Age | Commit message (Collapse) | Author |
|
SPIs should be checked against the VMs specific configuration, and
not the architectural maximum.
Cc: stable@vger.kernel.org
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
In attempting to re-construct the logic for our stage 2 page table
layout I found the reasoning in the comment explaining how we calculate
the number of levels used for stage 2 page tables a bit backwards.
This commit attempts to clarify the comment, to make it slightly easier
to read without having the Arm ARM open on the right page.
While we're at it, fixup a typo in a comment that was recently changed.
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
To change the active state of an MMIO, halt is requested for all vcpus of
the affected guest before modifying the IRQ state. This is done by calling
cond_resched_lock() in vgic_mmio_change_active(). However interrupts are
disabled at this point and we cannot reschedule a vcpu.
We actually don't need any of this, as kvm_arm_halt_guest ensures that
all the other vcpus are out of the guest. Let's just drop that useless
code.
Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Suggested-by: Christoffer Dall <christoffer.dall@arm.com>
Cc: stable@vger.kernel.org
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
KVM only supports PMD hugepages at stage 2. Now that the various page
handling routines are updated, extend the stage 2 fault handling to
map in PUD hugepages.
Addition of PUD hugepage support enables additional page sizes (e.g.,
1G with 4K granule) which can be useful on cores that support mapping
larger block sizes in the TLB entries.
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
[ Replace BUG() => WARN_ON(1) for arm32 PUD helpers ]
Signed-off-by: Suzuki Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
In preparation for creating larger hugepages at Stage 2, add support
to the age handling notifiers for PUD hugepages when encountered.
Provide trivial helpers for arm32 to allow sharing code.
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
[ Replaced BUG() => WARN_ON(1) for arm32 PUD helpers ]
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
In preparation for creating larger hugepages at Stage 2, extend the
access fault handling at Stage 2 to support PUD hugepages when
encountered.
Provide trivial helpers for arm32 to allow sharing of code.
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
[ Replaced BUG() => WARN_ON(1) in PUD helpers ]
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
In preparation for creating PUD hugepages at stage 2, add support for
detecting execute permissions on PUD page table entries. Faults due to
lack of execute permissions on page table entries is used to perform
i-cache invalidation on first execute.
Provide trivial implementations of arm32 helpers to allow sharing of
code.
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
[ Replaced BUG() => WARN_ON(1) in arm32 PUD helpers ]
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
In preparation for creating PUD hugepages at stage 2, add support for
write protecting PUD hugepages when they are encountered. Write
protecting guest tables is used to track dirty pages when migrating
VMs.
Also, provide trivial implementations of required kvm_s2pud_* helpers
to allow sharing of code with arm32.
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
[ Replaced BUG() => WARN_ON() in arm32 pud helpers ]
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
Introduce helpers to abstract architectural handling of the conversion
of pfn to page table entries and marking a PMD page table entry as a
block entry.
The helpers are introduced in preparation for supporting PUD hugepages
at stage 2 - which are supported on arm64 but do not exist on arm.
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
Stage 2 fault handler marks a page as executable if it is handling an
execution fault or if it was a permission fault in which case the
executable bit needs to be preserved.
The logic to decide if the page should be marked executable is
duplicated for PMD and PTE entries. To avoid creating another copy
when support for PUD hugepages is introduced refactor the code to
share the checks needed to mark a page table entry as executable.
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
The code for operations such as marking the pfn as dirty, and
dcache/icache maintenance during stage 2 fault handling is duplicated
between normal pages and PMD hugepages.
Instead of creating another copy of the operations when we introduce
PUD hugepages, let's share them across the different pagesizes.
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
When restoring the active state from userspace, we don't know which CPU
was the source for the active state, and this is not architecturally
exposed in any of the register state.
Set the active_source to 0 in this case. In the future, we can expand
on this and exposse the information as additional information to
userspace for GICv2 if anyone cares.
Cc: stable@vger.kernel.org
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
When KVM traps an unhandled sysreg/coproc access from a guest, it logs
the guest PC. To aid debugging, it would be helpful to know which
exception level the trap came from, along with other PSTATE/CPSR bits,
so let's log the PSTATE/CPSR too.
Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
We recently addressed a VMID generation race by introducing a read/write
lock around accesses and updates to the vmid generation values.
However, kvm_arch_vcpu_ioctl_run() also calls need_new_vmid_gen() but
does so without taking the read lock.
As far as I can tell, this can lead to the same kind of race:
VM 0, VCPU 0 VM 0, VCPU 1
------------ ------------
update_vttbr (vmid 254)
update_vttbr (vmid 1) // roll over
read_lock(kvm_vmid_lock);
force_vm_exit()
local_irq_disable
need_new_vmid_gen == false //because vmid gen matches
enter_guest (vmid 254)
kvm_arch.vttbr = <PGD>:<VMID 1>
read_unlock(kvm_vmid_lock);
enter_guest (vmid 1)
Which results in running two VCPUs in the same VM with different VMIDs
and (even worse) other VCPUs from other VMs could now allocate clashing
VMID 254 from the new generation as long as VCPU 0 is not exiting.
Attempt to solve this by making sure vttbr is updated before another CPU
can observe the updated VMID generation.
Cc: stable@vger.kernel.org
Fixes: f0cf47d939d0 "KVM: arm/arm64: Close VMID generation race"
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
There are no more remaining users of these deprecated wrappers, so
let's remove them before new users have a chance to make it in.
See Documentation/core-api/timekeeping.rst for replacements when
porting old drivers that contain calls to this function.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: John Stultz <john.stultz@linaro.org>
|
|
current_time is the last remaining caller of current_kernel_time64(),
which is a wrapper around ktime_get_coarse_real_ts64(). This calls the
latter directly for consistency with the rest of the kernel that is moving
to the ktime_get_ family of time accessors, as now documented in
Documentation/core-api/timekeeping.rst.
An open questions is whether we may want to actually call the more
accurate ktime_get_real_ts64() for file systems that save high-resolution
timestamps in their on-disk format. This would add a small overhead to
each update of the inode stamps but lead to inode timestamps to actually
have a usable resolution better than one jiffy (1 to 10 milliseconds
normally). Experiments on a variety of hardware platforms show a typical
time of around 100 CPU cycles to read the cycle counter and calculate the
accurate time from that. On old platforms without a cycle counter, this
can be signiciantly higher, up to several microseconds to access a
hardware clock, but those have become very rare by now.
I traced the original addition of the current_kernel_time() call to set
the nanosecond fields back to linux-2.5.48, where Andi Kleen added a patch
with subject "nanosecond stat timefields". Andi explains that the
motivation was to introduce as little overhead as possible back then. At
this time, reading the clock hardware was also more expensive when most
architectures did not have a cycle counter.
One side effect of having more accurate inode timestamp would be having to
write out the inode every time that mtime/ctime/atime get touched on most
systems, whereas many file systems today only write it when the timestamps
have changed, i.e. at most once per jiffy unless something else changes
as well. That change would certainly be noticed in some workloads, which
is enough reason to not do it without a good reason, regardless of the
cost of reading the time.
One thing we could still consider however would be to round the timestamps
from current_time() to multiples of NSEC_PER_JIFFY, e.g. full
milliseconds rather than having six or seven meaningless but confusing
digits at the end of the timestamp.
Link: http://lkml.kernel.org/r/20180726130820.4174359-1-arnd@arndb.de
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
The last users were removed a while ago since everyone moved to ktime_t,
so we can remove the two unused interfaces for old timespec structures.
With those two gone, set_normalized_timespec() is also unused, so
remove that as well.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: John Stultz <john.stultz@linaro.org>
|
|
After arch/sh has removed the last reference to these functions,
we can remove them completely and just rely on the 64-bit time_t
based versions. This cleans up a rather ugly use of __weak
functions.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: John Stultz <john.stultz@linaro.org>
|
|
The only remaining user of board_time_init() is the of-generic
machine, and that just calls the global timer_init() function.
Calling that one has no effect on non-DT platforms, so we can
simply call it unconditionally in place of board_time_init().
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
All platforms are now converted to RTC drivers, so this has become
obsolete. The board_time_init() callback still has one caller, but
could otherwise also get killed.
This removes one more usage of the deprecated timespec structure,
which overflows in y2038.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
The SH RTC support has an extra level of indirection to provide
either the old read_persistent_clock/update_persistent_clock
interface or the rtc-generic device for hctosys/systohc.
By removing the indirection and always using the RTC_CLASS interface,
we can avoid the lossy double conversion between rtc_time and timespec,
so we end up supporting the entire range of 'year' values, and clarifying
the rtc_set_time callback.
I did not change the behavior of sh03_rtc_settimeofday(), which keeps
just updating the seconds/minutes by calling set_rtc_mmss(), this
could be improved if anyone cares. Also, the file should ideally be
moved into drivers/rtc and not use rtc-generic.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
The SH RTC support has an extra level of indirection to provide
either the old read_persistent_clock/update_persistent_clock
interface or the rtc-generic device for hctosys/systohc.
Both do the same thing for dreamcast, so we can do away with the
abstraction and simply let the RTC core code to take care of it.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
Now that 32-bit architectures have two variants of sys_rt_sigtimedwaid()
for 32-bit and 64-bit time_t, we also need to have a second compat system
call entry point on the corresponding 64-bit architectures.
The traditional system call keeps getting handled
by compat_sys_rt_sigtimedwait(), and this adds a new
compat_sys_rt_sigtimedwait_time64() that differs only in the timeout
argument type.
The naming remains a bit asymmetric for the moment. Ideally we would
want to have compat_sys_rt_sigtimedwait_time32() for the old version
and compat_sys_rt_sigtimedwait() for the new one to mirror the names
of the native entry points, but renaming the existing system call
tables causes unnecessary churn. I would suggest renaming all such
system calls together at a later point.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
Once sys_rt_sigtimedwait() gets changed to a 64-bit time_t, we have
to provide compatibility support for existing binaries.
An earlier version of this patch reused the compat_sys_rt_sigtimedwait
entry point to avoid code duplication, but this newer approach
duplicates the existing native entry point instead, which seems
a bit cleaner.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
recvmmsg() takes two arguments to pointers of structures that differ
between 32-bit and 64-bit architectures: mmsghdr and timespec.
For y2038 compatbility, we are changing the native system call from
timespec to __kernel_timespec with a 64-bit time_t (in another patch),
and use the existing compat system call on both 32-bit and 64-bit
architectures for compatibility with traditional 32-bit user space.
As we now have two variants of recvmmsg() for 32-bit tasks that are both
different from the variant that we use on 64-bit tasks, this means we
also require two compat system calls!
The solution I picked is to flip things around: The existing
compat_sys_recvmmsg() call gets moved from net/compat.c into net/socket.c
and now handles the case for old user space on all architectures that
have set CONFIG_COMPAT_32BIT_TIME. A new compat_sys_recvmmsg_time64()
call gets added in the old place for 64-bit architectures only, this
one handles the case of a compat mmsghdr structure combined with
__kernel_timespec.
In the indirect sys_socketcall(), we now need to call either
do_sys_recvmmsg() or __compat_sys_recvmmsg(), depending on what kind of
architecture we are on. For compat_sys_socketcall(), no such change is
needed, we always call __compat_sys_recvmmsg().
I decided to not add a new SYS_RECVMMSG_TIME64 socketcall: Any libc
implementation for 64-bit time_t will need significant changes including
an updated asm/unistd.h, and it seems better to consistently use the
separate syscalls that configuration, leaving the socketcall only for
backward compatibility with 32-bit time_t based libc.
The naming is asymmetric for the moment, so both existing syscalls
entry points keep their names, while the new ones are recvmmsg_time32
and compat_recvmmsg_time64 respectively. I expect that we will rename
the compat syscalls later as we start using generated syscall tables
everywhere and add these entry points.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
Since the runtime PM support was added in musb, dsps relies on the timer
calling otg_timer() to activate the usb subsystem. However the driver
doesn't enable the timer for peripheral port, then the peripheral port is
unable to be enumerated by a host if the other usb port is disabled or in
peripheral mode too.
So let's start the timer for peripheral port too.
Fixes: ea2f35c01d5e ("usb: musb: Fix sleeping function called from invalid context for hdrc glue")
Acked-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Bin Liu <b-liu@ti.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Due to lack of ID pin interrupt event on AM335x devices, the musb dsps
driver uses polling to detect usb device attach for dual-role port.
But in the case if a micro-A cable adapter is attached without a USB device
attached to the cable, the musb state machine gets stuck in a_wait_vrise
state waiting for the MUSB_CONNECT interrupt which won't happen due to the
usb device is not attached. The state is stuck in a_wait_vrise even after
the micro-A cable is detached, which could cause VBUS retention if then the
dual-role port is attached to a host port.
To fix the problem, make a_wait_vrise as a transient state, then move the
state to either a_wait_bcon for host port or a_idle state for dual-role
port, if no usb device is attached to the port.
Signed-off-by: Bin Liu <b-liu@ti.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
When we emulate a guest instruction, we don't advance the hardware
singlestep state machine, and thus the guest will receive a software
step exception after a next instruction which is not emulated by the
host.
We bodge around this in an ad-hoc fashion. Sometimes we explicitly check
whether userspace requested a single step, and fake a debug exception
from within the kernel. Other times, we advance the HW singlestep state
rely on the HW to generate the exception for us. Thus, the observed step
behaviour differs for host and guest.
Let's make this simpler and consistent by always advancing the HW
singlestep state machine when we skip an instruction. Thus we can rely
on the hardware to generate the singlestep exception for us, and never
need to explicitly check for an active-pending step, nor do we need to
fake a debug exception from the guest.
Cc: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
When we emulate an MMIO instruction, we advance the CPU state within
decode_hsr(), before emulating the instruction effects.
Having this logic in decode_hsr() is opaque, and advancing the state
before emulation is problematic. It gets in the way of applying
consistent single-step logic, and it prevents us from being able to fail
an MMIO instruction with a synchronous exception.
Clean this up by only advancing the CPU state *after* the effects of the
instruction are emulated.
Cc: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
The Cirrus Logic Madera codecs (Cirrus Logic CS47L35/85/90/91 and WM1840)
are highly complex devices containing up to 7 programmable DSPs and many
other internal sources of interrupts plus a number of GPIOs that can be
used as interrupt inputs. The large number (>150) of internal interrupt
sources are managed by an on-board interrupt controller.
This driver provides the handling for the interrupt controller. As the
codec is accessed via regmap, we can make use of the generic IRQ
functionality from regmap to do most of the work. Only around half of
the possible interrupt source are currently of interest from the driver
so only this subset is defined. Others can be added in future if needed.
The KConfig options are not user-configurable because this driver is
mandatory so is automatically included when the parent MFD driver is
selected.
Signed-off-by: Richard Fitzgerald <rf@opensource.cirrus.com>
Signed-off-by: Charles Keepax <ckeepax@opensource.cirrus.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
When commit 6a23e05c2fe3c6 ("dm: remove legacy request-based IO path")
removed some q->mq_ops branching from map_request() it left in place a
goto that was only needed if that branching (and conditional 'r'
assignment) existed. Now that the branching is gone map_request()'s
goto can be removed too.
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
|
|
Log the hash algorithm's driver name when a dm-verity target is created.
This will help people determine whether the expected implementation is
being used. It can make an enormous difference; e.g., SHA-256 on ARM
can be 8x faster with the crypto extensions than without. It can also
be useful to know if an implementation using an external crypto
accelerator is being used instead of a software implementation.
Example message:
[ 35.281945] device-mapper: verity: sha256 using implementation "sha256-ce"
We've already found the similar message in fs/crypto/keyinfo.c to be
very useful.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
|
|
Log the encryption algorithm's driver name when a dm-crypt target is
created. This will help people determine whether the expected
implementation is being used. In some cases we've seen people do
benchmarks and reject using encryption for performance reasons, when in
fact they used a much slower implementation than was possible on the
hardware. It can make an enormous difference; e.g., AES-XTS on ARM can
be over 10x faster with the crypto extensions than without. It can also
be useful to know if an implementation using an external crypto
accelerator is being used instead of a software implementation.
Example message:
[ 29.307629] device-mapper: crypt: xts(aes) using implementation "xts-aes-ce"
We've already found the similar message in fs/crypto/keyinfo.c to be
very useful.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
|
|
Rename the workqueue from dm-intergrity-recalc to dm-integrity-recalc.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
|
|
The flakey target is documented to be able to corrupt the Nth byte in
a bio, but does not corrupt byte indices after the first biovec in the
bio. Change the corrupting function to actually corrupt the Nth byte
no matter in which biovec that index falls.
A test device generating two-page bios, atop a flakey device configured
to corrupt a byte index on the second page, verified both the failure
to corrupt before this patch and the expected corruption after this
change.
Signed-off-by: John Dorminy <jdorminy@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
|
|
Reference to a device in device-mapper table contains offset in sectors.
If the sector_t is 32bit integer (CONFIG_LBDAF is not set), then
several device-mapper targets can overflow this offset and validity
check is then performed on a wrong offset and a wrong table is activated.
See for example (on 32bit without CONFIG_LBDAF) this overflow:
# dmsetup create test --table "0 2048 linear /dev/sdg 4294967297"
# dmsetup table test
0 2048 linear 8:96 1
This patch adds explicit check for overflow if the offset is sector_t type.
Signed-off-by: Milan Broz <gmazyland@gmail.com>
Reviewed-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
|
|
The iv_offset in the mapping table of crypt target is a 64bit number when
IV algorithm is plain64, plain64be, essiv or benbi. It will be assigned to
iv_offset of struct crypt_config, cc_sector of struct convert_context and
iv_sector of struct dm_crypt_request. These structures members are defined
as a sector_t. But sector_t is 32bit when CONFIG_LBDAF is not set in 32bit
kernel. In this situation sector_t is not big enough to store the 64bit
iv_offset.
Here is a reproducer.
Prepare test image and device (loop is automatically allocated by cryptsetup):
# dd if=/dev/zero of=tst.img bs=1M count=1
# echo "tst"|cryptsetup open --type plain -c aes-xts-plain64 \
--skip 500000000000000000 tst.img test
On 32bit system (use IV offset value that overflows to 64bit; CONFIG_LBDAF if off)
and device checksum is wrong:
# dmsetup table test --showkeys
0 2048 crypt aes-xts-plain64 dfa7cfe3c481f2239155739c42e539ae8f2d38f304dcc89d20b26f69daaf0933 3551657984 7:0 0
# sha256sum /dev/mapper/test
533e25c09176632b3794f35303488c4a8f3f965dffffa6ec2df347c168cb6c19 /dev/mapper/test
On 64bit system (and on 32bit system with the patch), table and checksum is now correct:
# dmsetup table test --showkeys
0 2048 crypt aes-xts-plain64 dfa7cfe3c481f2239155739c42e539ae8f2d38f304dcc89d20b26f69daaf0933 500000000000000000 7:0 0
# sha256sum /dev/mapper/test
5d16160f9d5f8c33d8051e65fdb4f003cc31cd652b5abb08f03aa6fce0df75fc /dev/mapper/test
Signed-off-by: AliOS system security <alios_sys_security@linux.alibaba.com>
Tested-and-Reviewed-by: Milan Broz <gmazyland@gmail.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
|
|
When using kcopyd to run callbacks through dm_kcopyd_do_callback() or
submitting copy jobs with a source size of 0, the jobs are pushed
directly to the complete_jobs list, which could be under processing by
the kcopyd thread. As a result, the kcopyd thread can continue running
completed jobs indefinitely, without releasing the CPU, as long as
someone keeps submitting new completed jobs through the aforementioned
paths. Processing of work items, queued for execution on the same CPU as
the currently running kcopyd thread, is thus stalled for excessive
amounts of time, hurting performance.
Running the following test, from the device mapper test suite [1],
dmtest run --suite snapshot -n parallel_io_to_many_snaps_N
, with 8 active snapshots, we get, in dmesg, messages like the
following:
[68899.948523] BUG: workqueue lockup - pool cpus=0 node=0 flags=0x0 nice=0 stuck for 95s!
[68899.949282] Showing busy workqueues and worker pools:
[68899.949288] workqueue events: flags=0x0
[68899.949295] pwq 0: cpus=0 node=0 flags=0x0 nice=0 active=2/256
[68899.949306] pending: vmstat_shepherd, cache_reap
[68899.949331] workqueue mm_percpu_wq: flags=0x8
[68899.949337] pwq 0: cpus=0 node=0 flags=0x0 nice=0 active=1/256
[68899.949345] pending: vmstat_update
[68899.949387] workqueue dm_bufio_cache: flags=0x8
[68899.949392] pwq 4: cpus=2 node=0 flags=0x0 nice=0 active=1/256
[68899.949400] pending: work_fn [dm_bufio]
[68899.949423] workqueue kcopyd: flags=0x8
[68899.949429] pwq 0: cpus=0 node=0 flags=0x0 nice=0 active=1/256
[68899.949437] pending: do_work [dm_mod]
[68899.949452] workqueue kcopyd: flags=0x8
[68899.949458] pwq 0: cpus=0 node=0 flags=0x0 nice=0 active=2/256
[68899.949466] in-flight: 13:do_work [dm_mod]
[68899.949474] pending: do_work [dm_mod]
[68899.949487] workqueue kcopyd: flags=0x8
[68899.949493] pwq 0: cpus=0 node=0 flags=0x0 nice=0 active=1/256
[68899.949501] pending: do_work [dm_mod]
[68899.949515] workqueue kcopyd: flags=0x8
[68899.949521] pwq 0: cpus=0 node=0 flags=0x0 nice=0 active=1/256
[68899.949529] pending: do_work [dm_mod]
[68899.949541] workqueue kcopyd: flags=0x8
[68899.949547] pwq 0: cpus=0 node=0 flags=0x0 nice=0 active=1/256
[68899.949555] pending: do_work [dm_mod]
[68899.949568] pool 0: cpus=0 node=0 flags=0x0 nice=0 hung=95s workers=4 idle: 27130 27223 1084
Fix this by splitting the complete_jobs list into two parts: A user
facing part, named callback_jobs, and one used internally by kcopyd,
retaining the name complete_jobs. dm_kcopyd_do_callback() and
dispatch_job() now push their jobs to the callback_jobs list, which is
spliced to the complete_jobs list once, every time the kcopyd thread
wakes up. This prevents kcopyd from hogging the CPU indefinitely and
causing workqueue stalls.
Re-running the aforementioned test:
* Workqueue stalls are eliminated
* The maximum writing time among all targets is reduced from 09m37.10s
to 06m04.85s and the total run time of the test is reduced from
10m43.591s to 7m19.199s
[1] https://github.com/jthornber/device-mapper-test-suite
Signed-off-by: Nikos Tsironis <ntsironis@arrikto.com>
Signed-off-by: Ilias Tsitsimpis <iliastsi@arrikto.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
|
|
kcopyd has no upper limit to the number of jobs one can allocate and
issue. Under certain workloads this can lead to excessive memory usage
and workqueue stalls. For example, when creating multiple dm-snapshot
targets with a 4K chunk size and then writing to the origin through the
page cache. Syncing the page cache causes a large number of BIOs to be
issued to the dm-snapshot origin target, which itself issues an even
larger (because of the BIO splitting taking place) number of kcopyd
jobs.
Running the following test, from the device mapper test suite [1],
dmtest run --suite snapshot -n many_snapshots_of_same_volume_N
, with 8 active snapshots, results in the kcopyd job slab cache growing
to 10G. Depending on the available system RAM this can lead to the OOM
killer killing user processes:
[463.492878] kthreadd invoked oom-killer: gfp_mask=0x6040c0(GFP_KERNEL|__GFP_COMP),
nodemask=(null), order=1, oom_score_adj=0
[463.492894] kthreadd cpuset=/ mems_allowed=0
[463.492948] CPU: 7 PID: 2 Comm: kthreadd Not tainted 4.19.0-rc7 #3
[463.492950] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014
[463.492952] Call Trace:
[463.492964] dump_stack+0x7d/0xbb
[463.492973] dump_header+0x6b/0x2fc
[463.492987] ? lockdep_hardirqs_on+0xee/0x190
[463.493012] oom_kill_process+0x302/0x370
[463.493021] out_of_memory+0x113/0x560
[463.493030] __alloc_pages_slowpath+0xf40/0x1020
[463.493055] __alloc_pages_nodemask+0x348/0x3c0
[463.493067] cache_grow_begin+0x81/0x8b0
[463.493072] ? cache_grow_begin+0x874/0x8b0
[463.493078] fallback_alloc+0x1e4/0x280
[463.493092] kmem_cache_alloc_node+0xd6/0x370
[463.493098] ? copy_process.part.31+0x1c5/0x20d0
[463.493105] copy_process.part.31+0x1c5/0x20d0
[463.493115] ? __lock_acquire+0x3cc/0x1550
[463.493121] ? __switch_to_asm+0x34/0x70
[463.493129] ? kthread_create_worker_on_cpu+0x70/0x70
[463.493135] ? finish_task_switch+0x90/0x280
[463.493165] _do_fork+0xe0/0x6d0
[463.493191] ? kthreadd+0x19f/0x220
[463.493233] kernel_thread+0x25/0x30
[463.493235] kthreadd+0x1bf/0x220
[463.493242] ? kthread_create_on_cpu+0x90/0x90
[463.493248] ret_from_fork+0x3a/0x50
[463.493279] Mem-Info:
[463.493285] active_anon:20631 inactive_anon:4831 isolated_anon:0
[463.493285] active_file:80216 inactive_file:80107 isolated_file:435
[463.493285] unevictable:0 dirty:51266 writeback:109372 unstable:0
[463.493285] slab_reclaimable:31191 slab_unreclaimable:3483521
[463.493285] mapped:526 shmem:4903 pagetables:1759 bounce:0
[463.493285] free:33623 free_pcp:2392 free_cma:0
...
[463.493489] Unreclaimable slab info:
[463.493513] Name Used Total
[463.493522] bio-6 1028KB 1028KB
[463.493525] bio-5 1028KB 1028KB
[463.493528] dm_snap_pending_exception 236783KB 243789KB
[463.493531] dm_exception 41KB 42KB
[463.493534] bio-4 1216KB 1216KB
[463.493537] bio-3 439396KB 439396KB
[463.493539] kcopyd_job 6973427KB 6973427KB
...
[463.494340] Out of memory: Kill process 1298 (ruby2.3) score 1 or sacrifice child
[463.494673] Killed process 1298 (ruby2.3) total-vm:435740kB, anon-rss:20180kB, file-rss:4kB, shmem-rss:0kB
[463.506437] oom_reaper: reaped process 1298 (ruby2.3), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB
Moreover, issuing a large number of kcopyd jobs results in kcopyd
hogging the CPU, while processing them. As a result, processing of work
items, queued for execution on the same CPU as the currently running
kcopyd thread, is stalled for long periods of time, hurting performance.
Running the aforementioned test we get, in dmesg, messages like the
following:
[67501.194592] BUG: workqueue lockup - pool cpus=4 node=0 flags=0x0 nice=0 stuck for 27s!
[67501.195586] Showing busy workqueues and worker pools:
[67501.195591] workqueue events: flags=0x0
[67501.195597] pwq 8: cpus=4 node=0 flags=0x0 nice=0 active=1/256
[67501.195611] pending: cache_reap
[67501.195641] workqueue mm_percpu_wq: flags=0x8
[67501.195645] pwq 8: cpus=4 node=0 flags=0x0 nice=0 active=1/256
[67501.195656] pending: vmstat_update
[67501.195682] workqueue kblockd: flags=0x18
[67501.195687] pwq 5: cpus=2 node=0 flags=0x0 nice=-20 active=1/256
[67501.195698] pending: blk_timeout_work
[67501.195753] workqueue kcopyd: flags=0x8
[67501.195757] pwq 8: cpus=4 node=0 flags=0x0 nice=0 active=1/256
[67501.195768] pending: do_work [dm_mod]
[67501.195802] workqueue kcopyd: flags=0x8
[67501.195806] pwq 8: cpus=4 node=0 flags=0x0 nice=0 active=1/256
[67501.195817] pending: do_work [dm_mod]
[67501.195834] workqueue kcopyd: flags=0x8
[67501.195838] pwq 8: cpus=4 node=0 flags=0x0 nice=0 active=1/256
[67501.195848] pending: do_work [dm_mod]
[67501.195881] workqueue kcopyd: flags=0x8
[67501.195885] pwq 8: cpus=4 node=0 flags=0x0 nice=0 active=1/256
[67501.195896] pending: do_work [dm_mod]
[67501.195920] workqueue kcopyd: flags=0x8
[67501.195924] pwq 8: cpus=4 node=0 flags=0x0 nice=0 active=2/256
[67501.195935] in-flight: 67:do_work [dm_mod]
[67501.195945] pending: do_work [dm_mod]
[67501.195961] pool 8: cpus=4 node=0 flags=0x0 nice=0 hung=27s workers=3 idle: 129 23765
The root cause for these issues is the way dm-snapshot uses kcopyd. In
particular, the lack of an explicit or implicit limit to the maximum
number of in-flight COW jobs. The merging path is not affected because
it implicitly limits the in-flight kcopyd jobs to one.
Fix these issues by using a semaphore to limit the maximum number of
in-flight kcopyd jobs. We grab the semaphore before allocating a new
kcopyd job in start_copy() and start_full_bio() and release it after the
job finishes in copy_callback().
The initial semaphore value is configurable through a module parameter,
to allow fine tuning the maximum number of in-flight COW jobs. Setting
this parameter to zero initializes the semaphore to INT_MAX.
A default value of 2048 maximum in-flight kcopyd jobs was chosen. This
value was decided experimentally as a trade-off between memory
consumption, stalling the kernel's workqueues and maintaining a high
enough throughput.
Re-running the aforementioned test:
* Workqueue stalls are eliminated
* kcopyd's job slab cache uses a maximum of 130MB
* The time taken by the test to write to the snapshot-origin target is
reduced from 05m20.48s to 03m26.38s
[1] https://github.com/jthornber/device-mapper-test-suite
Signed-off-by: Nikos Tsironis <ntsironis@arrikto.com>
Signed-off-by: Ilias Tsitsimpis <iliastsi@arrikto.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
|
|
* Hashtable has been replaced by rbtree to manage buffers.
Update the comment.
* Fix typo in the comment for dm_bufio_issue_flush
Signed-off-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
|
|
The error msg should be "flush thread" instead of "endio thread"
for writecache_flush_thread.
Signed-off-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
|
|
No need to be so fancy.
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
|
|
The workqueues are shared by many multipath devices, only flush whole
workqueue when necessary. Otherwise, we just flush works as needed.
Signed-off-by: wuzhouhui <wuzhouhui14@mails.ucas.ac.cn>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
|
|
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
|
|
Indirect calls are inefficient because of retpolines that are used for
spectre workaround. This patch replaces an indirect call with a condition
(that can be predicted by the branch predictor).
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/broonie/sound into for-next
ASoC: Updates for v4.21
Not much work on the core this time around but we've seen quite a bit of
driver work, including on the generic DT drivers. There's also a large
part of the diff from a merge of the DaVinci and OMAP directories, along
with some active development there:
- Preparatory work from Morimoto-san for merging the audio-graph and
audio-graph-scu cards.
- A merge of the TI OMAP and DaVinci directories, the OMAP product line
has been merged into the DaVinci product line so there is now a lot
of IP sharing which meant that the split directories just got in the
way. This has pulled in a few architecture changes as well.
- A big cleanup of the Maxim MAX9867 driver from Ladislav Michl.
- Support for Asahi Kaesi AKM4118, AMD ACP3x, Intel platforms with
RT5660, Meson AXG S/PDIF inputs, several Qualcomm IPs and Xilinx I2S
controllers.
|
|
Quentin Monnet says:
====================
This series focus on mounting (or not mounting) tracefs with bpftool.
First patch makes bpftool attempt to mount tracefs if tracefs is not
found when running "bpftool prog tracelog".
Second patch adds an option to bpftool to prevent it from attempting
to mount any file system (tracefs or bpffs), in case this behaviour
is undesirable for some users.
====================
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
In order to make life easier for users, bpftool automatically attempts
to mount the BPF virtual file system, if it is not mounted already,
before trying to pin objects in it. Similarly, it attempts to mount
tracefs if necessary before trying to dump the trace pipe to the
console.
While mounting file systems on-the-fly can improve user experience, some
administrators might prefer to avoid that. Let's add an option to block
these mount attempts. Note that it does not prevent automatic mounting
of tracefs by debugfs for the "bpftool prog tracelog" command.
Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
As a follow-up to commit 30da46b5dc3a ("tools: bpftool: add a command to
dump the trace pipe"), attempt to mount the tracefs virtual file system
if it is not detected on the system before trying to dump content of the
tracing pipe on an invocation of "bpftool prog tracelog".
Usually, tracefs in automatically mounted by debugfs when the user tries
to access it (e.g. "ls /sys/kernel/debug/tracing" mounts the tracefs).
So if we failed to find it, it is probably that debugfs is not here
either. Therefore, we just attempt a single mount, at a location that
does not involve debugfs: /sys/kernel/tracing.
Suggested-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
Current btf func_info, line_info and jited_line are designed to be
extensible. The record sizes for {func,line}_info are passed to kernel,
and the record sizes for {func,line,jited_line}_info are returned to
userspace during bpf_prog_info query.
In bpf selftests test_btf.c, when testing whether kernel returns
a legitimate {func,line, jited_line)_info rec_size, the test only
compares to the minimum allowed size. If the returned rec_size is smaller
than the minimum allowed size, it is considered incorrect.
The minimum allowed size for these three info sizes are equal to
current value of sizeof(struct bpf_func_info), sizeof(struct bpf_line_info)
and sizeof(__u64).
The original thinking was that in the future when rec_size is increased
in kernel, the same test should run correctly. But this sacrificed
the precision of testing under the very kernel the test is shipped with,
and bpf selftest is typically run with the same repo kernel.
So this patch changed the testing of rec_size such that the
kernel returned value should be equal to the size defined by
tools uapi header bpf.h which syncs with kernel uapi header.
Martin discovered a bug in one of rec_size comparisons.
Instead of comparing to minimum func_info rec_size 8, it compares to 4.
This patch fixed that issue as well.
Fixes: 999d82cbc044 ("tools/bpf: enhance test_btf file testing to test func info")
Fixes: 05687352c600 ("bpf: Refactor and bug fix in test_func_type in test_btf.c")
Fixes: 4d6304c76355 ("bpf: Add unit tests for bpf_line_info")
Suggested-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|