Age | Commit message (Collapse) | Author |
|
git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
Pull ext4 fixes from Ted Ts'o:
"Miscellaneous bug fixes and cleanups for ext4, including a fix for
generic/388 in data=journal mode, removing some BUG_ON's, and cleaning
up some compiler warnings"
* tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4:
ext4: convert BUG_ON's to WARN_ON's in mballoc.c
ext4: increase wait time needed before reuse of deleted inode numbers
ext4: remove set but not used variable 'es' in ext4_jbd2.c
ext4: remove set but not used variable 'es'
ext4: do not zeroout extents beyond i_disksize
ext4: fix return-value types in several function comments
ext4: use non-movable memory for superblock readahead
ext4: use matching invalidatepage in ext4_writepage
|
|
Pull cifs fixes from Steve French:
"Three small smb3 fixes: two debug related (helping network tracing for
SMB2 mounts, and the other removing an unintended debug line on
signing failures), and one fixing a performance problem with 64K
pages"
* tag '5.7-rc-smb3-fixes' of git://git.samba.org/sfrench/cifs-2.6:
smb3: remove overly noisy debug line in signing errors
cifs: improve read performance for page size 64KB & cache=strict & vers=2.1+
cifs: dump the session id and keys also for SMB2 sessions
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/gustavoars/linux
Pull flexible-array member conversion from Gustavo Silva:
"The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array
member[1][2], introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof
operator may not be applied. As a quirk of the original
implementation of zero-length arrays, sizeof evaluates to zero."[1]
sizeof(flexible-array-member) triggers a warning because flexible
array members have incomplete type[1]. There are some instances of
code in which the sizeof operator is being incorrectly/erroneously
applied to zero-length arrays and the result is zero. Such instances
may be hiding some bugs. So, this work (flexible-array member
convertions) will also help to get completely rid of those sorts of
issues.
Notice that all of these patches have been baking in linux-next for
quite a while now and, 238 more of these patches have already been
merged into 5.7-rc1.
There are a couple hundred more of these issues waiting to be
addressed in the whole codebase"
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
* tag 'flexible-array-member-5.7-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/gustavoars/linux: (28 commits)
xattr.h: Replace zero-length array with flexible-array member
uapi: linux: fiemap.h: Replace zero-length array with flexible-array member
uapi: linux: dlm_device.h: Replace zero-length array with flexible-array member
tpm_eventlog.h: Replace zero-length array with flexible-array member
ti_wilink_st.h: Replace zero-length array with flexible-array member
swap.h: Replace zero-length array with flexible-array member
skbuff.h: Replace zero-length array with flexible-array member
sched: topology.h: Replace zero-length array with flexible-array member
rslib.h: Replace zero-length array with flexible-array member
rio.h: Replace zero-length array with flexible-array member
posix_acl.h: Replace zero-length array with flexible-array member
platform_data: wilco-ec.h: Replace zero-length array with flexible-array member
memcontrol.h: Replace zero-length array with flexible-array member
list_lru.h: Replace zero-length array with flexible-array member
lib: cpu_rmap: Replace zero-length array with flexible-array member
irq.h: Replace zero-length array with flexible-array member
ihex.h: Replace zero-length array with flexible-array member
igmp.h: Replace zero-length array with flexible-array member
genalloc.h: Replace zero-length array with flexible-array member
ethtool.h: Replace zero-length array with flexible-array member
...
|
|
The email is no longer active. This change removes Stefan's email from the
MAINTAINERS list and replaces it with Michael Hennerich's.
Signed-off-by: Michael Hennerich <michael.hennerich@analog.com>
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
|
|
When the 'spi_device_id' table was removed, it omitted to cleanup/fix the
assignment:
'indio_dev->name = spi_get_device_id(spi)->name;'
After that patch 'spi_get_device_id(spi)' returns NULL, so this crashes
during probe with null de-ref.
This change fixes this by introducing an ad7192_chip_info struct, and
defines all part-names [that should be assigned to indio_dev->name] in a
'ad7192_chip_info_tbl' table.
With this change, the old 'st->devid' is also moved to be a
'chip_info->chip_id'. And the old 'ID_AD719X' macros have been renamed to
'CHIPID_AD719X'. Tld identifiers have been re-purposed to be enum/index
values in the new 'ad7192_chip_info_tbl'.
This should fix the bug, and maintain the ABI for the 'indio_dev->name'
field.
Fixes: 66614ab2be38 ("staging: iio: adc: ad7192: removed spi_device_id")
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
|
|
This change removes the semi-colon from the devm_iio_device_register()
macro which seems to have been added by accident.
Fixes: 63b19547cc3d9 ("iio: Use macro magic to avoid manual assign of driver_module")
Signed-off-by: Lars Engebretsen <lars@engebretsen.ch>
Cc: <Stable@vger.kernel.org>
Reviewed-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
|
|
The first received byte is the MSB, followed by the LSB so the value needs
to be byte swapped.
Also, the ADC actually has a delay of one clock on the SPI bus. Read three
bytes to get the last bit.
Fixes: 8dd2d7c0fed7 ("iio: adc: Add driver for the TI ADS8344 A/DC chips")
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: <Stable@vger.kernel.org>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
|
|
Suspend/resume were not working correctly with pm runtime.
Now suspend check if the chip is already suspended, and
resume put runtime pm in the correct state.
Issues seen prior to this were:
When entering suspend, there was an error in logs because we
were disabling vddio regulator although it was already disabled.
And when resuming, the chip was pull back to full power but the
pm_runtime state was not updated. So it was believing it was
still suspended.
Fixes: 4599cac84614 ("iio: imu: inv_mpu6050: use runtime pm with autosuspend")
Signed-off-by: Jean-Baptiste Maneyrol <jmaneyrol@invensense.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
|
|
Indeed, relying on addr being not 0 cannot work because some device have
their register to set odr at address 0. As a matter of fact, if the odr
can be set, then there is a mask.
Sensors with ODR register at address 0 are: lsm303dlh, lsm303dlhc, lsm303dlm
Fixes: 7d245172675a ("iio: common: st_sensors: check odr address value in st_sensors_set_odr()")
Signed-off-by: Lary Gibaud <yarl-baudig@mailoo.org>
Cc: <Stable@vger.kernel.org>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
|
|
The XADC supports a samplerate of up to 1MSPS. Unfortunately the hardware
does not have a FIFO, which means it generates an interrupt for each
conversion sequence. At one 1MSPS this creates an interrupt storm that
causes the system to soft-lock.
For this reason the driver limits the maximum samplerate to 150kSPS.
Currently this check is only done when setting a new samplerate. But it is
also possible that the initial samplerate configured in the FPGA bitstream
exceeds the limit.
In this case when starting to capture data without first changing the
samplerate the system can overload.
To prevent this check the currently configured samplerate in the probe
function and reduce it to the maximum if necessary.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Fixes: bdc8cda1d010 ("iio:adc: Add Xilinx XADC driver")
Cc: <Stable@vger.kernel.org>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
|
|
simultaneous mode
The XADC has two internal ADCs. Depending on the mode it is operating in
either one or both of them are used. The device manual calls this
continuous (one ADC) and simultaneous (both ADCs) mode.
The meaning of the sequencing register for the aux channels changes
depending on the mode.
In continuous mode each bit corresponds to one of the 16 aux channels. And
the single ADC will convert them one by one in order.
In simultaneous mode the aux channels are split into two groups the first 8
channels are assigned to the first ADC and the other 8 channels to the
second ADC. The upper 8 bits of the sequencing register are unused and the
lower 8 bits control both ADCs. This means a bit needs to be set if either
the corresponding channel from the first group or the second group (or
both) are set.
Currently the driver does not have the special handling required for
simultaneous mode. Add it.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Fixes: bdc8cda1d010 ("iio:adc: Add Xilinx XADC driver")
Cc: <Stable@vger.kernel.org>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
|
|
When enabling the trigger and unmasking the end-of-sequence (EOS) interrupt
the EOS interrupt should be cleared from the status register. Otherwise it
is possible that it was still set from a previous capture. If that is the
case the interrupt would fire immediately even though no conversion has
been done yet and stale data is being read from the device.
The old code only clears the interrupt if the interrupt was previously
unmasked. Which does not make much sense since the interrupt is always
masked at this point and in addition masking the interrupt does not clear
the interrupt from the status register. So the clearing needs to be done
unconditionally.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Fixes: bdc8cda1d010 ("iio:adc: Add Xilinx XADC driver")
Cc: <Stable@vger.kernel.org>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
|
|
The check for shutting down the second ADC is inverted. This causes it to
be powered down when it should be enabled. As a result channels that are
supposed to be handled by the second ADC return invalid conversion results.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Fixes: bdc8cda1d010 ("iio:adc: Add Xilinx XADC driver")
Cc: <Stable@vger.kernel.org>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
|
|
Currently there is an off-by-one check on the number of channels that
will cause an arry overrun in array st->output_mode when calling the
function d5770r_store_output_range. Fix this by using >= rather than >
to check for maximum number of channels.
Addresses-Coverity: ("Out-of-bounds access")
Fixes: cbbb819837f6 ("iio: dac: ad5770r: Add AD5770R support")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
|
|
flush hw FIFO before device reset in order to avoid possible races
on interrupt line 1. If the first interrupt line is asserted during
hw reset the device will work in I3C-only mode (if it is supported)
Fixes: 801a6e0af0c6 ("iio: imu: st_lsm6dsx: add support to LSM6DSO")
Fixes: 43901008fde0 ("iio: imu: st_lsm6dsx: add support to LSM6DSR")
Reported-by: Mario Tesi <mario.tesi@st.com>
Signed-off-by: Lorenzo Bianconi <lorenzo@kernel.org>
Reviewed-by: Vitor Soares <vitor.soares@synopsys.com>
Tested-by: Vitor Soares <vitor.soares@synopsys.com>
Cc: <Stable@vger.kernel.org>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
|
|
This patch fixes the call to iio_str_to_fixpoint when using 'dB' sufix.
Before this the scale_db was not used when parsing the string written to
the attribute and it failed with invalid value.
Fixes: b8528224741b ("iio: core: Handle 'dB' suffix in core")
Signed-off-by: Mircea Caprioru <mircea.caprioru@analog.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
|
|
Fix id relative path that shouldn't contain 'bindings', as pointed out
when submitting st,stm32-dac bindings conversion to json-schema [1].
[1] https://patchwork.ozlabs.org/patch/1257568/
Fixes: a8cf1723c4b7 ("dt-bindings: iio: adc: stm32-adc: convert bindings to json-schema")
Signed-off-by: Fabrice Gasnier <fabrice.gasnier@st.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
|
|
Add lock protection from race conditions to 104-quad-8 counter driver
generic interface code changes. Mutex calls used for protection.
Fixes: f1d8a071d45b ("counter: 104-quad-8: Add Generic Counter interface support")
Signed-off-by: Syed Nayyar Waris <syednwaris@gmail.com>
Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
|
|
A case of warning was reported by syzbot.
------------[ cut here ]------------
WARNING: CPU: 0 PID: 19934 at net/netfilter/nf_nat_core.c:1106
nf_nat_unregister_fn+0x532/0x5c0 net/netfilter/nf_nat_core.c:1106
Kernel panic - not syncing: panic_on_warn set ...
CPU: 0 PID: 19934 Comm: syz-executor.5 Not tainted 5.6.0-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Call Trace:
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x188/0x20d lib/dump_stack.c:118
panic+0x2e3/0x75c kernel/panic.c:221
__warn.cold+0x2f/0x35 kernel/panic.c:582
report_bug+0x27b/0x2f0 lib/bug.c:195
fixup_bug arch/x86/kernel/traps.c:175 [inline]
fixup_bug arch/x86/kernel/traps.c:170 [inline]
do_error_trap+0x12b/0x220 arch/x86/kernel/traps.c:267
do_invalid_op+0x32/0x40 arch/x86/kernel/traps.c:286
invalid_op+0x23/0x30 arch/x86/entry/entry_64.S:1027
RIP: 0010:nf_nat_unregister_fn+0x532/0x5c0 net/netfilter/nf_nat_core.c:1106
Code: ff df 48 c1 ea 03 80 3c 02 00 75 75 48 8b 44 24 10 4c 89 ef 48 c7 00 00 00 00 00 e8 e8 f8 53 fb e9 4d fe ff ff e8 ee 9c 16 fb <0f> 0b e9 41 fe ff ff e8 e2 45 54 fb e9 b5 fd ff ff 48 8b 7c 24 20
RSP: 0018:ffffc90005487208 EFLAGS: 00010246
RAX: 0000000000040000 RBX: 0000000000000004 RCX: ffffc9001444a000
RDX: 0000000000040000 RSI: ffffffff865c94a2 RDI: 0000000000000005
RBP: ffff88808b5cf000 R08: ffff8880a2620140 R09: fffffbfff14bcd79
R10: ffffc90005487208 R11: fffffbfff14bcd78 R12: 0000000000000000
R13: 0000000000000001 R14: 0000000000000001 R15: 0000000000000000
nf_nat_ipv6_unregister_fn net/netfilter/nf_nat_proto.c:1017 [inline]
nf_nat_inet_register_fn net/netfilter/nf_nat_proto.c:1038 [inline]
nf_nat_inet_register_fn+0xfc/0x140 net/netfilter/nf_nat_proto.c:1023
nf_tables_register_hook net/netfilter/nf_tables_api.c:224 [inline]
nf_tables_addchain.constprop.0+0x82e/0x13c0 net/netfilter/nf_tables_api.c:1981
nf_tables_newchain+0xf68/0x16a0 net/netfilter/nf_tables_api.c:2235
nfnetlink_rcv_batch+0x83a/0x1610 net/netfilter/nfnetlink.c:433
nfnetlink_rcv_skb_batch net/netfilter/nfnetlink.c:543 [inline]
nfnetlink_rcv+0x3af/0x420 net/netfilter/nfnetlink.c:561
netlink_unicast_kernel net/netlink/af_netlink.c:1303 [inline]
netlink_unicast+0x537/0x740 net/netlink/af_netlink.c:1329
netlink_sendmsg+0x882/0xe10 net/netlink/af_netlink.c:1918
sock_sendmsg_nosec net/socket.c:652 [inline]
sock_sendmsg+0xcf/0x120 net/socket.c:672
____sys_sendmsg+0x6bf/0x7e0 net/socket.c:2362
___sys_sendmsg+0x100/0x170 net/socket.c:2416
__sys_sendmsg+0xec/0x1b0 net/socket.c:2449
do_syscall_64+0xf6/0x7d0 arch/x86/entry/common.c:295
entry_SYSCALL_64_after_hwframe+0x49/0xb3
and to quiesce it, unregister NFPROTO_IPV6 hook instead of NFPROTO_INET
in case of failing to register NFPROTO_IPV4 hook.
Reported-by: syzbot <syzbot+33e06702fd6cffc24c40@syzkaller.appspotmail.com>
Fixes: d164385ec572 ("netfilter: nat: add inet family nat support")
Cc: Florian Westphal <fw@strlen.de>
Cc: Stefano Brivio <sbrivio@redhat.com>
Signed-off-by: Hillf Danton <hdanton@sina.com>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
|
|
TCP stack is dumb in how it cooks its output packets.
Depending on MAX_HEADER value, we might chose a bad ending point
for the headers.
If we align the end of TCP headers to cache line boundary, we
make sure to always use the smallest number of cache lines,
which always help.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Florian Westphal says:
====================
mptcp: fix 'attempt to release socket in state...' splats
These two patches fix error handling corner-cases where
inet_sock_destruct gets called for a mptcp_sk that is not in TCP_CLOSE
state. This results in unwanted error printks from the network stack.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
We need to set sk_state to CLOSED, else we will get following:
IPv4: Attempt to release TCP socket in state 3 00000000b95f109e
IPv4: Attempt to release TCP socket in state 10 00000000b95f109e
First one is from inet_sock_destruct(), second one from
mptcp_sk_clone failure handling. Setting sk_state to CLOSED isn't
enough, we also need to orphan sk so it has DEAD flag set.
Otherwise, a very similar warning is printed from inet_sock_destruct().
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Following snippet (replicated from syzkaller reproducer) generates
warning: "IPv4: Attempt to release TCP socket in state 1".
int main(void) {
struct sockaddr_in sin1 = { .sin_family = 2, .sin_port = 0x4e20,
.sin_addr.s_addr = 0x010000e0, };
struct sockaddr_in sin2 = { .sin_family = 2,
.sin_addr.s_addr = 0x0100007f, };
struct sockaddr_in sin3 = { .sin_family = 2, .sin_port = 0x4e20,
.sin_addr.s_addr = 0x0100007f, };
int r0 = socket(0x2, 0x1, 0x106);
int r1 = socket(0x2, 0x1, 0x106);
bind(r1, (void *)&sin1, sizeof(sin1));
connect(r1, (void *)&sin2, sizeof(sin2));
listen(r1, 3);
return connect(r0, (void *)&sin3, 0x4d);
}
Reason is that the newly generated mptcp socket is closed via the ulp
release of the tcp listener socket when its accept backlog gets purged.
To fix this, delay setting the ESTABLISHED state until after userspace
calls accept and via mptcp specific destructor.
Fixes: 58b09919626bf ("mptcp: create msk early")
Closes: https://github.com/multipath-tcp/mptcp_net-next/issues/9
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Commit 9ecc2d86171a ("net/mlx4_en: add xdp forwarding and data write support")
brought another indirect call in fast path.
Use INDIRECT_CALL_2() helper to avoid the cost of the indirect call
when/if CONFIG_RETPOLINE=y
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Tariq Toukan <tariqt@mellanox.com>
Cc: Willem de Bruijn <willemb@google.com>
Reviewed-by: Saeed Mahameed <saeedm@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This patch makes it impossible that cmpri or cmpre values are set to the
value 16 which is not possible, because these are 4 bit values. We
currently run in an overflow when assigning the value 16 to it.
According to the standard a value of 16 can be interpreted as a full
elided address which isn't possible to set as compression value. A reason
why this cannot be set is that the current ipv6 header destination address
should never show up inside the segments of the rpl header. In this case we
run in a overflow and the address will have no compression at all. Means
cmpri or compre is set to 0.
As we handle cmpri and cmpre sometimes as unsigned char or 4 bit value
inside the rpl header the current behaviour ends in an invalid header
format. This patch simple use the best compression method if we ever run
into the case that the destination address is showed up inside the rpl
segments. We avoid the overflow handling and the rpl header is still valid,
even when we have the destination address inside the rpl segments.
Signed-off-by: Alexander Aring <alex.aring@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
In fine adjustement mode, which is the current default, the sub-second
increment register is the number of nanoseconds that will be added to
the clock when the accumulator overflows. At each clock cycle, the
value of the addend register is added to the accumulator.
Currently, we use 20ns = 1e09ns / 50MHz as this value whatever the
frequency of the ptp clock actually is.
The adjustment is then done on the addend register, only incrementing
every X clock cycles X being the ratio between 50MHz and ptp_clock_rate
(addend = 2^32 * 50MHz/ptp_clock_rate).
This causes the following issues :
- In case the frequency of the ptp clock is inferior or equal to 50MHz,
the addend value calculation will overflow and the default
addend value will be set to 0, causing the clock to not work at
all. (For instance, for ptp_clock_rate = 50MHz, addend = 2^32).
- The resolution of the timestamping clock is limited to 20ns while it
is not needed, thus limiting the accuracy of the timestamping to
20ns.
Fix this by setting sub-second increment to 2e09ns / ptp_clock_rate.
It will allow to reach the minimum possible frequency for
ptp_clk_ref, which is 5MHz for GMII 1000Mps Full-Duplex by setting the
sub-second-increment to a higher value. For instance, for 25MHz, it
gives ssinc = 80ns and default_addend = 2^31.
It will also allow to use a lower value for sub-second-increment, thus
improving the timestamping accuracy with frequencies higher than
100MHz, for instance, for 200MHz, ssinc = 10ns and default_addend =
2^31.
v1->v2:
- Remove modifications to the calculation of default addend, which broke
compatibility with clock frequencies for which 2000000000 / ptp_clk_freq
is not an integer.
- Modify description according to discussions.
Signed-off-by: Julien Beraud <julien.beraud@orolia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
There are 2 registers to write to enable a ptp ref clock coming from the
fpga.
One that enables the usage of the clock from the fpga for emac0 and emac1
as a ptp ref clock, and the other to allow signals from the fpga to reach
emac0 and emac1.
Currently, if the dwmac-socfpga has phymode set to PHY_INTERFACE_MODE_MII,
PHY_INTERFACE_MODE_GMII, or PHY_INTERFACE_MODE_SGMII, both registers will
be written and the ptp ref clock will be set as coming from the fpga.
Separate the 2 register writes to only enable signals from the fpga to
reach emac0 or emac1 when ptp ref clock is not coming from the fpga.
Signed-off-by: Julien Beraud <julien.beraud@orolia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
i2400mu_bus_bm_wait_for_ack() invokes usb_get_urb(), which increases the
refcount of the "notif_urb".
When i2400mu_bus_bm_wait_for_ack() returns, local variable "notif_urb"
becomes invalid, so the refcount should be decreased to keep refcount
balanced.
The issue happens in all paths of i2400mu_bus_bm_wait_for_ack(), which
forget to decrease the refcnt increased by usb_get_urb(), causing a
refcnt leak.
Fix this issue by calling usb_put_urb() before the
i2400mu_bus_bm_wait_for_ack() returns.
Signed-off-by: Xiyu Yang <xiyuyang19@fudan.edu.cn>
Signed-off-by: Xin Tan <tanxin.ctf@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
Pull SCSI fixes from James Bottomley:
"Seven fixes: three in target, one on a sg error leg, two in qla2xxx
fixing warnings introduced in the last merge window and updating
MAINTAINERS and one in hisi_sas fixing a problem introduced by libata"
* tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi:
scsi: sg: add sg_remove_request in sg_common_write
scsi: target: tcmu: reset_ring should reset TCMU_DEV_BIT_BROKEN
scsi: target: fix PR IN / READ FULL STATUS for FC
scsi: target: Write NULL to *port_nexus_ptr if no ISID
scsi: MAINTAINERS: Update qla2xxx FC-SCSI driver maintainer
scsi: qla2xxx: Fix regression warnings
scsi: hisi_sas: Fix build error without SATA_HOST
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|