summaryrefslogtreecommitdiff
AgeCommit message (Collapse)Author
2024-12-23usb: dwc3-am62: Disable autosuspend during removePrashanth K
Runtime PM documentation (Section 5) mentions, during remove() callbacks, drivers should undo the runtime PM changes done in probe(). Usually this means calling pm_runtime_disable(), pm_runtime_dont_use_autosuspend() etc. Hence add missing function to disable autosuspend on dwc3-am62 driver unbind. Fixes: e8784c0aec03 ("drivers: usb: dwc3: Add AM62 USB wrapper driver") Cc: stable <stable@kernel.org> Signed-off-by: Prashanth K <quic_prashk@quicinc.com> Acked-by: Thinh Nguyen <Thinh.Nguyen@synopsys.com> Link: https://lore.kernel.org/r/20241209105728.3216872-1-quic_prashk@quicinc.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-12-23usb: dwc3: gadget: fix writing NYET thresholdAndré Draszik
Before writing a new value to the register, the old value needs to be masked out for the new value to be programmed as intended, because at least in some cases the reset value of that field is 0xf (max value). At the moment, the dwc3 core initialises the threshold to the maximum value (0xf), with the option to override it via a DT. No upstream DTs seem to override it, therefore this commit doesn't change behaviour for any upstream platform. Nevertheless, the code should be fixed to have the desired outcome. Do so. Fixes: 80caf7d21adc ("usb: dwc3: add lpm erratum support") Cc: stable@vger.kernel.org # 5.10+ (needs adjustment for 5.4) Signed-off-by: André Draszik <andre.draszik@linaro.org> Acked-by: Thinh Nguyen <Thinh.Nguyen@synopsys.com> Link: https://lore.kernel.org/r/20241209-dwc3-nyet-fix-v2-1-02755683345b@linaro.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-12-23drm/xe: Fix fault on fd close after unbindLucas De Marchi
If userspace holds an fd open, unbinds the device and then closes it, the driver shouldn't try to access the hardware. Protect it by using drm_dev_enter()/drm_dev_exit(). This fixes the following page fault: <6> [IGT] xe_wedged: exiting, ret=98 <1> BUG: unable to handle page fault for address: ffffc901bc5e508c <1> #PF: supervisor read access in kernel mode <1> #PF: error_code(0x0000) - not-present page ... <4> xe_lrc_update_timestamp+0x1c/0xd0 [xe] <4> xe_exec_queue_update_run_ticks+0x50/0xb0 [xe] <4> xe_exec_queue_fini+0x16/0xb0 [xe] <4> __guc_exec_queue_fini_async+0xc4/0x190 [xe] <4> guc_exec_queue_fini_async+0xa0/0xe0 [xe] <4> guc_exec_queue_fini+0x23/0x40 [xe] <4> xe_exec_queue_destroy+0xb3/0xf0 [xe] <4> xe_file_close+0xd4/0x1a0 [xe] <4> drm_file_free+0x210/0x280 [drm] <4> drm_close_helper.isra.0+0x6d/0x80 [drm] <4> drm_release_noglobal+0x20/0x90 [drm] Fixes: 514447a12190 ("drm/xe: Stop accumulating LRC timestamp on job_free") Closes: https://gitlab.freedesktop.org/drm/xe/kernel/-/issues/3421 Reviewed-by: Umesh Nerlige Ramappa <umesh.nerlige.ramappa@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20241218053122.2730195-1-lucas.demarchi@intel.com Signed-off-by: Lucas De Marchi <lucas.demarchi@intel.com> (cherry picked from commit 4ca1fd418338d4d135428a0eb1e16e3b3ce17ee8) Signed-off-by: Thomas Hellström <thomas.hellstrom@linux.intel.com>
2024-12-23drm/xe/pf: Use correct function to check LMEM provisioningMichal Wajdeczko
There is a typo in function call and instead of VF LMEM we were looking at VF GGTT provisioning. Fix that. Fixes: 234670cea9a2 ("drm/xe/pf: Skip fair VFs provisioning if already provisioned") Signed-off-by: Michal Wajdeczko <michal.wajdeczko@intel.com> Cc: Piotr Piórkowski <piotr.piorkowski@intel.com> Reviewed-by: Himal Prasad Ghimiray <himal.prasad.ghimiray@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20241216223253.819-1-michal.wajdeczko@intel.com (cherry picked from commit a8d0aa0e7fcd20c9f1992688c0f0d07a68287403) Signed-off-by: Thomas Hellström <thomas.hellstrom@linux.intel.com>
2024-12-23drm/xe: Wait for migration job before unmapping pagesNirmoy Das
Fix a potential GPU page fault during tt -> system moves by waiting for migration jobs to complete before unmapping SG. This ensures that IOMMU mappings are not prematurely torn down while a migration job is still in progress. v2: Use intr=false(Matt A) v3: Update commit message(Matt A) v4: s/DMA_RESV_USAGE_BOOKKEEP/DMA_RESV_USAGE_KERNEL(Thomas) Closes: https://gitlab.freedesktop.org/drm/xe/kernel/-/issues/3466 Fixes: 75521e8b56e8 ("drm/xe: Perform dma_map when moving system buffer objects to TT") Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Matthew Brost <matthew.brost@intel.com> Cc: Lucas De Marchi <lucas.demarchi@intel.com> Cc: stable@vger.kernel.org # v6.11+ Cc: Matthew Auld <matthew.auld@intel.com> Reviewed-by: Matthew Auld <matthew.auld@intel.com> Reviewed-by: Thomas Hellström <thomas.hellstrom@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20241213122415.3880017-2-nirmoy.das@intel.com Signed-off-by: Nirmoy Das <nirmoy.das@intel.com> (cherry picked from commit cda06412c06893a6f07a2fbf89d42a0972ec9e8e) Signed-off-by: Thomas Hellström <thomas.hellstrom@linux.intel.com>
2024-12-23drm/xe: Use non-interruptible wait when moving BO to systemNirmoy Das
Ensure a non-interruptible wait is used when moving a bo to XE_PL_SYSTEM. This prevents dma_mappings from being removed prematurely while a GPU job is still in progress, even if the CPU receives a signal during the operation. Fixes: 75521e8b56e8 ("drm/xe: Perform dma_map when moving system buffer objects to TT") Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Matthew Brost <matthew.brost@intel.com> Cc: Lucas De Marchi <lucas.demarchi@intel.com> Cc: stable@vger.kernel.org # v6.11+ Suggested-by: Matthew Auld <matthew.auld@intel.com> Reviewed-by: Matthew Auld <matthew.auld@intel.com> Reviewed-by: Thomas Hellström <thomas.hellstrom@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20241213122415.3880017-1-nirmoy.das@intel.com Signed-off-by: Nirmoy Das <nirmoy.das@intel.com> (cherry picked from commit dc5e20ae1f8a7c354dc9833faa2720254e5a5443) Signed-off-by: Thomas Hellström <thomas.hellstrom@linux.intel.com>
2024-12-23drm/xe: Revert some changes that break a mesa debug toolJohn Harrison
There is a mesa debug tool for decoding devcoredump files. Recent changes to improve the devcoredump output broke that tool. So revert the changes until the tool can be extended to support the new fields. Signed-off-by: John Harrison <John.C.Harrison@Intel.com> Fixes: c28fd6c358db ("drm/xe/devcoredump: Improve section headings and add tile info") Fixes: ec1455ce7e35 ("drm/xe/devcoredump: Add ASCII85 dump helper function") Cc: John Harrison <John.C.Harrison@Intel.com> Cc: Julia Filipchuk <julia.filipchuk@intel.com> Cc: Lucas De Marchi <lucas.demarchi@intel.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: intel-xe@lists.freedesktop.org Reviewed-by: Jonathan Cavitt <jonathan.cavitt@intel.com> Reviewed-by: José Roberto de Souza <jose.souza@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20241213172833.1733376-1-John.C.Harrison@Intel.com Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com> (cherry picked from commit 70fb86a85dc9fd66014d7eb2fe356f50702ceeb6) Signed-off-by: Thomas Hellström <thomas.hellstrom@linux.intel.com>
2024-12-24tracing/kprobe: Make trace_kprobe's module callback called after jump_label ↵Masami Hiramatsu (Google)
update Make sure the trace_kprobe's module notifer callback function is called after jump_label's callback is called. Since the trace_kprobe's callback eventually checks jump_label address during registering new kprobe on the loading module, jump_label must be updated before this registration happens. Link: https://lore.kernel.org/all/173387585556.995044.3157941002975446119.stgit@devnote2/ Fixes: 614243181050 ("tracing/kprobes: Support module init function probing") Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
2024-12-23RDMA/hns: Fix missing flush CQE for DWQEChengchang Tang
Flush CQE handler has not been called if QP state gets into errored mode in DWQE path. So, the new added outstanding WQEs will never be flushed. It leads to a hung task timeout when using NFS over RDMA: __switch_to+0x7c/0xd0 __schedule+0x350/0x750 schedule+0x50/0xf0 schedule_timeout+0x2c8/0x340 wait_for_common+0xf4/0x2b0 wait_for_completion+0x20/0x40 __ib_drain_sq+0x140/0x1d0 [ib_core] ib_drain_sq+0x98/0xb0 [ib_core] rpcrdma_xprt_disconnect+0x68/0x270 [rpcrdma] xprt_rdma_close+0x20/0x60 [rpcrdma] xprt_autoclose+0x64/0x1cc [sunrpc] process_one_work+0x1d8/0x4e0 worker_thread+0x154/0x420 kthread+0x108/0x150 ret_from_fork+0x10/0x18 Fixes: 01584a5edcc4 ("RDMA/hns: Add support of direct wqe") Signed-off-by: Chengchang Tang <tangchengchang@huawei.com> Signed-off-by: Junxian Huang <huangjunxian6@hisilicon.com> Link: https://patch.msgid.link/20241220055249.146943-5-huangjunxian6@hisilicon.com Signed-off-by: Leon Romanovsky <leon@kernel.org>
2024-12-23RDMA/hns: Fix warning storm caused by invalid input in IO pathChengchang Tang
WARN_ON() is called in the IO path. And it could lead to a warning storm. Use WARN_ON_ONCE() instead of WARN_ON(). Fixes: 12542f1de179 ("RDMA/hns: Refactor process about opcode in post_send()") Signed-off-by: Chengchang Tang <tangchengchang@huawei.com> Signed-off-by: Junxian Huang <huangjunxian6@hisilicon.com> Link: https://patch.msgid.link/20241220055249.146943-4-huangjunxian6@hisilicon.com Signed-off-by: Leon Romanovsky <leon@kernel.org>
2024-12-23RDMA/hns: Fix accessing invalid dip_ctx during destroying QPChengchang Tang
If it fails to modify QP to RTR, dip_ctx will not be attached. And during detroying QP, the invalid dip_ctx pointer will be accessed. Fixes: faa62440a577 ("RDMA/hns: Fix different dgids mapping to the same dip_idx") Signed-off-by: Chengchang Tang <tangchengchang@huawei.com> Signed-off-by: Junxian Huang <huangjunxian6@hisilicon.com> Link: https://patch.msgid.link/20241220055249.146943-3-huangjunxian6@hisilicon.com Signed-off-by: Leon Romanovsky <leon@kernel.org>
2024-12-23RDMA/hns: Fix mapping error of zero-hop WQE bufferwenglianfa
Due to HW limitation, the three region of WQE buffer must be mapped and set to HW in a fixed order: SQ buffer, SGE buffer, and RQ buffer. Currently when one region is zero-hop while the other two are not, the zero-hop region will not be mapped. This violate the limitation above and leads to address error. Fixes: 38389eaa4db1 ("RDMA/hns: Add mtr support for mixed multihop addressing") Signed-off-by: wenglianfa <wenglianfa@huawei.com> Signed-off-by: Junxian Huang <huangjunxian6@hisilicon.com> Link: https://patch.msgid.link/20241220055249.146943-2-huangjunxian6@hisilicon.com Signed-off-by: Leon Romanovsky <leon@kernel.org>
2024-12-23Revert "drm/mediatek: dsi: Correct calculation formula of PHY Timing"Chun-Kuang Hu
This reverts commit 417d8c47271d5cf1a705e997065873b2a9a36fd4. With that patch the panel in the Tentacruel ASUS Chromebook CM14 (CM1402F) flickers. There are 1 or 2 times per second a black panel. Stable Kernel 6.11.5 and mainline 6.12-rc4 works only when reverse that patch. Fixes: 417d8c47271d ("drm/mediatek: dsi: Correct calculation formula of PHY Timing") Cc: stable@vger.kernel.org Cc: Shuijing Li <shuijing.li@mediatek.com> Reported-by: Jens Ziller <zillerbaer@gmx.de> Closes: https://patchwork.kernel.org/project/dri-devel/patch/20240412031208.30688-1-shuijing.li@mediatek.com/ Link: https://patchwork.kernel.org/project/dri-devel/patch/20241212001908.6056-1-chunkuang.hu@kernel.org/ Signed-off-by: Chun-Kuang Hu <chunkuang.hu@kernel.org>
2024-12-23cifs: Remove unused is_server_using_iface()Dr. David Alan Gilbert
The last use of is_server_using_iface() was removed in 2022 by commit aa45dadd34e4 ("cifs: change iface_list from array to sorted linked list") Remove it. Signed-off-by: Dr. David Alan Gilbert <linux@treblig.org> Signed-off-by: Steve French <stfrench@microsoft.com>
2024-12-23smb: enable reuse of deferred file handles for write operationsBharath SM
Previously, deferred file handles were reused only for read operations, this commit extends to reusing deferred handles for write operations. By reusing these handles we can reduce the need for open/close operations over the wire. Signed-off-by: Bharath SM <bharathsm@microsoft.com> Signed-off-by: Steve French <stfrench@microsoft.com>
2024-12-23KVM: x86/mmu: Prevent aliased memslot GFNsRick Edgecombe
Add a few sanity checks to prevent memslot GFNs from ever having alias bits set. Like other Coco technologies, TDX has the concept of private and shared memory. For TDX the private and shared mappings are managed on separate EPT roots. The private half is managed indirectly though calls into a protected runtime environment called the TDX module, where the shared half is managed within KVM in normal page tables. For TDX, the shared half will be mapped in the higher alias, with a "shared bit" set in the GPA. However, KVM will still manage it with the same memslots as the private half. This means memslot looks ups and zapping operations will be provided with a GFN without the shared bit set. If these memslot GFNs ever had the bit that selects between the two aliases it could lead to unexpected behavior in the complicated code that directs faulting or zapping operations between the roots that map the two aliases. As a safety measure, prevent memslots from being set at a GFN range that contains the alias bit. Also, check in the kvm_faultin_pfn() for the fault path. This later check does less today, as the alias bits are specifically stripped from the GFN being checked, however future code could possibly call in to the fault handler in a way that skips this stripping. Since kvm_faultin_pfn() now has many references to vcpu->kvm, extract it to local variable. Link: https://lore.kernel.org/kvm/ZpbKqG_ZhCWxl-Fc@google.com/ Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Message-ID: <20240718211230.1492011-19-rick.p.edgecombe@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-23KVM: x86/tdp_mmu: Don't zap valid mirror roots in kvm_tdp_mmu_zap_all()Rick Edgecombe
Don't zap valid mirror roots in kvm_tdp_mmu_zap_all(), which in effect is only direct roots (invalid and valid). For TDX, kvm_tdp_mmu_zap_all() is only called during MMU notifier release. Since, mirrored EPT comes from guest mem, it will never be mapped to userspace, and won't apply. But in addition to be unnecessary, mirrored EPT is cleaned up in a special way during VM destruction. Pass the KVM_INVALID_ROOTS bit into __for_each_tdp_mmu_root_yield_safe() as well, to clean up invalid direct roots, as is the current behavior. While at it, remove an obsolete reference to work item-based zapping. Co-developed-by: Yan Zhao <yan.y.zhao@intel.com> Signed-off-by: Yan Zhao <yan.y.zhao@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Message-ID: <20240718211230.1492011-18-rick.p.edgecombe@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-23KVM: x86/tdp_mmu: Take root types for kvm_tdp_mmu_invalidate_all_roots()Isaku Yamahata
Rename kvm_tdp_mmu_invalidate_all_roots() to kvm_tdp_mmu_invalidate_roots(), and make it enum kvm_tdp_mmu_root_types as an argument. kvm_tdp_mmu_invalidate_roots() is called with different root types. For kvm_mmu_zap_all_fast() it only operates on shared roots. But when tearing down a VM it needs to invalidate all roots. Have the callers only invalidate the required roots instead of all roots. Within kvm_tdp_mmu_invalidate_roots(), respect the root type passed by checking the root type in root iterator. Suggested-by: Chao Gao <chao.gao@intel.com> Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Message-ID: <20240718211230.1492011-17-rick.p.edgecombe@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-23KVM: x86/tdp_mmu: Propagate tearing down mirror page tablesIsaku Yamahata
Integrate hooks for mirroring page table operations for cases where TDX will zap PTEs or free page tables. Like other Coco technologies, TDX has the concept of private and shared memory. For TDX the private and shared mappings are managed on separate EPT roots. The private half is managed indirectly though calls into a protected runtime environment called the TDX module, where the shared half is managed within KVM in normal page tables. Since calls into the TDX module are relatively slow, walking private page tables by making calls into the TDX module would not be efficient. Because of this, previous changes have taught the TDP MMU to keep a mirror root, which is separate, unmapped TDP root that private operations can be directed to. Currently this root is disconnected from the guest. Now add plumbing to propagate changes to the "external" page tables being mirrored. Just create the x86_ops for now, leave plumbing the operations into the TDX module for future patches. Add two operations for tearing down page tables, one for freeing page tables (free_external_spt) and one for zapping PTEs (remove_external_spte). Define them such that remove_external_spte will perform a TLB flush as well. (in TDX terms "ensure there are no active translations"). TDX MMU support will exclude certain MMU operations, so only plug in the mirroring x86 ops where they will be needed. For zapping/freeing, only hook tdp_mmu_iter_set_spte() which is used for mapping and linking PTs. Don't bother hooking tdp_mmu_set_spte_atomic() as it is only used for zapping PTEs in operations unsupported by TDX: zapping collapsible PTEs and kvm_mmu_zap_all_fast(). In previous changes to address races around concurrent populating using tdp_mmu_set_spte_atomic(), a solution was introduced to temporarily set FROZEN_SPTE in the mirrored page tables while performing the external operations. Such a solution is not needed for the tear down paths in TDX as these will always be performed with the mmu_lock held for write. Sprinkle some KVM_BUG_ON()s to reflect this. Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com> Co-developed-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Kai Huang <kai.huang@intel.com> Co-developed-by: Yan Zhao <yan.y.zhao@intel.com> Signed-off-by: Yan Zhao <yan.y.zhao@intel.com> Co-developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Message-ID: <20240718211230.1492011-16-rick.p.edgecombe@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-23KVM: x86/tdp_mmu: Propagate building mirror page tablesIsaku Yamahata
Integrate hooks for mirroring page table operations for cases where TDX will set PTEs or link page tables. Like other Coco technologies, TDX has the concept of private and shared memory. For TDX the private and shared mappings are managed on separate EPT roots. The private half is managed indirectly through calls into a protected runtime environment called the TDX module, where the shared half is managed within KVM in normal page tables. Since calls into the TDX module are relatively slow, walking private page tables by making calls into the TDX module would not be efficient. Because of this, previous changes have taught the TDP MMU to keep a mirror root, which is separate, unmapped TDP root that private operations can be directed to. Currently this root is disconnected from any actual guest mapping. Now add plumbing to propagate changes to the "external" page tables being mirrored. Just create the x86_ops for now, leave plumbing the operations into the TDX module for future patches. Add two operations for setting up external page tables, one for linking new page tables and one for setting leaf PTEs. Don't add any op for configuring the root PFN, as TDX handles this itself. Don't provide a way to set permissions on the PTEs also, as TDX doesn't support it. This results in MMU "mirroring" support that is very targeted towards TDX. Since it is likely there will be no other user, the main benefit of making the support generic is to keep TDX specific *looking* code outside of the MMU. As a generic feature it will make enough sense from TDX's perspective. For developers unfamiliar with TDX arch it can express the general concepts such that they can continue to work in the code. TDX MMU support will exclude certain MMU operations, so only plug in the mirroring x86 ops where they will be needed. For setting/linking, only hook tdp_mmu_set_spte_atomic() which is used for mapping and linking PTs. Don't bother hooking tdp_mmu_iter_set_spte() as it is only used for setting PTEs in operations unsupported by TDX: splitting huge pages and write protecting. Sprinkle KVM_BUG_ON()s to document as code that these paths are not supported for mirrored page tables. For zapping operations, leave those for near future changes. Many operations in the TDP MMU depend on atomicity of the PTE update. While the mirror PTE on KVM's side can be updated atomically, the update that happens inside the external operations (S-EPT updates via TDX module call) can't happen atomically with the mirror update. The following race could result during two vCPU's populating private memory: * vcpu 1: atomically update 2M level mirror EPT entry to be present * vcpu 2: read 2M level EPT entry that is present * vcpu 2: walk down into 4K level EPT * vcpu 2: atomically update 4K level mirror EPT entry to be present * vcpu 2: set_exterma;_spte() to update 4K secure EPT entry => error because 2M secure EPT entry is not populated yet * vcpu 1: link_external_spt() to update 2M secure EPT entry Prevent this by setting the mirror PTE to FROZEN_SPTE while the reflect operations are performed. Only write the actual mirror PTE value once the reflect operations have completed. When trying to set a PTE to present and encountering a frozen SPTE, retry the fault. By doing this the race is prevented as follows: * vcpu 1: atomically update 2M level EPT entry to be FROZEN_SPTE * vcpu 2: read 2M level EPT entry that is FROZEN_SPTE * vcpu 2: find that the EPT entry is frozen abandon page table walk to resume guest execution * vcpu 1: link_external_spt() to update 2M secure EPT entry * vcpu 1: atomically update 2M level EPT entry to be present (unfreeze) * vcpu 2: resume guest execution Depending on vcpu 1 state, vcpu 2 may result in EPT violation again or make progress on guest execution Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com> Co-developed-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Kai Huang <kai.huang@intel.com> Co-developed-by: Yan Zhao <yan.y.zhao@intel.com> Signed-off-by: Yan Zhao <yan.y.zhao@intel.com> Co-developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Message-ID: <20240718211230.1492011-15-rick.p.edgecombe@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-23KVM: x86/tdp_mmu: Propagate attr_filter to MMU notifier callbacksPaolo Bonzini
Teach the MMU notifier callbacks how to check kvm_gfn_range.process to filter which KVM MMU root types to operate on. The private GPAs are backed by guest memfd. Such memory is not subjected to MMU notifier callbacks because it can't be mapped into the host user address space. Now kvm_gfn_range conveys info about which root to operate on. Enhance the callback to filter the root page table type. The KVM MMU notifier comes down to two functions. kvm_tdp_mmu_unmap_gfn_range() and __kvm_tdp_mmu_age_gfn_range(): - invalidate_range_start() calls kvm_tdp_mmu_unmap_gfn_range() - invalidate_range_end() doesn't call into arch code - the other callbacks call __kvm_tdp_mmu_age_gfn_range() For VM's without a private/shared split in the EPT, all operations should target the normal(direct) root. With the switch from for_each_tdp_mmu_root() to __for_each_tdp_mmu_root() in kvm_tdp_mmu_handle_gfn(), there are no longer any users of for_each_tdp_mmu_root(). Remove it. Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Message-ID: <20240718211230.1492011-14-rick.p.edgecombe@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-23KVM: x86/tdp_mmu: Support mirror root for TDP MMUIsaku Yamahata
Add the ability for the TDP MMU to maintain a mirror of a separate mapping. Like other Coco technologies, TDX has the concept of private and shared memory. For TDX the private and shared mappings are managed on separate EPT roots. The private half is managed indirectly through calls into a protected runtime environment called the TDX module, where the shared half is managed within KVM in normal page tables. In order to handle both shared and private memory, KVM needs to learn to handle faults and other operations on the correct root for the operation. KVM could learn the concept of private roots, and operate on them by calling out to operations that call into the TDX module. But there are two problems with that: 1. Calls into the TDX module are relatively slow compared to the simple accesses required to read a PTE managed directly by KVM. 2. Other Coco technologies deal with private memory completely differently and it will make the code confusing when being read from their perspective. Special operations added for TDX that set private or zap private memory will have nothing to do with these other private memory technologies. (SEV, etc). To handle these, instead teach the TDP MMU about a new concept "mirror roots". Such roots maintain page tables that are not actually mapped, and are just used to traverse quickly to determine if the mid level page tables need to be installed. When the memory be mirrored needs to actually be changed, calls can be made to via x86_ops. private KVM page fault | | | V | private GPA | CPU protected EPTP | | | V | V mirror PT root | external PT root | | | V | V mirror PT --hook to propagate-->external PT | | | \--------------------+------\ | | | | | V V | private guest page | | non-encrypted memory | encrypted memory | Leave calling out to actually update the private page tables that are being mirrored for later changes. Just implement the handling of MMU operations on to mirrored roots. In order to direct operations to correct root, add root types KVM_DIRECT_ROOTS and KVM_MIRROR_ROOTS. Tie the usage of mirrored/direct roots to private/shared with conditionals. It could also be implemented by making the kvm_tdp_mmu_root_types and kvm_gfn_range_filter enum bits line up such that conversion could be a direct assignment with a case. Don't do this because the mapping of private to mirrored is confusing enough. So it is worth not hiding the logic in type casting. Cleanup the mirror root in kvm_mmu_destroy() instead of the normal place in kvm_mmu_free_roots(), because the private root that is being cannot be rebuilt like a normal root. It needs to persist for the lifetime of the VM. The TDX module will also need to be provided with page tables to use for the actual mapping being mirrored by the mirrored page tables. Allocate these in the mapping path using the recently added kvm_mmu_alloc_external_spt(). Don't support 2M page for now. This is avoided by forcing 4k pages in the fault. Add a KVM_BUG_ON() to verify. Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com> Co-developed-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Kai Huang <kai.huang@intel.com> Co-developed-by: Yan Zhao <yan.y.zhao@intel.com> Signed-off-by: Yan Zhao <yan.y.zhao@intel.com> Co-developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Message-ID: <20240718211230.1492011-13-rick.p.edgecombe@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-23KVM: x86/tdp_mmu: Take root in tdp_mmu_for_each_pte()Isaku Yamahata
Take the root as an argument of tdp_mmu_for_each_pte() instead of looking it up in the mmu. With no other purpose of passing the mmu, drop it. Future changes will want to change which root is used based on the context of the MMU operation. So change the callers to pass in the root currently used, mmu->root.hpa in a preparatory patch to make the later one smaller and easier to review. Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Message-ID: <20240718211230.1492011-12-rick.p.edgecombe@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-23KVM: x86/tdp_mmu: Introduce KVM MMU root types to specify page table typeIsaku Yamahata
Define an enum kvm_tdp_mmu_root_types to specify the KVM MMU root type [1] so that the iterator on the root page table can consistently filter the root page table type instead of only_valid. TDX KVM will operate on KVM page tables with specified types. Shared page table, private page table, or both. Introduce an enum instead of bool only_valid so that we can easily enhance page table types applicable to shared, private, or both in addition to valid or not. Replace only_valid=false with KVM_ANY_ROOTS and only_valid=true with KVM_ANY_VALID_ROOTS. Use KVM_ANY_ROOTS and KVM_ANY_VALID_ROOTS to wrap KVM_VALID_ROOTS to avoid further code churn when direct vs mirror root concepts are introduced in future patches. Link: https://lore.kernel.org/kvm/ZivazWQw1oCU8VBC@google.com/ [1] Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Message-ID: <20240718211230.1492011-11-rick.p.edgecombe@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-23KVM: x86/tdp_mmu: Extract root invalid check from tdx_mmu_next_root()Isaku Yamahata
Extract tdp_mmu_root_match() to check if the root has given types and use it for the root page table iterator. It checks only_invalid now. TDX KVM operates on a shared page table only (Shared-EPT), a mirrored page table only (Secure-EPT), or both based on the operation. KVM MMU notifier operations only on shared page table. KVM guest_memfd invalidation operations only on mirrored page table, and so on. Introduce a centralized matching function instead of open coding matching logic in the iterator. The next step is to extend the function to check whether the page is shared or private Link: https://lore.kernel.org/kvm/ZivazWQw1oCU8VBC@google.com/ Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Message-ID: <20240718211230.1492011-10-rick.p.edgecombe@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-23KVM: x86/mmu: Support GFN direct bitsIsaku Yamahata
Teach the MMU to map guest GFNs at a massaged position on the TDP, to aid in implementing TDX shared memory. Like other Coco technologies, TDX has the concept of private and shared memory. For TDX the private and shared mappings are managed on separate EPT roots. The private half is managed indirectly through calls into a protected runtime environment called the TDX module, where the shared half is managed within KVM in normal page tables. For TDX, the shared half will be mapped in the higher alias, with a "shared bit" set in the GPA. However, KVM will still manage it with the same memslots as the private half. This means memslot looks ups and zapping operations will be provided with a GFN without the shared bit set. So KVM will either need to apply or strip the shared bit before mapping or zapping the shared EPT. Having GFNs sometimes have the shared bit and sometimes not would make the code confusing. So instead arrange the code such that GFNs never have shared bit set. Create a concept of "direct bits", that is stripped from the fault address when setting fault->gfn, and applied within the TDP MMU iterator. Calling code will behave as if it is operating on the PTE mapping the GFN (without shared bits) but within the iterator, the actual mappings will be shifted using bits specific for the root. SPs will have the GFN set without the shared bit. In the end the TDP MMU will behave like it is mapping things at the GFN without the shared bit but with a strange page table format where everything is offset by the shared bit. Since TDX only needs to shift the mapping like this for the shared bit, which is mapped as the normal TDP root, add a "gfn_direct_bits" field to the kvm_arch structure for each VM with a default value of 0. It will have the bit set at the position of the GPA shared bit in GFN through TD specific initialization code. Keep TDX specific concepts out of the MMU code by not naming it "shared". Ranged TLB flushes (i.e. flush_remote_tlbs_range()) target specific GFN ranges. In convention established above, these would need to target the shifted GFN range. It won't matter functionally, since the actual implementation will always result in a full flush for the only planned user (TDX). For correctness reasons, future changes can provide a TDX x86_ops.flush_remote_tlbs_range implementation to return -EOPNOTSUPP and force the full flush for TDs. This leaves one problem. Some operations use a concept of max GFN (i.e. kvm_mmu_max_gfn()), to iterate over the whole TDP range. When applying the direct mask to the start of the range, the iterator would end up skipping iterating over the range not covered by the direct mask bit. For safety, make sure the __tdp_mmu_zap_root() operation iterates over the full GFN range supported by the underlying TDP format. Add a new iterator helper, for_each_tdp_pte_min_level_all(), that iterates the entire TDP GFN range, regardless of root. Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com> Co-developed-by: Yan Zhao <yan.y.zhao@intel.com> Signed-off-by: Yan Zhao <yan.y.zhao@intel.com> Co-developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Message-ID: <20240718211230.1492011-9-rick.p.edgecombe@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-23KVM: x86/tdp_mmu: Take struct kvm in iter loopsIsaku Yamahata
Add a struct kvm argument to the TDP MMU iterators. Future changes will want to change how the iterator behaves based on a member of struct kvm. Change the signature and callers of the iterator loop helpers in a separate patch to make the future one easier to review. Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Message-ID: <20240718211230.1492011-8-rick.p.edgecombe@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-23KVM: x86/mmu: Make kvm_tdp_mmu_alloc_root() return voidRick Edgecombe
The kvm_tdp_mmu_alloc_root() function currently always returns 0. This allows for the caller, mmu_alloc_direct_roots(), to call kvm_tdp_mmu_alloc_root() and also return 0 in one line: return kvm_tdp_mmu_alloc_root(vcpu); So it is useful even though the return value of kvm_tdp_mmu_alloc_root() is always the same. However, in future changes, kvm_tdp_mmu_alloc_root() will be called twice in mmu_alloc_direct_roots(). This will force the first call to either awkwardly handle the return value that will always be zero or ignore it. So change kvm_tdp_mmu_alloc_root() to return void. Do it in a separate change so the future change will be cleaner. Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-ID: <20240718211230.1492011-7-rick.p.edgecombe@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-23KVM: x86/mmu: Add an is_mirror member for union kvm_mmu_page_roleIsaku Yamahata
Introduce a "is_mirror" member to the kvm_mmu_page_role union to identify SPTEs associated with the mirrored EPT. The TDX module maintains the private half of the EPT mapped in the TD in its protected memory. KVM keeps a copy of the private GPAs in a mirrored EPT tree within host memory. This "is_mirror" attribute enables vCPUs to find and get the root page of mirrored EPT from the MMU root list for a guest TD. This also allows KVM MMU code to detect changes in mirrored EPT according to the "is_mirror" mmu page role and propagate the changes to the private EPT managed by TDX module. Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Message-ID: <20240718211230.1492011-6-rick.p.edgecombe@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-23KVM: x86/mmu: Add an external pointer to struct kvm_mmu_pageIsaku Yamahata
Add an external pointer to struct kvm_mmu_page for TDX's private page table and add helper functions to allocate/initialize/free a private page table page. TDX will only be supported with the TDP MMU. Because KVM TDP MMU doesn't use unsync_children and write_flooding_count, pack them to have room for a pointer and use a union to avoid memory overhead. For private GPA, CPU refers to a private page table whose contents are encrypted. The dedicated APIs to operate on it (e.g. updating/reading its PTE entry) are used, and their cost is expensive. When KVM resolves the KVM page fault, it walks the page tables. To reuse the existing KVM MMU code and mitigate the heavy cost of directly walking the private page table allocate two sets of page tables for the private half of the GPA space. For the page tables that KVM will walk, allocate them like normal and refer to them as mirror page tables. Additionally allocate one more page for the page tables the CPU will walk, and call them external page tables. Resolve the KVM page fault with the existing code, and do additional operations necessary for modifying the external page table in future patches. The relationship of the types of page tables in this scheme is depicted below: KVM page fault | | | V | -------------+---------- | | | | V V | shared GPA private GPA | | | | V V | shared PT root mirror PT root | private PT root | | | | V V | V shared PT mirror PT --propagate--> external PT | | | | | \-----------------+------\ | | | | | V | V V shared guest page | private guest page | non-encrypted memory | encrypted memory | PT - Page table Shared PT - Visible to KVM, and the CPU uses it for shared mappings. External PT - The CPU uses it, but it is invisible to KVM. TDX module updates this table to map private guest pages. Mirror PT - It is visible to KVM, but the CPU doesn't use it. KVM uses it to propagate PT change to the actual private PT. Add a helper kvm_has_mirrored_tdp() to trigger this behavior and wire it to the TDX vm type. Co-developed-by: Yan Zhao <yan.y.zhao@intel.com> Signed-off-by: Yan Zhao <yan.y.zhao@intel.com> Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com> Message-ID: <20240718211230.1492011-5-rick.p.edgecombe@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-23KVM: x86: Add a VM type define for TDXRick Edgecombe
Add a VM type define for TDX. Future changes will need to lay the ground work for TDX support by making some behavior conditional on the VM being a TDX guest. Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Message-ID: <20240718211230.1492011-4-rick.p.edgecombe@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-23KVM: Add member to struct kvm_gfn_range to indicate private/sharedIsaku Yamahata
Add new members to strut kvm_gfn_range to indicate which mapping (private-vs-shared) to operate on: enum kvm_gfn_range_filter attr_filter. Update the core zapping operations to set them appropriately. TDX utilizes two GPA aliases for the same memslots, one for memory that is for private memory and one that is for shared. For private memory, KVM cannot always perform the same operations it does on memory for default VMs, such as zapping pages and having them be faulted back in, as this requires guest coordination. However, some operations such as guest driven conversion of memory between private and shared should zap private memory. Internally to the MMU, private and shared mappings are tracked on separate roots. Mapping and zapping operations will operate on the respective GFN alias for each root (private or shared). So zapping operations will by default zap both aliases. Add fields in struct kvm_gfn_range to allow callers to specify which aliases so they can only target the aliases appropriate for their specific operation. There was feedback that target aliases should be specified such that the default value (0) is to operate on both aliases. Several options were considered. Several variations of having separate bools defined such that the default behavior was to process both aliases. They either allowed nonsensical configurations, or were confusing for the caller. A simple enum was also explored and was close, but was hard to process in the caller. Instead, use an enum with the default value (0) reserved as a disallowed value. Catch ranges that didn't have the target aliases specified by looking for that specific value. Set target alias with enum appropriately for these MMU operations: - For KVM's mmu notifier callbacks, zap shared pages only because private pages won't have a userspace mapping - For setting memory attributes, kvm_arch_pre_set_memory_attributes() chooses the aliases based on the attribute. - For guest_memfd invalidations, zap private only. Link: https://lore.kernel.org/kvm/ZivIF9vjKcuGie3s@google.com/ Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com> Co-developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Message-ID: <20240718211230.1492011-3-rick.p.edgecombe@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-23KVM: x86/mmu: Zap invalid roots with mmu_lock holding for write at uninitRick Edgecombe
Prepare for a future TDX patch which asserts that atomic zapping (i.e. zapping with mmu_lock taken for read) don't operate on mirror roots. When tearing down a VM, all roots have to be zapped (including mirror roots once they're in place) so do that with the mmu_lock taken for write. kvm_mmu_uninit_tdp_mmu() is invoked either before or after executing any atomic operations on SPTEs by vCPU threads. Therefore, it will not impact vCPU threads performance if kvm_tdp_mmu_zap_invalidated_roots() acquires mmu_lock for write to zap invalid roots. Co-developed-by: Yan Zhao <yan.y.zhao@intel.com> Signed-off-by: Yan Zhao <yan.y.zhao@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Message-ID: <20240718211230.1492011-2-rick.p.edgecombe@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-23KVM: guest_memfd: Remove RCU-protected attribute from slot->gmem.fileYan Zhao
Remove the RCU-protected attribute from slot->gmem.file. No need to use RCU primitives rcu_assign_pointer()/synchronize_rcu() to update this pointer. - slot->gmem.file is updated in 3 places: kvm_gmem_bind(), kvm_gmem_unbind(), kvm_gmem_release(). All of them are protected by kvm->slots_lock. - slot->gmem.file is read in 2 paths: (1) kvm_gmem_populate kvm_gmem_get_file __kvm_gmem_get_pfn (2) kvm_gmem_get_pfn kvm_gmem_get_file __kvm_gmem_get_pfn Path (1) kvm_gmem_populate() requires holding kvm->slots_lock, so slot->gmem.file is protected by the kvm->slots_lock in this path. Path (2) kvm_gmem_get_pfn() does not require holding kvm->slots_lock. However, it's also not guarded by rcu_read_lock() and rcu_read_unlock(). So synchronize_rcu() in kvm_gmem_unbind()/kvm_gmem_release() actually will not wait for the readers in kvm_gmem_get_pfn() due to lack of RCU read-side critical section. The path (2) kvm_gmem_get_pfn() is safe without RCU protection because: a) kvm_gmem_bind() is called on a new memslot, before the memslot is visible to kvm_gmem_get_pfn(). b) kvm->srcu ensures that kvm_gmem_unbind() and freeing of a memslot occur after the memslot is no longer visible to kvm_gmem_get_pfn(). c) get_file_active() ensures that kvm_gmem_get_pfn() will not access the stale file if kvm_gmem_release() sets it to NULL. This is because if kvm_gmem_release() occurs before kvm_gmem_get_pfn(), get_file_active() will return NULL; if get_file_active() does not return NULL, kvm_gmem_release() should not occur until after kvm_gmem_get_pfn() releases the file reference. Signed-off-by: Yan Zhao <yan.y.zhao@intel.com> Message-ID: <20241104084303.29909-1-yan.y.zhao@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-23preempt: Move PREEMPT_RT before PREEMPT in vermagic.Sebastian Andrzej Siewior
Since the dynamic preemption has been enabled for PREEMPT_RT we have now CONFIG_PREEMPT and CONFIG_PREEMPT_RT set simultaneously. This affects the vermagic strings which comes now PREEMPT with PREEMPT_RT enabled. The PREEMPT_RT module usually can not be loaded on a PREEMPT kernel because some symbols are missing. However if the symbols are fine then it continues and it crashes later. The problem is that the struct module has a different layout and the num_exentries or init members are at a different position leading to a crash later on. This is not necessary caught by the size check in elf_validity_cache_index_mod() because the mem member has an alignment requirement of __module_memory_align which is big enough keep the total size unchanged. Therefore we should keep the string accurate instead of removing it. Move the PREEMPT_RT check before the PREEMPT so that it takes precedence if both symbols are enabled. Fixes: 35772d627b55c ("sched: Enable PREEMPT_DYNAMIC for PREEMPT_RT") Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Petr Pavlu <petr.pavlu@suse.com> Link: https://lore.kernel.org/r/20241205160602.3lIAsJRT@linutronix.de Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
2024-12-22Linux 6.13-rc4v6.13-rc4Linus Torvalds
2024-12-22Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds
Pull KVM x86 fixes from Paolo Bonzini: - Disable AVIC on SNP-enabled systems that don't allow writes to the virtual APIC page, as such hosts will hit unexpected RMP #PFs in the host when running VMs of any flavor. - Fix a WARN in the hypercall completion path due to KVM trying to determine if a guest with protected register state is in 64-bit mode (KVM's ABI is to assume such guests only make hypercalls in 64-bit mode). - Allow the guest to write to supported bits in MSR_AMD64_DE_CFG to fix a regression with Windows guests, and because KVM's read-only behavior appears to be entirely made up. - Treat TDP MMU faults as spurious if the faulting access is allowed given the existing SPTE. This fixes a benign WARN (other than the WARN itself) due to unexpectedly replacing a writable SPTE with a read-only SPTE. - Emit a warning when KVM is configured with ignore_msrs=1 and also to hide the MSRs that the guest is looking for from the kernel logs. ignore_msrs can trick guests into assuming that certain processor features are present, and this in turn leads to bogus bug reports. * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: KVM: x86: let it be known that ignore_msrs is a bad idea KVM: VMX: don't include '<linux/find.h>' directly KVM: x86/mmu: Treat TDP MMU faults as spurious if access is already allowed KVM: SVM: Allow guest writes to set MSR_AMD64_DE_CFG bits KVM: x86: Play nice with protected guests in complete_hypercall_exit() KVM: SVM: Disable AVIC on SNP-enabled system without HvInUseWrAllowed feature
2024-12-22KVM: x86: Refactor __kvm_emulate_hypercall() into a macroPaolo Bonzini
Rework __kvm_emulate_hypercall() into a macro so that completion of hypercalls that don't exit to userspace use direct function calls to the completion helper, i.e. don't trigger a retpoline when RETPOLINE=y. Opportunistically take the names of the input registers, as opposed to taking the input values, to preemptively dedup more of the calling code (TDX needs to use different registers). Use the direct GPR accessors to read values to avoid the pointless marking of the registers as available (KVM requires GPRs to always be available). Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Message-ID: <20241128004344.4072099-7-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-22KVM: x86: Always complete hypercall via function callbackSean Christopherson
Finish "emulation" of KVM hypercalls by function callback, even when the hypercall is handled entirely within KVM, i.e. doesn't require an exit to userspace, and refactor __kvm_emulate_hypercall()'s return value to *only* communicate whether or not KVM should exit to userspace or resume the guest. (Ab)Use vcpu->run->hypercall.ret to propagate the return value to the callback, purely to avoid having to add a trampoline for every completion callback. Using the function return value for KVM's control flow eliminates the multiplexed return value, where '0' for KVM_HC_MAP_GPA_RANGE (and only that hypercall) means "exit to userspace". Note, the unnecessary extra indirect call and thus potential retpoline will be eliminated in the near future by converting the intermediate layer to a macro. Suggested-by: Binbin Wu <binbin.wu@linux.intel.com> Suggested-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Message-ID: <20241128004344.4072099-6-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-22KVM: x86: Bump hypercall stat prior to fully completing hypercallSean Christopherson
Increment the "hypercalls" stat for KVM hypercalls as soon as KVM knows it will skip the guest instruction, i.e. once KVM is committed to emulating the hypercall. Waiting until completion adds no known value, and creates a discrepancy where the stat will be bumped if KVM exits to userspace as a result of trying to skip the instruction, but not if the hypercall itself exits. Handling the stat in common code will also avoid the need for another helper to dedup code when TDX comes along (TDX needs a separate completion path due to GPR usage differences). Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com> Message-ID: <20241128004344.4072099-5-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-22KVM: x86: Move "emulate hypercall" function declarations to x86.hSean Christopherson
Move the declarations for the hypercall emulation APIs to x86.h. While the helpers are exported, they are intended to be consumed only by KVM vendor modules, i.e. don't need to be exposed to the kernel at-large. No functional change intended. Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com> Message-ID: <20241128004344.4072099-4-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-22KVM: x86: Add a helper to check for user interception of KVM hypercallsBinbin Wu
Add and use user_exit_on_hypercall() to check if userspace wants to handle a KVM hypercall instead of open-coding the logic everywhere. No functional change intended. Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com> Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com> [sean: squash into one patch, keep explicit KVM_HC_MAP_GPA_RANGE check] Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Message-ID: <20241128004344.4072099-3-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-22KVM: x86: clear vcpu->run->hypercall.ret before exiting for KVM_EXIT_HYPERCALLPaolo Bonzini
QEMU up to 9.2.0 is assuming that vcpu->run->hypercall.ret is 0 on exit and it never modifies it when processing KVM_EXIT_HYPERCALL. Make this explicit in the code, to avoid breakage when KVM starts modifying that field. This in principle is not a good idea... It would have been much better if KVM had set the field to -KVM_ENOSYS from the beginning, so that a dumb userspace that does nothing on KVM_EXIT_HYPERCALL would tell the guest it does not support KVM_HC_MAP_GPA_RANGE. However, breaking userspace is a Very Bad Thing, as everybody should know. Reported-by: Binbin Wu <binbin.wu@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-22Merge tag 'kvm-x86-fixes-6.13-rcN' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini
KVM x86 fixes for 6.13: - Disable AVIC on SNP-enabled systems that don't allow writes to the virtual APIC page, as such hosts will hit unexpected RMP #PFs in the host when running VMs of any flavor. - Fix a WARN in the hypercall completion path due to KVM trying to determine if a guest with protected register state is in 64-bit mode (KVM's ABI is to assume such guests only make hypercalls in 64-bit mode). - Allow the guest to write to supported bits in MSR_AMD64_DE_CFG to fix a regression with Windows guests, and because KVM's read-only behavior appears to be entirely made up. - Treat TDP MMU faults as spurious if the faulting access is allowed given the existing SPTE. This fixes a benign WARN (other than the WARN itself) due to unexpectedly replacing a writable SPTE with a read-only SPTE.
2024-12-22Merge tag 'kvm-x86-fixes-6.13-rcN' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini
KVM x86 fixes for 6.13: - Disable AVIC on SNP-enabled systems that don't allow writes to the virtual APIC page, as such hosts will hit unexpected RMP #PFs in the host when running VMs of any flavor. - Fix a WARN in the hypercall completion path due to KVM trying to determine if a guest with protected register state is in 64-bit mode (KVM's ABI is to assume such guests only make hypercalls in 64-bit mode). - Allow the guest to write to supported bits in MSR_AMD64_DE_CFG to fix a regression with Windows guests, and because KVM's read-only behavior appears to be entirely made up. - Treat TDP MMU faults as spurious if the faulting access is allowed given the existing SPTE. This fixes a benign WARN (other than the WARN itself) due to unexpectedly replacing a writable SPTE with a read-only SPTE.
2024-12-22KVM: x86: let it be known that ignore_msrs is a bad ideaPaolo Bonzini
When running KVM with ignore_msrs=1 and report_ignored_msrs=0, the user has no clue that that the guest is being lied to. This may cause bug reports such as https://gitlab.com/qemu-project/qemu/-/issues/2571, where enabling a CPUID bit in QEMU caused Linux guests to try reading MSR_CU_DEF_ERR; and being lied about the existence of MSR_CU_DEF_ERR caused the guest to assume other things about the local APIC which were not true: Sep 14 12:02:53 kernel: mce: [Firmware Bug]: Your BIOS is not setting up LVT offset 0x2 for deferred error IRQs correctly. Sep 14 12:02:53 kernel: unchecked MSR access error: RDMSR from 0x852 at rIP: 0xffffffffb548ffa7 (native_read_msr+0x7/0x40) Sep 14 12:02:53 kernel: Call Trace: ... Sep 14 12:02:53 kernel: native_apic_msr_read+0x20/0x30 Sep 14 12:02:53 kernel: setup_APIC_eilvt+0x47/0x110 Sep 14 12:02:53 kernel: mce_amd_feature_init+0x485/0x4e0 ... Sep 14 12:02:53 kernel: [Firmware Bug]: cpu 0, try to use APIC520 (LVT offset 2) for vector 0xf4, but the register is already in use for vector 0x0 on this cpu Without reported_ignored_msrs=0 at least the host kernel log will contain enough information to avoid going on a wild goose chase. But if reports about individual MSR accesses are being silenced too, at least complain loudly the first time a VM is started. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-22KVM: VMX: don't include '<linux/find.h>' directlyWolfram Sang
The header clearly states that it does not want to be included directly, only via '<linux/bitmap.h>'. Replace the include accordingly. Signed-off-by: Wolfram Sang <wsa+renesas@sang-engineering.com> Message-ID: <20241217070539.2433-2-wsa+renesas@sang-engineering.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-22Merge tag 'devicetree-fixes-for-6.13-1' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/robh/linux Pull devicetree fixes from Rob Herring: - Disable #address-cells/#size-cells warning on coreboot (Chromebooks) platforms - Add missing root #address-cells/#size-cells in default empty DT - Fix uninitialized variable in of_irq_parse_one() - Fix interrupt-map cell length check in of_irq_parse_imap_parent() - Fix refcount handling in __of_get_dma_parent() - Fix error path in of_parse_phandle_with_args_map() - Fix dma-ranges handling with flags cells - Drop explicit fw_devlink handling of 'interrupt-parent' - Fix "compression" typo in fixed-partitions binding - Unify "fsl,liodn" property type definitions * tag 'devicetree-fixes-for-6.13-1' of git://git.kernel.org/pub/scm/linux/kernel/git/robh/linux: of: Add coreboot firmware to excluded default cells list of/irq: Fix using uninitialized variable @addr_len in API of_irq_parse_one() of/irq: Fix interrupt-map cell length check in of_irq_parse_imap_parent() of: Fix refcount leakage for OF node returned by __of_get_dma_parent() of: Fix error path in of_parse_phandle_with_args_map() dt-bindings: mtd: fixed-partitions: Fix "compression" typo of: Add #address-cells/#size-cells in the device-tree root empty node dt-bindings: Unify "fsl,liodn" type definitions of: address: Preserve the flags portion on 1:1 dma-ranges mapping of/unittest: Add empty dma-ranges address translation tests of: property: fw_devlink: Do not use interrupt-parent directly
2024-12-21Merge tag 'soc-fixes-6.13-2' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc Pull SoC fixes from Arnd Bergmann: "Two more small fixes, correcting the cacheline size on Raspberry Pi 5 and fixing a logic mistake in the microchip mpfs firmware driver" * tag 'soc-fixes-6.13-2' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc: arm64: dts: broadcom: Fix L2 linesize for Raspberry Pi 5 firmware: microchip: fix UL_IAP lock check in mpfs_auto_update_state()
2024-12-21Merge tag 'mm-hotfixes-stable-2024-12-21-12-09' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull misc fixes from Andrew Morton: "25 hotfixes. 16 are cc:stable. 19 are MM and 6 are non-MM. The usual bunch of singletons and doubletons - please see the relevant changelogs for details" * tag 'mm-hotfixes-stable-2024-12-21-12-09' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (25 commits) mm: huge_memory: handle strsep not finding delimiter alloc_tag: fix set_codetag_empty() when !CONFIG_MEM_ALLOC_PROFILING_DEBUG alloc_tag: fix module allocation tags populated area calculation mm/codetag: clear tags before swap mm/vmstat: fix a W=1 clang compiler warning mm: convert partially_mapped set/clear operations to be atomic nilfs2: fix buffer head leaks in calls to truncate_inode_pages() vmalloc: fix accounting with i915 mm/page_alloc: don't call pfn_to_page() on possibly non-existent PFN in split_large_buddy() fork: avoid inappropriate uprobe access to invalid mm nilfs2: prevent use of deleted inode zram: fix uninitialized ZRAM not releasing backing device zram: refuse to use zero sized block device as backing device mm: use clear_user_(high)page() for arch with special user folio handling mm: introduce cpu_icache_is_aliasing() across all architectures mm: add RCU annotation to pte_offset_map(_lock) mm: correctly reference merged VMA mm: use aligned address in copy_user_gigantic_page() mm: use aligned address in clear_gigantic_page() mm: shmem: fix ShmemHugePages at swapout ...