivate_locked_super+0x36/0x70
cleanup_mnt+0x104/0x160
task_work_run+0x5f/0x90
__prepare_exit_to_usermode+0x1bd/0x1c0
do_syscall_64+0x5e/0xb0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
-> #2 (&space_info->lock){+.+.}-{2:2}:
_raw_spin_lock+0x25/0x30
btrfs_block_rsv_release+0x1a6/0x3f0 [btrfs]
btrfs_inode_rsv_release+0x4f/0x170 [btrfs]
btrfs_clear_delalloc_extent+0x155/0x480 [btrfs]
clear_state_bit+0x81/0x1a0 [btrfs]
__clear_extent_bit+0x25c/0x5d0 [btrfs]
clear_extent_bit+0x15/0x20 [btrfs]
btrfs_invalidatepage+0x2b7/0x3c0 [btrfs]
truncate_cleanup_page+0x47/0xe0
truncate_inode_pages_range+0x238/0x840
truncate_pagecache+0x44/0x60
btrfs_setattr+0x202/0x5e0 [btrfs]
notify_change+0x33b/0x490
do_truncate+0x76/0xd0
path_openat+0x687/0xa10
do_filp_open+0x91/0x100
do_sys_openat2+0x215/0x2d0
do_sys_open+0x44/0x80
do_syscall_64+0x52/0xb0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
-> #1 (&tree->lock#2){+.+.}-{2:2}:
_raw_spin_lock+0x25/0x30
find_first_extent_bit+0x32/0x150 [btrfs]
write_pinned_extent_entries.isra.0+0xc5/0x100 [btrfs]
__btrfs_write_out_cache+0x172/0x480 [btrfs]
btrfs_write_out_cache+0x7a/0xf0 [btrfs]
btrfs_write_dirty_block_groups+0x286/0x3b0 [btrfs]
commit_cowonly_roots+0x245/0x300 [btrfs]
btrfs_commit_transaction+0x4ed/0xac0 [btrfs]
close_ctree+0xf9/0x2f5 [btrfs]
generic_shutdown_super+0x6c/0x100
kill_anon_super+0x14/0x30
btrfs_kill_super+0x12/0x20 [btrfs]
deactivate_locked_super+0x36/0x70
cleanup_mnt+0x104/0x160
task_work_run+0x5f/0x90
__prepare_exit_to_usermode+0x1bd/0x1c0
do_syscall_64+0x5e/0xb0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
-> #0 (&ctl->tree_lock){+.+.}-{2:2}:
__lock_acquire+0x1240/0x2460
lock_acquire+0xab/0x360
_raw_spin_lock+0x25/0x30
btrfs_dump_free_space+0x2b/0xa0 [btrfs]
btrfs_dump_space_info+0xf4/0x120 [btrfs]
btrfs_reserve_extent+0x176/0x180 [btrfs]
__btrfs_prealloc_file_range+0x145/0x550 [btrfs]
cache_save_setup+0x28d/0x3b0 [btrfs]
btrfs_start_dirty_block_groups+0x1fc/0x4f0 [btrfs]
btrfs_commit_transaction+0xcc/0xac0 [btrfs]
btrfs_alloc_data_chunk_ondemand+0x162/0x4c0 [btrfs]
btrfs_check_data_free_space+0x4c/0xa0 [btrfs]
btrfs_buffered_write.isra.0+0x19b/0x740 [btrfs]
btrfs_file_write_iter+0x3cf/0x610 [btrfs]
new_sync_write+0x11e/0x1b0
vfs_write+0x1c9/0x200
ksys_write+0x68/0xe0
do_syscall_64+0x52/0xb0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
other info that might help us debug this:
Chain exists of:
&ctl->tree_lock --> &space_info->lock --> &cache->lock
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&cache->lock);
lock(&space_info->lock);
lock(&cache->lock);
lock(&ctl->tree_lock);
*** DEADLOCK ***
6 locks held by dd/563090:
#0: ffff9e7e21d18448 (sb_writers#14){.+.+}-{0:0}, at: vfs_write+0x195/0x200
#1: ffff9e7dd0410ed8 (&sb->s_type->i_mutex_key#19){++++}-{3:3}, at: btrfs_file_write_iter+0x86/0x610 [btrfs]
#2: ffff9e7e21d18638 (sb_internal#2){.+.+}-{0:0}, at: start_transaction+0x40b/0x5b0 [btrfs]
#3: ffff9e7e1f05d688 (&cur_trans->cache_write_mutex){+.+.}-{3:3}, at: btrfs_start_dirty_block_groups+0x158/0x4f0 [btrfs]
#4: ffff9e7e2284ddb8 (&space_info->groups_sem){++++}-{3:3}, at: btrfs_dump_space_info+0x69/0x120 [btrfs]
#5: ffff9e7e2284d428 (&cache->lock){+.+.}-{2:2}, at: btrfs_dump_space_info+0xaa/0x120 [btrfs]
stack backtrace:
CPU: 3 PID: 563090 Comm: dd Tainted: G OE 5.8.0-rc5+ #20
Hardware name: To Be Filled By O.E.M. To Be Filled By O.E.M./890FX Deluxe5, BIOS P1.40 05/03/2011
Call Trace:
dump_stack+0x96/0xd0
check_noncircular+0x162/0x180
__lock_acquire+0x1240/0x2460
? wake_up_klogd.part.0+0x30/0x40
lock_acquire+0xab/0x360
? btrfs_dump_free_space+0x2b/0xa0 [btrfs]
_raw_spin_lock+0x25/0x30
? btrfs_dump_free_space+0x2b/0xa0 [btrfs]
btrfs_dump_free_space+0x2b/0xa0 [btrfs]
btrfs_dump_space_info+0xf4/0x120 [btrfs]
btrfs_reserve_extent+0x176/0x180 [btrfs]
__btrfs_prealloc_file_range+0x145/0x550 [btrfs]
? btrfs_qgroup_reserve_data+0x1d/0x60 [btrfs]
cache_save_setup+0x28d/0x3b0 [btrfs]
btrfs_start_dirty_block_groups+0x1fc/0x4f0 [btrfs]
btrfs_commit_transaction+0xcc/0xac0 [btrfs]
? start_transaction+0xe0/0x5b0 [btrfs]
btrfs_alloc_data_chunk_ondemand+0x162/0x4c0 [btrfs]
btrfs_check_data_free_space+0x4c/0xa0 [btrfs]
btrfs_buffered_write.isra.0+0x19b/0x740 [btrfs]
? ktime_get_coarse_real_ts64+0xa8/0xd0
? trace_hardirqs_on+0x1c/0xe0
btrfs_file_write_iter+0x3cf/0x610 [btrfs]
new_sync_write+0x11e/0x1b0
vfs_write+0x1c9/0x200
ksys_write+0x68/0xe0
do_syscall_64+0x52/0xb0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
This is because we're holding the block_group->lock while trying to dump
the free space cache. However we don't need this lock, we just need it
to read the values for the printk, so move the free space cache dumping
outside of the block group lock.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
We are currently getting this lockdep splat in btrfs/161:
======================================================
WARNING: possible circular locking dependency detected
5.8.0-rc5+ #20 Tainted: G E
------------------------------------------------------
mount/678048 is trying to acquire lock:
ffff9b769f15b6e0 (&fs_devs->device_list_mutex){+.+.}-{3:3}, at: clone_fs_devices+0x4d/0x170 [btrfs]
but task is already holding lock:
ffff9b76abdb08d0 (&fs_info->chunk_mutex){+.+.}-{3:3}, at: btrfs_read_chunk_tree+0x6a/0x800 [btrfs]
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (&fs_info->chunk_mutex){+.+.}-{3:3}:
__mutex_lock+0x8b/0x8f0
btrfs_init_new_device+0x2d2/0x1240 [btrfs]
btrfs_ioctl+0x1de/0x2d20 [btrfs]
ksys_ioctl+0x87/0xc0
__x64_sys_ioctl+0x16/0x20
do_syscall_64+0x52/0xb0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
-> #0 (&fs_devs->device_list_mutex){+.+.}-{3:3}:
__lock_acquire+0x1240/0x2460
lock_acquire+0xab/0x360
__mutex_lock+0x8b/0x8f0
clone_fs_devices+0x4d/0x170 [btrfs]
btrfs_read_chunk_tree+0x330/0x800 [btrfs]
open_ctree+0xb7c/0x18ce [btrfs]
btrfs_mount_root.cold+0x13/0xfa [btrfs]
legacy_get_tree+0x30/0x50
vfs_get_tree+0x28/0xc0
fc_mount+0xe/0x40
vfs_kern_mount.part.0+0x71/0x90
btrfs_mount+0x13b/0x3e0 [btrfs]
legacy_get_tree+0x30/0x50
vfs_get_tree+0x28/0xc0
do_mount+0x7de/0xb30
__x64_sys_mount+0x8e/0xd0
do_syscall_64+0x52/0xb0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&fs_info->chunk_mutex);
lock(&fs_devs->device_list_mutex);
lock(&fs_info->chunk_mutex);
lock(&fs_devs->device_list_mutex);
*** DEADLOCK ***
3 locks held by mount/678048:
#0: ffff9b75ff5fb0e0 (&type->s_umount_key#63/1){+.+.}-{3:3}, at: alloc_super+0xb5/0x380
#1: ffffffffc0c2fbc8 (uuid_mutex){+.+.}-{3:3}, at: btrfs_read_chunk_tree+0x54/0x800 [btrfs]
#2: ffff9b76abdb08d0 (&fs_info->chunk_mutex){+.+.}-{3:3}, at: btrfs_read_chunk_tree+0x6a/0x800 [btrfs]
stack backtrace:
CPU: 2 PID: 678048 Comm: mount Tainted: G E 5.8.0-rc5+ #20
Hardware name: To Be Filled By O.E.M. To Be Filled By O.E.M./890FX Deluxe5, BIOS P1.40 05/03/2011
Call Trace:
dump_stack+0x96/0xd0
check_noncircular+0x162/0x180
__lock_acquire+0x1240/0x2460
? asm_sysvec_apic_timer_interrupt+0x12/0x20
lock_acquire+0xab/0x360
? clone_fs_devices+0x4d/0x170 [btrfs]
__mutex_lock+0x8b/0x8f0
? clone_fs_devices+0x4d/0x170 [btrfs]
? rcu_read_lock_sched_held+0x52/0x60
? cpumask_next+0x16/0x20
? module_assert_mutex_or_preempt+0x14/0x40
? __module_address+0x28/0xf0
? clone_fs_devices+0x4d/0x170 [btrfs]
? static_obj+0x4f/0x60
? lockdep_init_map_waits+0x43/0x200
? clone_fs_devices+0x4d/0x170 [btrfs]
clone_fs_devices+0x4d/0x170 [btrfs]
btrfs_read_chunk_tree+0x330/0x800 [btrfs]
open_ctree+0xb7c/0x18ce [btrfs]
? super_setup_bdi_name+0x79/0xd0
btrfs_mount_root.cold+0x13/0xfa [btrfs]
? vfs_parse_fs_string+0x84/0xb0
? rcu_read_lock_sched_held+0x52/0x60
? kfree+0x2b5/0x310
legacy_get_tree+0x30/0x50
vfs_get_tree+0x28/0xc0
fc_mount+0xe/0x40
vfs_kern_mount.part.0+0x71/0x90
btrfs_mount+0x13b/0x3e0 [btrfs]
? cred_has_capability+0x7c/0x120
? rcu_read_lock_sched_held+0x52/0x60
? legacy_get_tree+0x30/0x50
legacy_get_tree+0x30/0x50
vfs_get_tree+0x28/0xc0
do_mount+0x7de/0xb30
? memdup_user+0x4e/0x90
__x64_sys_mount+0x8e/0xd0
do_syscall_64+0x52/0xb0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
This is because btrfs_read_chunk_tree() can come upon DEV_EXTENT's and
then read the device, which takes the device_list_mutex. The
device_list_mutex needs to be taken before the chunk_mutex, so this is a
problem. We only really need the chunk mutex around adding the chunk,
so move the mutex around read_one_chunk.
An argument could be made that we don't even need the chunk_mutex here
as it's during mount, and we are protected by various other locks.
However we already have special rules for ->device_list_mutex, and I'd
rather not have another special case for ->chunk_mutex.
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
There's long existed a lockdep splat because we open our bdev's under
the ->device_list_mutex at mount time, which acquires the bd_mutex.
Usually this goes unnoticed, but if you do loopback devices at all
suddenly the bd_mutex comes with a whole host of other dependencies,
which results in the splat when you mount a btrfs file system.
======================================================
WARNING: possible circular locking dependency detected
5.8.0-0.rc3.1.fc33.x86_64+debug #1 Not tainted
------------------------------------------------------
systemd-journal/509 is trying to acquire lock:
ffff970831f84db0 (&fs_info->reloc_mutex){+.+.}-{3:3}, at: btrfs_record_root_in_trans+0x44/0x70 [btrfs]
but task is already holding lock:
ffff97083144d598 (sb_pagefaults){.+.+}-{0:0}, at: btrfs_page_mkwrite+0x59/0x560 [btrfs]
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #6 (sb_pagefaults){.+.+}-{0:0}:
__sb_start_write+0x13e/0x220
btrfs_page_mkwrite+0x59/0x560 [btrfs]
do_page_mkwrite+0x4f/0x130
do_wp_page+0x3b0/0x4f0
handle_mm_fault+0xf47/0x1850
do_user_addr_fault+0x1fc/0x4b0
exc_page_fault+0x88/0x300
asm_exc_page_fault+0x1e/0x30
-> #5 (&mm->mmap_lock#2){++++}-{3:3}:
__might_fault+0x60/0x80
_copy_from_user+0x20/0xb0
get_sg_io_hdr+0x9a/0xb0
scsi_cmd_ioctl+0x1ea/0x2f0
cdrom_ioctl+0x3c/0x12b4
sr_block_ioctl+0xa4/0xd0
block_ioctl+0x3f/0x50
ksys_ioctl+0x82/0xc0
__x64_sys_ioctl+0x16/0x20
do_syscall_64+0x52/0xb0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
-> #4 (&cd->lock){+.+.}-{3:3}:
__mutex_lock+0x7b/0x820
sr_block_open+0xa2/0x180
__blkdev_get+0xdd/0x550
blkdev_get+0x38/0x150
do_dentry_open+0x16b/0x3e0
path_openat+0x3c9/0xa00
do_filp_open+0x75/0x100
do_sys_openat2+0x8a/0x140
__x64_sys_openat+0x46/0x70
do_syscall_64+0x52/0xb0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
-> #3 (&bdev->bd_mutex){+.+.}-{3:3}:
__mutex_lock+0x7b/0x820
__blkdev_get+0x6a/0x550
blkdev_get+0x85/0x150
blkdev_get_by_path+0x2c/0x70
btrfs_get_bdev_and_sb+0x1b/0xb0 [btrfs]
open_fs_devices+0x88/0x240 [btrfs]
btrfs_open_devices+0x92/0xa0 [btrfs]
btrfs_mount_root+0x250/0x490 [btrfs]
legacy_get_tree+0x30/0x50
vfs_get_tree+0x28/0xc0
vfs_kern_mount.part.0+0x71/0xb0
btrfs_mount+0x119/0x380 [btrfs]
legacy_get_tree+0x30/0x50
vfs_get_tree+0x28/0xc0
do_mount+0x8c6/0xca0
__x64_sys_mount+0x8e/0xd0
do_syscall_64+0x52/0xb0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
-> #2 (&fs_devs->device_list_mutex){+.+.}-{3:3}:
__mutex_lock+0x7b/0x820
btrfs_run_dev_stats+0x36/0x420 [btrfs]
commit_cowonly_roots+0x91/0x2d0 [btrfs]
btrfs_commit_transaction+0x4e6/0x9f0 [btrfs]
btrfs_sync_file+0x38a/0x480 [btrfs]
__x64_sys_fdatasync+0x47/0x80
do_syscall_64+0x52/0xb0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
-> #1 (&fs_info->tree_log_mutex){+.+.}-{3:3}:
__mutex_lock+0x7b/0x820
btrfs_commit_transaction+0x48e/0x9f0 [btrfs]
btrfs_sync_file+0x38a/0x480 [btrfs]
__x64_sys_fdatasync+0x47/0x80
do_syscall_64+0x52/0xb0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
-> #0 (&fs_info->reloc_mutex){+.+.}-{3:3}:
__lock_acquire+0x1241/0x20c0
lock_acquire+0xb0/0x400
__mutex_lock+0x7b/0x820
btrfs_record_root_in_trans+0x44/0x70 [btrfs]
start_transaction+0xd2/0x500 [btrfs]
btrfs_dirty_inode+0x44/0xd0 [btrfs]
file_update_time+0xc6/0x120
btrfs_page_mkwrite+0xda/0x560 [btrfs]
do_page_mkwrite+0x4f/0x130
do_wp_page+0x3b0/0x4f0
handle_mm_fault+0xf47/0x1850
do_user_addr_fault+0x1fc/0x4b0
exc_page_fault+0x88/0x300
asm_exc_page_fault+0x1e/0x30
other info that might help us debug this:
Chain exists of:
&fs_info->reloc_mutex --> &mm->mmap_lock#2 --> sb_pagefaults
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(sb_pagefaults);
lock(&mm->mmap_lock#2);
lock(sb_pagefaults);
lock(&fs_info->reloc_mutex);
*** DEADLOCK ***
3 locks held by systemd-journal/509:
#0: ffff97083bdec8b8 (&mm->mmap_lock#2){++++}-{3:3}, at: do_user_addr_fault+0x12e/0x4b0
#1: ffff97083144d598 (sb_pagefaults){.+.+}-{0:0}, at: btrfs_page_mkwrite+0x59/0x560 [btrfs]
#2: ffff97083144d6a8 (sb_internal){.+.+}-{0:0}, at: start_transaction+0x3f8/0x500 [btrfs]
stack backtrace:
CPU: 0 PID: 509 Comm: systemd-journal Not tainted 5.8.0-0.rc3.1.fc33.x86_64+debug #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
Call Trace:
dump_stack+0x92/0xc8
check_noncircular+0x134/0x150
__lock_acquire+0x1241/0x20c0
lock_acquire+0xb0/0x400
? btrfs_record_root_in_trans+0x44/0x70 [btrfs]
? lock_acquire+0xb0/0x400
? btrfs_record_root_in_trans+0x44/0x70 [btrfs]
__mutex_lock+0x7b/0x820
? btrfs_record_root_in_trans+0x44/0x70 [btrfs]
? kvm_sched_clock_read+0x14/0x30
? sched_clock+0x5/0x10
? sched_clock_cpu+0xc/0xb0
btrfs_record_root_in_trans+0x44/0x70 [btrfs]
start_transaction+0xd2/0x500 [btrfs]
btrfs_dirty_inode+0x44/0xd0 [btrfs]
file_update_time+0xc6/0x120
btrfs_page_mkwrite+0xda/0x560 [btrfs]
? sched_clock+0x5/0x10
do_page_mkwrite+0x4f/0x130
do_wp_page+0x3b0/0x4f0
handle_mm_fault+0xf47/0x1850
do_user_addr_fault+0x1fc/0x4b0
exc_page_fault+0x88/0x300
? asm_exc_page_fault+0x8/0x30
asm_exc_page_fault+0x1e/0x30
RIP: 0033:0x7fa3972fdbfe
Code: Bad RIP value.
Fix this by not holding the ->device_list_mutex at this point. The
device_list_mutex exists to protect us from modifying the device list
while the file system is running.
However it can also be modified by doing a scan on a device. But this
action is specifically protected by the uuid_mutex, which we are holding
here. We cannot race with opening at this point because we have the
->s_mount lock held during the mount. Not having the
->device_list_mutex here is perfectly safe as we're not going to change
the devices at this point.
CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add some comments ]
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Dave hit this splat during testing btrfs/078:
======================================================
WARNING: possible circular locking dependency detected
5.8.0-rc6-default+ #1191 Not tainted
------------------------------------------------------
kswapd0/75 is trying to acquire lock:
ffffa040e9d04ff8 (&delayed_node->mutex){+.+.}-{3:3}, at: __btrfs_release_delayed_node.part.0+0x3f/0x310 [btrfs]
but task is already holding lock:
ffffffff8b0c8040 (fs_reclaim){+.+.}-{0:0}, at: __fs_reclaim_acquire+0x5/0x30
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #2 (fs_reclaim){+.+.}-{0:0}:
__lock_acquire+0x56f/0xaa0
lock_acquire+0xa3/0x440
fs_reclaim_acquire.part.0+0x25/0x30
__kmalloc_track_caller+0x49/0x330
kstrdup+0x2e/0x60
__kernfs_new_node.constprop.0+0x44/0x250
kernfs_new_node+0x25/0x50
kernfs_create_link+0x34/0xa0
sysfs_do_create_link_sd+0x5e/0xd0
btrfs_sysfs_add_devices_dir+0x65/0x100 [btrfs]
btrfs_init_new_device+0x44c/0x12b0 [btrfs]
btrfs_ioctl+0xc3c/0x25c0 [btrfs]
ksys_ioctl+0x68/0xa0
__x64_sys_ioctl+0x16/0x20
do_syscall_64+0x50/0xe0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
-> #1 (&fs_info->chunk_mutex){+.+.}-{3:3}:
__lock_acquire+0x56f/0xaa0
lock_acquire+0xa3/0x440
__mutex_lock+0xa0/0xaf0
btrfs_chunk_alloc+0x137/0x3e0 [btrfs]
find_free_extent+0xb44/0xfb0 [btrfs]
btrfs_reserve_extent+0x9b/0x180 [btrfs]
btrfs_alloc_tree_block+0xc1/0x350 [btrfs]
alloc_tree_block_no_bg_flush+0x4a/0x60 [btrfs]
__btrfs_cow_block+0x143/0x7a0 [btrfs]
btrfs_cow_block+0x15f/0x310 [btrfs]
push_leaf_right+0x150/0x240 [btrfs]
split_leaf+0x3cd/0x6d0 [btrfs]
btrfs_search_slot+0xd14/0xf70 [btrfs]
btrfs_insert_empty_items+0x64/0xc0 [btrfs]
__btrfs_commit_inode_delayed_items+0xb2/0x840 [btrfs]
btrfs_async_run_delayed_root+0x10e/0x1d0 [btrfs]
btrfs_work_helper+0x2f9/0x650 [btrfs]
process_one_work+0x22c/0x600
worker_thread+0x50/0x3b0
kthread+0x137/0x150
ret_from_fork+0x1f/0x30
-> #0 (&delayed_node->mutex){+.+.}-{3:3}:
check_prev_add+0x98/0xa20
validate_chain+0xa8c/0x2a00
__lock_acquire+0x56f/0xaa0
lock_acquire+0xa3/0x440
__mutex_lock+0xa0/0xaf0
__btrfs_release_delayed_node.part.0+0x3f/0x310 [btrfs]
btrfs_evict_inode+0x3bf/0x560 [btrfs]
evict+0xd6/0x1c0
dispose_list+0x48/0x70
prune_icache_sb+0x54/0x80
super_cache_scan+0x121/0x1a0
do_shrink_slab+0x175/0x420
shrink_slab+0xb1/0x2e0
shrink_node+0x192/0x600
balance_pgdat+0x31f/0x750
kswapd+0x206/0x510
kthread+0x137/0x150
ret_from_fork+0x1f/0x30
other info that might help us debug this:
Chain exists of:
&delayed_node->mutex --> &fs_info->chunk_mutex --> fs_reclaim
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(fs_reclaim);
lock(&fs_info->chunk_mutex);
lock(fs_reclaim);
lock(&delayed_node->mutex);
*** DEADLOCK ***
3 locks held by kswapd0/75:
#0: ffffffff8b0c8040 (fs_reclaim){+.+.}-{0:0}, at: __fs_reclaim_acquire+0x5/0x30
#1: ffffffff8b0b50b8 (shrinker_rwsem){++++}-{3:3}, at: shrink_slab+0x54/0x2e0
#2: ffffa040e057c0e8 (&type->s_umount_key#26){++++}-{3:3}, at: trylock_super+0x16/0x50
stack backtrace:
CPU: 2 PID: 75 Comm: kswapd0 Not tainted 5.8.0-rc6-default+ #1191
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba527-rebuilt.opensuse.org 04/01/2014
Call Trace:
dump_stack+0x78/0xa0
check_noncircular+0x16f/0x190
check_prev_add+0x98/0xa20
validate_chain+0xa8c/0x2a00
__lock_acquire+0x56f/0xaa0
lock_acquire+0xa3/0x440
? __btrfs_release_delayed_node.part.0+0x3f/0x310 [btrfs]
__mutex_lock+0xa0/0xaf0
? __btrfs_release_delayed_node.part.0+0x3f/0x310 [btrfs]
? __lock_acquire+0x56f/0xaa0
? __btrfs_release_delayed_node.part.0+0x3f/0x310 [btrfs]
? lock_acquire+0xa3/0x440
? btrfs_evict_inode+0x138/0x560 [btrfs]
? btrfs_evict_inode+0x2fe/0x560 [btrfs]
? __btrfs_release_delayed_node.part.0+0x3f/0x310 [btrfs]
__btrfs_release_delayed_node.part.0+0x3f/0x310 [btrfs]
btrfs_evict_inode+0x3bf/0x560 [btrfs]
evict+0xd6/0x1c0
dispose_list+0x48/0x70
prune_icache_sb+0x54/0x80
super_cache_scan+0x121/0x1a0
do_shrink_slab+0x175/0x420
shrink_slab+0xb1/0x2e0
shrink_node+0x192/0x600
balance_pgdat+0x31f/0x750
kswapd+0x206/0x510
? _raw_spin_unlock_irqrestore+0x3e/0x50
? finish_wait+0x90/0x90
? balance_pgdat+0x750/0x750
kthread+0x137/0x150
? kthread_stop+0x2a0/0x2a0
ret_from_fork+0x1f/0x30
This is because we're holding the chunk_mutex while adding this device
and adding its sysfs entries. We actually hold different locks in
different places when calling this function, the dev_replace semaphore
for instance in dev replace, so instead of moving this call around
simply wrap it's operations in NOFS.
CC: stable@vger.kernel.org # 4.14+
Reported-by: David Sterba <dsterba@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Eric reported seeing this message while running generic/475
BTRFS: error (device dm-3) in btrfs_sync_log:3084: errno=-117 Filesystem corrupted
Full stack trace:
BTRFS: error (device dm-0) in btrfs_commit_transaction:2323: errno=-5 IO failure (Error while writing out transaction)
BTRFS info (device dm-0): forced readonly
BTRFS warning (device dm-0): Skipping commit of aborted transaction.
------------[ cut here ]------------
BTRFS: error (device dm-0) in cleanup_transaction:1894: errno=-5 IO failure
BTRFS: Transaction aborted (error -117)
BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c6480 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c6488 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c6490 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c6498 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c64a0 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c64a8 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c64b0 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c64b8 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c64c0 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3572 rw 0,0 sector 0x1b85e8 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3572 rw 0,0 sector 0x1b85f0 len 4096 err no 10
WARNING: CPU: 3 PID: 23985 at fs/btrfs/tree-log.c:3084 btrfs_sync_log+0xbc8/0xd60 [btrfs]
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d4288 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d4290 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d4298 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42a0 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42a8 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42b0 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42b8 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42c0 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42c8 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42d0 len 4096 err no 10
CPU: 3 PID: 23985 Comm: fsstress Tainted: G W L 5.8.0-rc4-default+ #1181
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba527-rebuilt.opensuse.org 04/01/2014
RIP: 0010:btrfs_sync_log+0xbc8/0xd60 [btrfs]
RSP: 0018:ffff909a44d17bd0 EFLAGS: 00010286
RAX: 0000000000000000 RBX: 0000000000000001 RCX: 0000000000000001
RDX: ffff8f3be41cb940 RSI: ffffffffb0108d2b RDI: ffffffffb0108ff7
RBP: ffff909a44d17e70 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000037988 R12: ffff8f3bd20e4000
R13: ffff8f3bd20e4428 R14: 00000000ffffff8b R15: ffff909a44d17c70
FS: 00007f6a6ed3fb80(0000) GS:ffff8f3c3dc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f6a6ed3e000 CR3: 00000000525c0003 CR4: 0000000000160ee0
Call Trace:
? finish_wait+0x90/0x90
? __mutex_unlock_slowpath+0x45/0x2a0
? lock_acquire+0xa3/0x440
? lockref_put_or_lock+0x9/0x30
? dput+0x20/0x4a0
? dput+0x20/0x4a0
? do_raw_spin_unlock+0x4b/0xc0
? _raw_spin_unlock+0x1f/0x30
btrfs_sync_file+0x335/0x490 [btrfs]
do_fsync+0x38/0x70
__x64_sys_fsync+0x10/0x20
do_syscall_64+0x50/0xe0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7f6a6ef1b6e3
Code: Bad RIP value.
RSP: 002b:00007ffd01e20038 EFLAGS: 00000246 ORIG_RAX: 000000000000004a
RAX: ffffffffffffffda RBX: 000000000007a120 RCX: 00007f6a6ef1b6e3
RDX: 00007ffd01e1ffa0 RSI: 00007ffd01e1ffa0 RDI: 0000000000000003
RBP: 0000000000000003 R08: 0000000000000001 R09: 00007ffd01e2004c
R10: 0000000000000000 R11: 0000000000000246 R12: 000000000000009f
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
irq event stamp: 0
hardirqs last enabled at (0): [<0000000000000000>] 0x0
hardirqs last disabled at (0): [<ffffffffb007fe0b>] copy_process+0x67b/0x1b00
softirqs last enabled at (0): [<ffffffffb007fe0b>] copy_process+0x67b/0x1b00
softirqs last disabled at (0): [<0000000000000000>] 0x0
---[ end trace af146e0e38433456 ]---
BTRFS: error (device dm-0) in btrfs_sync_log:3084: errno=-117 Filesystem corrupted
This ret came from btrfs_write_marked_extents(). If we get an aborted
transaction via EIO before, we'll see it in btree_write_cache_pages()
and return EUCLEAN, which gets printed as "Filesystem corrupted".
Except we shouldn't be returning EUCLEAN here, we need to be returning
EROFS because EUCLEAN is reserved for actual corruption, not IO errors.
We are inconsistent about our handling of BTRFS_FS_STATE_ERROR
elsewhere, but we want to use EROFS for this particular case. The
original transaction abort has the real error code for why we ended up
with an aborted transaction, all subsequent actions just need to return
EROFS because they may not have a trans handle and have no idea about
the original cause of the abort.
After patch "btrfs: don't WARN if we abort a transaction with EROFS" the
stacktrace will not be dumped either.
Reported-by: Eric Sandeen <esandeen@redhat.com>
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add full test stacktrace ]
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
We've had some discussions about what to do in certain scenarios for
error codes, specifically EUCLEAN and EROFS. Document these near the
error handling code so its clear what their intentions are.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
If we got some sort of corruption via a read and call
btrfs_handle_fs_error() we'll set BTRFS_FS_STATE_ERROR on the fs and
complain. If a subsequent trans handle trips over this it'll get EROFS
and then abort. However at that point we're not aborting for the
original reason, we're aborting because we've been flipped read only.
We do not need to WARN_ON() here.
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The possibility of extents being shared (through clone and deduplication
operations) requires special care when logging data checksums, to avoid
having a log tree with different checksum items that cover ranges which
overlap (which resulted in missing checksums after replaying a log tree).
Such problems were fixed in the past by the following commits:
commit 40e046acbd2f ("Btrfs: fix missing data checksums after replaying a
log tree")
commit e289f03ea79b ("btrfs: fix corrupt log due to concurrent fsync of
inodes with shared extents")
Test case generic/588 exercises the scenario solved by the first commit
(purely sequential and deterministic) while test case generic/457 often
triggered the case fixed by the second commit (not deterministic, requires
specific timings under concurrency).
The problems were addressed by deleting, from the log tree, any existing
checksums before logging the new ones. And also by doing the deletion and
logging of the cheksums while locking the checksum range in an extent io
tree (root->log_csum_range), to deal with the case where we have concurrent
fsyncs against files with shared extents.
That however causes more contention on the leaves of a log tree where we
store checksums (and all the nodes in the paths leading to them), even
when we do not have shared extents, or all the shared extents were created
by past transactions. It also adds a bit of contention on the spin lock of
the log_csums_range extent io tree of the log root.
This change adds a 'last_reflink_trans' field to the inode to keep track
of the last transaction where a new extent was shared between inodes
(through clone and deduplication operations). It is updated for both the
source and destination inodes of reflink operations whenever a new extent
(created in the current transaction) becomes shared by the inodes. This
field is kept in memory only, not persisted in the inode item, similar
to other existing fields (last_unlink_trans, logged_trans).
When logging checksums for an extent, if the value of 'last_reflink_trans'
is smaller then the current transaction's generation/id, we skip locking
the extent range and deletion of checksums from the log tree, since we
know we do not have new shared extents. This reduces contention on the
log tree's leaves where checksums are stored.
The following script, which uses fio, was used to measure the impact of
this change:
$ cat test-fsync.sh
#!/bin/bash
DEV=/dev/sdk
MNT=/mnt/sdk
MOUNT_OPTIONS="-o ssd"
MKFS_OPTIONS="-d single -m single"
if [ $# -ne 3 ]; then
echo "Use $0 NUM_JOBS FILE_SIZE FSYNC_FREQ"
exit 1
fi
NUM_JOBS=$1
FILE_SIZE=$2
FSYNC_FREQ=$3
cat <<EOF > /tmp/fio-job.ini
[writers]
rw=write
fsync=$FSYNC_FREQ
fallocate=none
group_reporting=1
direct=0
bs=64k
ioengine=sync
size=$FILE_SIZE
directory=$MNT
numjobs=$NUM_JOBS
EOF
echo "Using config:"
echo
cat /tmp/fio-job.ini
echo
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
fio /tmp/fio-job.ini
umount $MNT
The tests were performed for different numbers of jobs, file sizes and
fsync frequency. A qemu VM using kvm was used, with 8 cores (the host has
12 cores, with cpu governance set to performance mode on all cores), 16GiB
of ram (the host has 64GiB) and using a NVMe device directly (without an
intermediary filesystem in the host). While running the tests, the host
was not used for anything else, to avoid disturbing the tests.
The obtained results were the following (the last line of fio's output was
pasted). Starting with 16 jobs is where a significant difference is
observable in this particular setup and hardware (differences highlighted
below). The very small differences for tests with less than 16 jobs are
possibly just noise and random.
**** 1 job, file size 1G, fsync frequency 1 ****
before this change:
WRITE: bw=23.8MiB/s (24.9MB/s), 23.8MiB/s-23.8MiB/s (24.9MB/s-24.9MB/s), io=1024MiB (1074MB), run=43075-43075msec
after this change:
WRITE: bw=24.4MiB/s (25.6MB/s), 24.4MiB/s-24.4MiB/s (25.6MB/s-25.6MB/s), io=1024MiB (1074MB), run=41938-41938msec
**** 2 jobs, file size 1G, fsync frequency 1 ****
before this change:
WRITE: bw=37.7MiB/s (39.5MB/s), 37.7MiB/s-37.7MiB/s (39.5MB/s-39.5MB/s), io=2048MiB (2147MB), run=54351-54351msec
after this change:
WRITE: bw=37.7MiB/s (39.5MB/s), 37.6MiB/s-37.6MiB/s (39.5MB/s-39.5MB/s), io=2048MiB (2147MB), run=54428-54428msec
**** 4 jobs, file size 1G, fsync frequency 1 ****
before this change:
WRITE: bw=67.5MiB/s (70.8MB/s), 67.5MiB/s-67.5MiB/s (70.8MB/s-70.8MB/s), io=4096MiB (4295MB), run=60669-60669msec
after this change:
WRITE: bw=68.6MiB/s (71.0MB/s), 68.6MiB/s-68.6MiB/s (71.0MB/s-71.0MB/s), io=4096MiB (4295MB), run=59678-59678msec
**** 8 jobs, file size 1G, fsync frequency 1 ****
before this change:
WRITE: bw=128MiB/s (134MB/s), 128MiB/s-128MiB/s (134MB/s-134MB/s), io=8192MiB (8590MB), run=64048-64048msec
after this change:
WRITE: bw=129MiB/s (135MB/s), 129MiB/s-129MiB/s (135MB/s-135MB/s), io=8192MiB (8590MB), run=63405-63405msec
**** 16 jobs, file size 1G, fsync frequency 1 ****
before this change:
WRITE: bw=78.5MiB/s (82.3MB/s), 78.5MiB/s-78.5MiB/s (82.3MB/s-82.3MB/s), io=16.0GiB (17.2GB), run=208676-208676msec
after this change:
WRITE: bw=110MiB/s (115MB/s), 110MiB/s-110MiB/s (115MB/s-115MB/s), io=16.0GiB (17.2GB), run=149295-149295msec
(+40.1% throughput, -28.5% runtime)
**** 32 jobs, file size 1G, fsync frequency 1 ****
before this change:
WRITE: bw=58.8MiB/s (61.7MB/s), 58.8MiB/s-58.8MiB/s (61.7MB/s-61.7MB/s), io=32.0GiB (34.4GB), run=557134-557134msec
after this change:
WRITE: bw=76.1MiB/s (79.8MB/s), 76.1MiB/s-76.1MiB/s (79.8MB/s-79.8MB/s), io=32.0GiB (34.4GB), run=430550-430550msec
(+29.4% throughput, -22.7% runtime)
**** 64 jobs, file size 512M, fsync frequency 1 ****
before this change:
WRITE: bw=65.8MiB/s (68.0MB/s), 65.8MiB/s-65.8MiB/s (68.0MB/s-68.0MB/s), io=32.0GiB (34.4GB), run=498055-498055msec
after this change:
WRITE: bw=85.1MiB/s (89.2MB/s), 85.1MiB/s-85.1MiB/s (89.2MB/s-89.2MB/s), io=32.0GiB (34.4GB), run=385116-385116msec
(+29.3% throughput, -22.7% runtime)
**** 128 jobs, file size 256M, fsync frequency 1 ****
before this change:
WRITE: bw=54.7MiB/s (57.3MB/s), 54.7MiB/s-54.7MiB/s (57.3MB/s-57.3MB/s), io=32.0GiB (34.4GB), run=599373-599373msec
after this change:
WRITE: bw=121MiB/s (126MB/s), 121MiB/s-121MiB/s (126MB/s-126MB/s), io=32.0GiB (34.4GB), run=271907-271907msec
(+121.2% throughput, -54.6% runtime)
**** 256 jobs, file size 256M, fsync frequency 1 ****
before this change:
WRITE: bw=69.2MiB/s (72.5MB/s), 69.2MiB/s-69.2MiB/s (72.5MB/s-72.5MB/s), io=64.0GiB (68.7GB), run=947536-947536msec
after this change:
WRITE: bw=121MiB/s (127MB/s), 121MiB/s-121MiB/s (127MB/s-127MB/s), io=64.0GiB (68.7GB), run=541916-541916msec
(+74.9% throughput, -42.8% runtime)
**** 512 jobs, file size 128M, fsync frequency 1 ****
before this change:
WRITE: bw=85.4MiB/s (89.5MB/s), 85.4MiB/s-85.4MiB/s (89.5MB/s-89.5MB/s), io=64.0GiB (68.7GB), run=767734-767734msec
after this change:
WRITE: bw=141MiB/s (147MB/s), 141MiB/s-141MiB/s (147MB/s-147MB/s), io=64.0GiB (68.7GB), run=466022-466022msec
(+65.1% throughput, -39.3% runtime)
**** 1024 jobs, file size 128M, fsync frequency 1 ****
before this change:
WRITE: bw=115MiB/s (120MB/s), 115MiB/s-115MiB/s (120MB/s-120MB/s), io=128GiB (137GB), run=1143775-1143775msec
after this change:
WRITE: bw=171MiB/s (180MB/s), 171MiB/s-171MiB/s (180MB/s-180MB/s), io=128GiB (137GB), run=764843-764843msec
(+48.7% throughput, -33.1% runtime)
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|