Age | Commit message (Collapse) | Author |
|
On PowerPC, the memory reserved for the crashkernel can contain components
like RTAS, TCE, OPAL, etc., which should be avoided when loading kexec
segments into crashkernel memory. Due to these special components,
PowerPC has its own set of APIs to locate holes in the crashkernel memory
for loading kexec segments for kdump. However, for loading kexec segments
in the kexec case, PowerPC already uses generic APIs to locate holes.
The previous patch in this series, titled "crash: Let arch decide usable
memory range in reserved area," introduced arch-specific hook to handle
such special regions in the crashkernel area. So, switch PowerPC to use
the generic APIs to locate memory holes for kdump and remove the redundant
PowerPC-specific APIs.
Link: https://lkml.kernel.org/r/20250131113830.925179-5-sourabhjain@linux.ibm.com
Signed-off-by: Sourabh Jain <sourabhjain@linux.ibm.com>
Cc: Baoquan he <bhe@redhat.com>
Cc: Hari Bathini <hbathini@linux.ibm.com>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Mahesh Salgaonkar <mahesh@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Although the crashkernel area is reserved, on architectures like PowerPC,
it is possible for the crashkernel reserved area to contain components
like RTAS, TCE, OPAL, etc. To avoid placing kexec segments over these
components, PowerPC has its own set of APIs to locate holes in the
crashkernel reserved area.
Add an arch hook in the generic locate mem hole APIs so that architectures
can handle such special regions in the crashkernel area while locating
memory holes for kexec segments using generic APIs. With this, a lot of
redundant arch-specific code can be removed, as it performs the exact same
job as the generic APIs.
To keep the generic and arch-specific changes separate, the changes
related to moving PowerPC to use the generic APIs and the removal of
PowerPC-specific APIs for memory hole allocation are done in a subsequent
patch titled "powerpc/crash: Use generic APIs to locate memory hole for
kdump.
Link: https://lkml.kernel.org/r/20250131113830.925179-4-sourabhjain@linux.ibm.com
Signed-off-by: Sourabh Jain <sourabhjain@linux.ibm.com>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Hari Bathini <hbathini@linux.ibm.com>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Mahesh Salgaonkar <mahesh@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
cmdline argument is not used in reserve_crashkernel_generic() so remove
it. Correspondingly, all the callers have been updated as well.
No functional change intended.
Link: https://lkml.kernel.org/r/20250131113830.925179-3-sourabhjain@linux.ibm.com
Signed-off-by: Sourabh Jain <sourabhjain@linux.ibm.com>
Acked-by: Hari Bathini <hbathini@linux.ibm.com>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Mahesh Salgaonkar <mahesh@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "powerpc/crash: use generic crashkernel reservation", v3.
Commit 0ab97169aa05 ("crash_core: add generic function to do reservation")
added a generic function to reserve crashkernel memory. So let's use the
same function on powerpc and remove the architecture-specific code that
essentially does the same thing.
The generic crashkernel reservation also provides a way to split the
crashkernel reservation into high and low memory reservations, which can
be enabled for powerpc in the future.
Additionally move powerpc to use generic APIs to locate memory hole for
kexec segments while loading kdump kernel.
This patch (of 7):
kexec_elf_load() loads an ELF executable and sets the address of the
lowest PT_LOAD section to the address held by the lowest_load_addr
function argument.
To determine the lowest PT_LOAD address, a local variable lowest_addr
(type unsigned long) is initialized to UINT_MAX. After loading each
PT_LOAD, its address is compared to lowest_addr. If a loaded PT_LOAD
address is lower, lowest_addr is updated. However, setting lowest_addr to
UINT_MAX won't work when the kernel image is loaded above 4G, as the
returned lowest PT_LOAD address would be invalid. This is resolved by
initializing lowest_addr to ULONG_MAX instead.
This issue was discovered while implementing crashkernel high/low
reservation on the PowerPC architecture.
Link: https://lkml.kernel.org/r/20250131113830.925179-1-sourabhjain@linux.ibm.com
Link: https://lkml.kernel.org/r/20250131113830.925179-2-sourabhjain@linux.ibm.com
Fixes: a0458284f062 ("powerpc: Add support code for kexec_file_load()")
Signed-off-by: Sourabh Jain <sourabhjain@linux.ibm.com>
Acked-by: Hari Bathini <hbathini@linux.ibm.com>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Mahesh Salgaonkar <mahesh@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
In the operation of plist_requeue(), "node" is deleted from the list
before queueing it back to the list again, which involves looping to find
the tail of same-prio entries.
If "node" is the head of same-prio entries which means its prio_list is on
the priority list, then "node_next" can be retrieve immediately by the
next entry of prio_list, instead of looping nodes on node_list.
The shortcut implementation can benefit plist_requeue() running the below
test, and the test result is shown in the following table.
One can observe from the test result that when the number of nodes of
same-prio entries is smaller, then the probability of hitting the shortcut
can be bigger, thus the benefit can be more significant.
While it tends to behave almost the same for long same-prio entries, since
the probability of taking the shortcut is much smaller.
-----------------------------------------------------------------------
| Test size | 200 | 400 | 600 | 800 | 1000 |
-----------------------------------------------------------------------
| new_plist_requeue | 271521| 1007913| 2148033| 4346792| 12200940|
-----------------------------------------------------------------------
| old_plist_requeue | 301395| 1105544| 2488301| 4632980| 12217275|
-----------------------------------------------------------------------
The test is done on x86_64 architecture with v6.9 kernel and
Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz.
Test script( executed in kernel module mode ):
int init_module(void)
{
unsigned int test_data[test_size];
/* Split the list into 10 different priority
* , when test_size is larger, the number of
* nodes within each priority is larger.
*/
for (i = 0; i < ARRAY_SIZE(test_data); i++) {
test_data[i] = i % 10;
}
ktime_t start, end, time_elapsed = 0;
plist_head_init(&test_head_local);
for (i = 0; i < ARRAY_SIZE(test_node_local); i++) {
plist_node_init(test_node_local + i, 0);
test_node_local[i].prio = test_data[i];
}
for (i = 0; i < ARRAY_SIZE(test_node_local); i++) {
if (plist_node_empty(test_node_local + i)) {
plist_add(test_node_local + i, &test_head_local);
}
}
for (i = 0; i < ARRAY_SIZE(test_node_local); i += 1) {
start = ktime_get();
plist_requeue(test_node_local + i, &test_head_local);
end = ktime_get();
time_elapsed += (end - start);
}
pr_info("plist_requeue() elapsed time : %lld, size %d\n", time_elapsed, test_size);
return 0;
}
[akpm@linux-foundation.org: tweak comment and code layout]
Link: https://lkml.kernel.org/r/20250119062408.77638-1-richard120310@gmail.com
Signed-off-by: I Hsin Cheng <richard120310@gmail.com>
Cc: Ching-Chun (Jim) Huang <jserv@ccns.ncku.edu.tw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Add a paragraph explaining what sort of capabilities a process would need
to read procfs data for some other process. Also mention that reading
data for its own process doesn't require any extra permissions.
Link: https://lkml.kernel.org/r/20250129001747.759990-1-andrii@kernel.org
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jann Horn <jannh@google.com>
Cc: Kees Cook <kees@kernel.org>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: "Mike Rapoport (IBM)" <rppt@kernel.org>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Remove two redundant mappings:
changbin.du@intel.com -> changbin.du@intel.com
viresh.kumar@linaro.org -> viresh.kumar@linaro.org
Link: https://lkml.kernel.org/r/20250129013430.1117720-1-carlos.bilbao@kernel.org
Signed-off-by: Carlos Bilbao <carlos.bilbao@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
There is currently no tool to extract a firmware blob that is built-in
on vmlinux to the best of my knowledge. So if we have a kernel image
containing the blobs, and we want to rebuild the kernel with some debug
patches for example (and given that the image also has IKCONFIG=y), we
currently can't do that for the same versions for all the firmware
blobs, _unless_ we have exact commits of linux-firmware for the
specific versions for each firmware included.
Through the options CONFIG_EXTRA_FIRMWARE{_DIR} one is able to build a
kernel including firmware blobs in a built-in fashion. This is usually
the case of built-in drivers that require some blobs in order to work
properly, for example, like in non-initrd based systems.
Add hereby a script to extract these blobs from a non-stripped vmlinux,
similar to the idea of "extract-ikconfig". The firmware loader interface
saves such built-in blobs as rodata entries, having a field for the FW
name as "_fw_<module_name>_<firmware_name>_bin"; the tool extracts files
named "<module_name>_<firmware_name>" for each rodata firmware entry
detected. It makes use of awk, bash, dd and readelf, pretty standard
tooling for Linux development.
With this tool, we can blindly extract the FWs and easily re-add them
in the new debug kernel build, allowing a more deterministic testing
without the burden of "hunting down" the proper version of each
firmware binary.
Link: https://lkml.kernel.org/r/20250120190436.127578-1-gpiccoli@igalia.com
Signed-off-by: Guilherme G. Piccoli <gpiccoli@igalia.com>
Suggested-by: Thadeu Lima de Souza Cascardo <cascardo@igalia.com>
Reviewed-by: Thadeu Lima de Souza Cascardo <cascardo@igalia.com>
Cc: Danilo Krummrich <dakr@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Luis Chamberalin <mcgrof@kernel.org>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Nicolas Schier <nicolas@fjasle.eu>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Russ Weight <russ.weight@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Balbir Singh is the unique maintainer of PER-TASK DELAY ACCOUNTING, and he
had started work on cgroupstats a long time back, this subsystem then is
not growing at a very rapid pace. With their excellent work delay
accounting is still very useful for observing and optimizing system delay,
but still needs continuous improvement. Yang Yang with his team had
worked for most of the recent patches of the subsystem, and he has a
strong willing to help, Balbir Singh is glad to see that, so add him as a
co-maintainer.
Link: https://lkml.kernel.org/r/20250117222013817zWHgBaSigRI_eRJt1hqnu@zte.com.cn
Signed-off-by: Yang Yang <yang.yang29@zte.com.cn>
Cc: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
It's very common for various tracing and profiling toolis to need to
access /proc/PID/maps contents for stack symbolization needs to learn
which shared libraries are mapped in memory, at which file offset, etc.
Currently, access to /proc/PID/maps requires CAP_SYS_PTRACE (unless we are
looking at data for our own process, which is a trivial case not too
relevant for profilers use cases).
Unfortunately, CAP_SYS_PTRACE implies way more than just ability to
discover memory layout of another process: it allows to fully control
arbitrary other processes. This is problematic from security POV for
applications that only need read-only /proc/PID/maps (and other similar
read-only data) access, and in large production settings CAP_SYS_PTRACE is
frowned upon even for the system-wide profilers.
On the other hand, it's already possible to access similar kind of
information (and more) with just CAP_PERFMON capability. E.g., setting up
PERF_RECORD_MMAP collection through perf_event_open() would give one
similar information to what /proc/PID/maps provides.
CAP_PERFMON, together with CAP_BPF, is already a very common combination
for system-wide profiling and observability application. As such, it's
reasonable and convenient to be able to access /proc/PID/maps with
CAP_PERFMON capabilities instead of CAP_SYS_PTRACE.
For procfs, these permissions are checked through common mm_access()
helper, and so we augment that with cap_perfmon() check *only* if
requested mode is PTRACE_MODE_READ. I.e., PTRACE_MODE_ATTACH wouldn't be
permitted by CAP_PERFMON. So /proc/PID/mem, which uses
PTRACE_MODE_ATTACH, won't be permitted by CAP_PERFMON, but /proc/PID/maps,
/proc/PID/environ, and a bunch of other read-only contents will be
allowable under CAP_PERFMON.
Besides procfs itself, mm_access() is used by process_madvise() and
process_vm_{readv,writev}() syscalls. The former one uses
PTRACE_MODE_READ to avoid leaking ASLR metadata, and as such CAP_PERFMON
seems like a meaningful allowable capability as well.
process_vm_{readv,writev} currently assume PTRACE_MODE_ATTACH level of
permissions (though for readv PTRACE_MODE_READ seems more reasonable, but
that's outside the scope of this change), and as such won't be affected by
this patch.
Link: https://lkml.kernel.org/r/20250127222114.1132392-1-andrii@kernel.org
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Jann Horn <jannh@google.com>
Cc: Kees Cook <kees@kernel.org>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: "Mike Rapoport (IBM)" <rppt@kernel.org>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
As documented in the comment this underflow should not happen. The
locking has indeed changed here since the comment was written, see the
migratetype hygiene patches[0]. However, those changes made the locking
_safer_, so the underflow _really_ shouldn't happen now. So upgrade the
comment to a warning.
[0] https://lore.kernel.org/all/20240320180429.678181-7-hannes@cmpxchg.org/T/#m3da87e6cc3348a4640aa298137bc9f8f61b76c84
Link: https://lkml.kernel.org/r/20250225-warn-underflow-v1-1-3dc542941d3a@google.com
Signed-off-by: Brendan Jackman <jackmanb@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
I haven't been doing as much review as I should. As part of reducing my
inbox flow drop me from the official Reviewers. I might still chime in on
patches occasionally.
Link: https://lkml.kernel.org/r/20250224163033.350072-1-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
With slot cache gone, clean up the allocation helpers even more.
folio_alloc_swap will be the only entry for allocation and adding the
folio to swap cache (except suspend), making it opposite of
folio_free_swap.
Link: https://lkml.kernel.org/r/20250313165935.63303-8-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Slot cache is no longer needed now, removing it and all related code.
- vm-scalability with: `usemem --init-time -O -y -x -R -31 1G`,
12G memory cgroup using simulated pmem as SWAP (32G pmem, 32 CPUs),
16 test runs for each case, measuring the total throughput:
Before (KB/s) (stdev) After (KB/s) (stdev)
Random (4K): 424907.60 (24410.78) 414745.92 (34554.78)
Random (64K): 163308.82 (11635.72) 167314.50 (18434.99)
Sequential (4K, !-R): 6150056.79 (103205.90) 6321469.06 (115878.16)
The performance changes are below noise level.
- Build linux kernel with make -j96, using 4K folio with 1.5G memory
cgroup limit and 64K folio with 2G memory cgroup limit, on top of tmpfs,
12 test runs, measuring the system time:
Before (s) (stdev) After (s) (stdev)
make -j96 (4K): 6445.69 (61.95) 6408.80 (69.46)
make -j96 (64K): 6841.71 (409.04) 6437.99 (435.55)
Similar to above, 64k mTHP case showed a slight improvement.
Link: https://lkml.kernel.org/r/20250313165935.63303-7-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Current allocation workflow first traverses the plist with a global lock
held, after choosing a device, it uses the percpu cluster on that swap
device. This commit moves the percpu cluster variable out of being tied
to individual swap devices, making it a global percpu variable, and will
be used directly for allocation as a fast path.
The global percpu cluster variable will never point to a HDD device, and
allocations on a HDD device are still globally serialized.
This improves the allocator performance and prepares for removal of the
slot cache in later commits. There shouldn't be much observable behavior
change, except one thing: this changes how swap device allocation rotation
works.
Currently, each allocation will rotate the plist, and because of the
existence of slot cache (one order 0 allocation usually returns 64
entries), swap devices of the same priority are rotated for every 64 order
0 entries consumed. High order allocations are different, they will
bypass the slot cache, and so swap device is rotated for every 16K, 32K,
or up to 2M allocation.
The rotation rule was never clearly defined or documented, it was changed
several times without mentioning.
After this commit, and once slot cache is gone in later commits, swap
device rotation will happen for every consumed cluster. Ideally non-HDD
devices will be rotated if 2M space has been consumed for each order.
Fragmented clusters will rotate the device faster, which seems OK. HDD
devices is rotated for every allocation regardless of the allocation
order, which should be OK too and trivial.
This commit also slightly changes allocation behaviour for slot cache.
The new added cluster allocation fast path may allocate entries from
different device to the slot cache, this is not observable from user
space, only impact performance very slightly, and slot cache will be just
gone in next commit, so this can be ignored.
Link: https://lkml.kernel.org/r/20250313165935.63303-6-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The counter update before allocation design was useful to avoid
unnecessary scan when device is full, so it will abort early if the
counter indicates the device is full. But that is an uncommon case, and
now scanning of a full device is very fast, so the up-front update is not
helpful any more.
Remove it and simplify the slot allocation logic.
Link: https://lkml.kernel.org/r/20250313165935.63303-5-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Currently __read_swap_cache_async() has get/put_swap_device() calls to
increase/decrease a swap device reference to prevent swapoff. While some
of its callers have already held the swap device reference, e.g in
do_swap_page() and shmem_swapin_folio() where __read_swap_cache_async()
will finally called. Now there are only two callers not holding a swap
device reference, so make them hold a reference instead. And drop the
get/put_swap_device calls in __read_swap_cache_async. This should reduce
the overhead for swap in during page fault slightly.
Link: https://lkml.kernel.org/r/20250313165935.63303-4-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This flag exists temporarily to allow the allocator to bypass the slot
cache during freeing, so reclaiming one slot will free the slot
immediately.
But now we have already removed slot cache usage on freeing, so this flag
has no effect now.
Link: https://lkml.kernel.org/r/20250313165935.63303-3-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm, swap: remove swap slot cache", v3.
Slot cache was initially introduced by commit 67afa38e012e ("mm/swap: add
cache for swap slots allocation") to reduce the lock contention of
si->lock.
Previous series "mm, swap: rework of swap allocator locks" [1] removed
swap slot cache for freeing path as freeing path no longer touches
si->lock in most cased. Allocation path also have slight to none
contention on si->lock since that series, but slot cache still helps to
reduce other overheads, like counters and the plist.
This series removes the slot cache from allocation path too, by using the
cluster as allocation fast path and also reduce other overheads.
Now slot cache is completely gone, the code is much simplified without
obvious feature or performance change, also clean up related workaround.
Also this should avoid other potential issues, e.g. the long pinning of
swap slots: swap slot cache pins swap slots with HAS_CACHE, causing
reclaim or allocation fail to use these slots on scanning.
The only behavior change is the swap device allocation rotation mechanism,
as explained in the patch "mm, swap: use percpu cluster as allocation fast
path".
Test results are looking good after deleting the swap slot cache:
- vm-scalability with: `usemem --init-time -O -y -x -R -31 1G`,
12G memory cgroup using simulated pmem as SWAP (32G pmem, 32 CPUs),
16 test runs for each case, measuring the total throughput:
Before (KB/s) (stdev) After (KB/s) (stdev)
Random (4K): 424907.60 (24410.78) 414745.92 (34554.78)
Random (64K): 163308.82 (11635.72) 167314.50 (18434.99)
Sequential (4K, !-R): 6150056.79 (103205.90) 6321469.06 (115878.16)
- Build linux kernel with make -j96, using 4K folio with 1.5G memory
cgroup limit and 64K folio with 2G memory cgroup limit, on top of tmpfs,
12 test runs, measuring the system time:
Before (s) (stdev) After (s) (stdev)
make -j96 (4K): 6445.69 (61.95) 6408.80 (69.46)
make -j96 (64K): 6841.71 (409.04) 6437.99 (435.55)
The performance is unchanged, slightly better in some cases.
[1] https://lore.kernel.org/linux-mm/20250113175732.48099-1-ryncsn@gmail.com/
This patch (of 7):
Swap allocator will do swap cache reclaim to recycle HAS_CACHE slots for
allocation. It initiates the reclaim from the offset to be reclaimed and
looks up the corresponding folio. The lookup process is lockless, so it's
possible the folio will be removed from the swap cache and given a
different swap entry before the reclaim locks the folio. If it happens,
the reclaim will end up reclaiming an irrelevant folio, and return wrong
return value.
This shouldn't cause any problem with correctness or stability, but it is
indeed confusing and unexpected, and will increase fragmentation, decrease
performance.
Fix this by checking whether the folio is still pointing to the offset the
allocator want to reclaim before reclaiming it.
Link: https://lkml.kernel.org/r/20250313165935.63303-1-ryncsn@gmail.com
Link: https://lkml.kernel.org/r/20250313165935.63303-2-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kairui Song <kasong@tencent.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
When a process consumes a UE in a page, the memory failure handler
attempts to collect information for a potential SIGBUS. If the page is an
anonymous page, page_mapped_in_vma(page, vma) is invoked in order to
1. retrieve the vaddr from the process' address space,
2. verify that the vaddr is indeed mapped to the poisoned page,
where 'page' is the precise small page with UE.
It's been observed that when injecting poison to a non-head subpage of an
anonymous hugetlb page, no SIGBUS shows up, while injecting to the head
page produces a SIGBUS. The cause is that, though hugetlb_walk() returns
a valid pmd entry (on x86), but check_pte() detects mismatch between the
head page per the pmd and the input subpage. Thus the vaddr is considered
not mapped to the subpage and the process is not collected for SIGBUS
purpose. This is the calling stack:
collect_procs_anon
page_mapped_in_vma
page_vma_mapped_walk
hugetlb_walk
huge_pte_lock
check_pte
check_pte() header says that it
"check if [pvmw->pfn, @pvmw->pfn + @pvmw->nr_pages) is mapped at the @pvmw->pte"
but practically works only if pvmw->pfn is the head page pfn at pvmw->pte.
Hindsight acknowledging that some pvmw->pte could point to a hugepage of
some sort such that it makes sense to make check_pte() work for hugepage.
Link: https://lkml.kernel.org/r/20250224211445.2663312-1-jane.chu@oracle.com
Signed-off-by: Jane Chu <jane.chu@oracle.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shuemov <kirill.shutemov@linux.intel.com>
Cc: linmiaohe <linmiaohe@huawei.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The way the fallback rules are spread out makes them hard to follow. Move
the functions next to each other at least.
Link: https://lkml.kernel.org/r/20250225001023.1494422-4-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Brendan Jackman <jackmanb@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The freelist hygiene patches made migratetype accesses fully protected
under the zone->lock. Remove remnants of handling the race conditions
that existed before from the MIGRATE_HIGHATOMIC code.
Link: https://lkml.kernel.org/r/20250225001023.1494422-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Brendan Jackman <jackmanb@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The fallback code searches for the biggest buddy first in an attempt to
steal the whole block and encourage type grouping down the line.
The approach used to be this:
- Non-movable requests will split the largest buddy and steal the
remainder. This splits up contiguity, but it allows subsequent
requests of this type to fall back into adjacent space.
- Movable requests go and look for the smallest buddy instead. The
thinking is that movable requests can be compacted, so grouping is
less important than retaining contiguity.
c0cd6f557b90 ("mm: page_alloc: fix freelist movement during block
conversion") enforces freelist type hygiene, which restricts stealing to
either claiming the whole block or just taking the requested chunk; no
additional pages or buddy remainders can be stolen any more.
The patch mishandled when to switch to finding the smallest buddy in that
new reality. As a result, it may steal the exact request size, but from
the biggest buddy. This causes fracturing for no good reason.
Fix this by committing to the new behavior: either steal the whole block,
or fall back to the smallest buddy.
Remove single-page stealing from steal_suitable_fallback(). Rename it to
try_to_steal_block() to make the intentions clear. If this fails, always
fall back to the smallest buddy.
The following is from 4 runs of mmtest's thpchallenge. "Pollute" is
single page fallback, "steal" is conversion of a partially used block.
The numbers for free block conversions (omitted) are comparable.
vanilla patched
@pollute[unmovable from reclaimable]: 27 106
@pollute[unmovable from movable]: 82 46
@pollute[reclaimable from unmovable]: 256 83
@pollute[reclaimable from movable]: 46 8
@pollute[movable from unmovable]: 4841 868
@pollute[movable from reclaimable]: 5278 12568
@steal[unmovable from reclaimable]: 11 12
@steal[unmovable from movable]: 113 49
@steal[reclaimable from unmovable]: 19 34
@steal[reclaimable from movable]: 47 21
@steal[movable from unmovable]: 250 183
@steal[movable from reclaimable]: 81 93
The allocator appears to do a better job at keeping stealing and polluting
to the first fallback preference. As a result, the numbers for "from
movable" - the least preferred fallback option, and most detrimental to
compactability - are down across the board.
Link: https://lkml.kernel.org/r/20250225001023.1494422-2-hannes@cmpxchg.org
Fixes: c0cd6f557b90 ("mm: page_alloc: fix freelist movement during block conversion")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Brendan Jackman <jackmanb@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Add a test to the guard region self tests to assert that the
/proc/$pid/pagemap information now made availabile to the user correctly
identifies and reports guard regions.
As a part of this change, update vm_util.h to add the new bit (note there
is no header file in the kernel where this is exposed, the user is
expected to provide their own mask) and utilise the helper functions there
for pagemap functionality.
[lorenzo.stoakes@oracle.com: fixup define name]
Link: https://lkml.kernel.org/r/32e83941-e6f5-42ee-9292-a44c16463cf1@lucifer.local
Link: https://lkml.kernel.org/r/164feb0a43ae72650e6b20c3910213f469566311.1740139449.git.lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: "Paul E . McKenney" <paulmck@kernel.org>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "fs/proc/task_mmu: add guard region bit to pagemap".
Currently there is no means of determining whether a given page in a
mapping range is designated a guard region (as installed via madvise()
using the MADV_GUARD_INSTALL flag).
This is generally not an issue, but in some instances users may wish to
determine whether this is the case.
This series adds this ability via /proc/$pid/pagemap, updates the
documentation and adds a self test to assert that this functions
correctly.
This patch (of 2):
Currently there is no means by which users can determine whether a given
page in memory is in fact a guard region, that is having had the
MADV_GUARD_INSTALL madvise() flag applied to it.
This is intentional, as to provide this information in VMA metadata would
contradict the intent of the feature (providing a means to change fault
behaviour at a page table level rather than a VMA level), and would
require VMA metadata operations to scan page tables, which is
unacceptable.
In many cases, users have no need to reflect and determine what regions
have been designated guard regions, as it is the user who has established
them in the first place.
But in some instances, such as monitoring software, or software that
relies upon being able to ascertain the nature of mappings within a remote
process for instance, it becomes useful to be able to determine which
pages have the guard region marker applied.
This patch makes use of an unused pagemap bit (58) to provide this
information.
This patch updates the documentation at the same time as making the change
such that the implementation of the feature and the documentation of it
are tied together.
Link: https://lkml.kernel.org/r/cover.1740139449.git.lorenzo.stoakes@oracle.com
Link: https://lkml.kernel.org/r/521d99c08b975fb06a1e7201e971cc24d68196d1.1740139449.git.lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: "Paul E . McKenney" <paulmck@kernel.org>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
swap_reclaim_full_clusters() has no return value now, just remove the
stale comment which says swap_reclaim_full_clusters() wil return a bool
value.
Link: https://lkml.kernel.org/r/20250222160850.505274-7-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
We will add si back to plist in swap_usage_sub(), just correct the wrong
comment which says we will remove si from plist in swap_usage_sub().
Link: https://lkml.kernel.org/r/20250222160850.505274-6-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Before alloc from a cluster, we will aqcuire cluster's lock and make sure
it is usable by cluster_is_usable(), so there is no need to set
SWAP_MAP_BAD for cluster to be discarded.
Link: https://lkml.kernel.org/r/20250222160850.505274-5-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Kairui Song <kasong@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
It's not really possible to start diagnosing this without knowing the
actual error.
Also update the mlock2 helper to behave like libc would by setting errno
and returning -1.
Link: https://lkml.kernel.org/r/20250311-mm-selftests-v4-12-dec210a658f5@google.com
Signed-off-by: Brendan Jackman <jackmanb@google.com>
Cc: Dev Jain <dev.jain@arm.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
If running from a directory that can't be read by unprivileged users,
executing on-fault-test via the nobody user will fail.
The kselftest build does give the file the correct permissions, but after
being installed it might be in a directory without global execute
permissions.
Since the script can't safely fix that, just skip if it happens. Note
that the stderr of the `ls` command is unfiltered meaning the user sees a
"permission denied" error that can help inform them why the test was
skipped.
Link: https://lkml.kernel.org/r/20250311-mm-selftests-v4-11-dec210a658f5@google.com
Signed-off-by: Brendan Jackman <jackmanb@google.com>
Cc: Dev Jain <dev.jain@arm.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This test allocates a page of every available size and doesn't have any
SKIP logic if the allocation fails. So, ensure it's available and skip
the test if we can't do so.
Link: https://lkml.kernel.org/r/20250311-mm-selftests-v4-10-dec210a658f5@google.com
Signed-off-by: Brendan Jackman <jackmanb@google.com>
Cc: Dev Jain <dev.jain@arm.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This script must be run as root anyway (see all the writing to privileged
files in /proc etc).
Remove the unnecessary use of sudo to avoid breaking on single-user
systems that don't have sudo. This also avoids confusing readers.
Link: https://lkml.kernel.org/r/20250311-mm-selftests-v4-9-dec210a658f5@google.com
Signed-off-by: Brendan Jackman <jackmanb@google.com>
Reviewed-by: Dev Jain <dev.jain@arm.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Some filesystems don't support ftruncate()ing unlinked files. They return
ENOENT. In that case, skip the test.
Link: https://lkml.kernel.org/r/20250311-mm-selftests-v4-8-dec210a658f5@google.com
Signed-off-by: Brendan Jackman <jackmanb@google.com>
Cc: Dev Jain <dev.jain@arm.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
It seems that 9pfs does not allow truncating unlinked files, Mark Brown
has noted that NFS may also behave this way.
It doesn't seem quite right to call this a "bug" but it's probably a
special enough case that it makes sense for the test to just SKIP if it
happens.
Link: https://lkml.kernel.org/r/20250311-mm-selftests-v4-7-dec210a658f5@google.com
Signed-off-by: Brendan Jackman <jackmanb@google.com>
Cc: Dev Jain <dev.jain@arm.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This calculation divides a fixed parameter by an environment-dependent
parameter i.e. the number of CPUs.
The simple way to avoid machine-specific failures here is to just put a
cap on the max value of the latter.
Link: https://lkml.kernel.org/r/20250311-mm-selftests-v4-6-dec210a658f5@google.com
Signed-off-by: Brendan Jackman <jackmanb@google.com>
Suggested-by: Mateusz Guzik <mjguzik@gmail.com>
Cc: Dev Jain <dev.jain@arm.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
So this can be debugged more easily.
Link: https://lkml.kernel.org/r/20250311-mm-selftests-v4-5-dec210a658f5@google.com
Signed-off-by: Brendan Jackman <jackmanb@google.com>
Cc: Dev Jain <dev.jain@arm.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
A later commit will bound this variable so it no longer necessarily
matches the number of CPUs. Rename it appropriately.
Link: https://lkml.kernel.org/r/20250311-mm-selftests-v4-4-dec210a658f5@google.com
Signed-off-by: Brendan Jackman <jackmanb@google.com>
Reviewed-by: Dev Jain <dev.jain@arm.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
It's obvious that this should fail in that case, but still, save the
reader the effort of figuring out that they've run into this by just
SKIPping
Link: https://lkml.kernel.org/r/20250311-mm-selftests-v4-3-dec210a658f5@google.com
Signed-off-by: Brendan Jackman <jackmanb@google.com>
Reviewed-by: Dev Jain <dev.jain@arm.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
It's pretty obvious that the test wouldn't work if you don't have the
feature enabled. But, it's still useful to SKIP instead of failing so the
reader can immediately tell that this is the reason why.
Link: https://lkml.kernel.org/r/20250311-mm-selftests-v4-2-dec210a658f5@google.com
Signed-off-by: Brendan Jackman <jackmanb@google.com>
Reviewed-by: Dev Jain <dev.jain@arm.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "selftests/mm: Some cleanups from trying to run them", v4.
I never had much luck running mm selftests so I spent a few hours digging
into why.
Looks like most of the reason is missing SKIP checks, so this series is
just adding a bunch of those that I found. I did not do anything like all
of them, just the ones I spotted in gup_longterm, gup_test, mmap,
userfaultfd and memfd_secret.
It's a bit unfortunate to have to skip those tests when ftruncate() fails,
but I don't have time to dig deep enough into it to actually make them
pass. I have observed the issue on 9pfs and heard rumours that NFS has a
similar problem.
I'm now able to run these test groups successfully:
- mmap
- gup_test
- compaction
- migration
- page_frag
- userfaultfd
- mlock
I've never gone past "Waiting for hugetlb memory to get depleted", in the
hugetlb tests. I don't know if they are stuck or if they would eventually
work if I was patient enough (testing on a 1G machine). I have not
investigated further.
I had some issues with mlock tests failing due to -ENOSRCH from mlock2(),
I can no longer reproduce that though, things work OK now.
Of the remaining tests there may be others that work fine, but there's no
convenient way to survey the whole output of run_vmtests.sh so I'm just
going test by test here.
In my spare moments I am slowly chipping away at a setup to run these
tests continuously in a reasonably hermetic QEMU environment via
virtme-ng:
https://github.com/bjackman/linux/blob/5fad4b9c592290f38e0f8bc73c9abb9c99d8787c/README.md
Hopefully that will eventually offer a way to provide a "canned"
environment where the tests are known to work, which can be fairly easily
reproduced by any developer.
This patch (of 12):
Just reporting failure doesn't tell you what went wrong. This can fail in
different ways so report errno to help the reader get started debugging.
Link: https://lkml.kernel.org/r/20250311-mm-selftests-v4-0-dec210a658f5@google.com
Link: https://lkml.kernel.org/r/20250311-mm-selftests-v4-1-dec210a658f5@google.com
Signed-off-by: Brendan Jackman <jackmanb@google.com>
Reviewed-by: Dev Jain <dev.jain@arm.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Explicitly state that zcomp compress/decompress must be called from
non-atomic context.
Link: https://lkml.kernel.org/r/20250303022425.285971-20-senozhatsky@chromium.org
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Kairui Song <ryncsn@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Yosry Ahmed <yosry.ahmed@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Ensure the page used for local object data is freed on error out path.
Link: https://lkml.kernel.org/r/20250303022425.285971-19-senozhatsky@chromium.org
Fixes: 330edc2bc059 (zram: rework writeback target selection strategy)
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Kairui Song <ryncsn@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Yosry Ahmed <yosry.ahmed@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Ensure the page used for local object data is freed on error out path.
Link: https://lkml.kernel.org/r/20250303022425.285971-18-senozhatsky@chromium.org
Fixes: 3f909a60cec1 ("zram: rework recompress target selection strategy")
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Kairui Song <ryncsn@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Yosry Ahmed <yosry.ahmed@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
When configured with pre-trained compression/decompression dictionary
support, zstd requires custom memory allocator, which it calls internally
from compression()/decompression() routines. That means allocation from
atomic context (either under entry spin-lock, or per-CPU local-lock or
both). Now, with non-atomic zram read()/write(), those limitations are
relaxed and we can allow direct and indirect reclaim.
Link: https://lkml.kernel.org/r/20250303022425.285971-17-senozhatsky@chromium.org
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Kairui Song <ryncsn@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Yosry Ahmed <yosry.ahmed@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Use new read/write zsmalloc object API. For cases when RO mapped object
spans two physical pages (requires temp buffer) compression streams now
carry around one extra physical page.
Link: https://lkml.kernel.org/r/20250303022425.285971-16-senozhatsky@chromium.org
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Kairui Song <ryncsn@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Yosry Ahmed <yosry.ahmed@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Current object mapping API is a little cumbersome. First, it's
inconsistent, sometimes it returns with page-faults disabled and sometimes
with page-faults enabled. Second, and most importantly, it enforces
atomicity restrictions on its users. zs_map_object() has to return a
liner object address which is not always possible because some objects
span multiple physical (non-contiguous) pages. For such objects zsmalloc
uses a per-CPU buffer to which object's data is copied before a pointer to
that per-CPU buffer is returned back to the caller. This leads to
another, final, issue - extra memcpy(). Since the caller gets a pointer
to per-CPU buffer it can memcpy() data only to that buffer, and during
zs_unmap_object() zsmalloc will memcpy() from that per-CPU buffer to
physical pages that object in question spans across.
New API splits functions by access mode:
- zs_obj_read_begin(handle, local_copy)
Returns a pointer to handle memory. For objects that span two
physical pages a local_copy buffer is used to store object's
data before the address is returned to the caller. Otherwise
the object's page is kmap_local mapped directly.
- zs_obj_read_end(handle, buf)
Unmaps the page if it was kmap_local mapped by zs_obj_read_begin().
- zs_obj_write(handle, buf, len)
Copies len-bytes from compression buffer to handle memory
(takes care of objects that span two pages). This does not
need any additional (e.g. per-CPU) buffers and writes the data
directly to zsmalloc pool pages.
In terms of performance, on a synthetic and completely reproducible
test that allocates fixed number of objects of fixed sizes and
iterates over those objects, first mapping in RO then in RW mode:
OLD API
=======
3 first results out of 10
369,205,778 instructions # 0.80 insn per cycle
40,467,926 branches # 113.732 M/sec
369,002,122 instructions # 0.62 insn per cycle
40,426,145 branches # 189.361 M/sec
369,036,706 instructions # 0.63 insn per cycle
40,430,860 branches # 204.105 M/sec
[..]
NEW API
=======
3 first results out of 10
265,799,293 instructions # 0.51 insn per cycle
29,834,567 branches # 170.281 M/sec
265,765,970 instructions # 0.55 insn per cycle
29,829,019 branches # 161.602 M/sec
265,764,702 instructions # 0.51 insn per cycle
29,828,015 branches # 189.677 M/sec
[..]
T-test on all 10 runs
=====================
Difference at 95.0% confidence
-1.03219e+08 +/- 55308.7
-27.9705% +/- 0.0149878%
(Student's t, pooled s = 58864.4)
The old API will stay around until the remaining users switch to the new
one. After that we'll also remove zsmalloc per-CPU buffer and CPU hotplug
handling.
The split of map(RO) and map(WO) into read_{begin/end}/write is suggested
by Yosry Ahmed.
Link: https://lkml.kernel.org/r/20250303022425.285971-15-senozhatsky@chromium.org
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Suggested-by: Yosry Ahmed <yosry.ahmed@linux.dev>
Reviewed-by: Yosry Ahmed <yosry.ahmed@linux.dev>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Kairui Song <ryncsn@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
In order to implement preemptible object mapping we need a zspage lock
that satisfies several preconditions:
- it should be reader-write type of a lock
- it should be possible to hold it from any context, but also being
preemptible if the context allows it
- we never sleep while acquiring but can sleep while holding in read
mode
An rwsemaphore doesn't suffice, due to atomicity requirements, rwlock
doesn't satisfy due to reader-preemptability requirement. It's also worth
to mention, that per-zspage rwsem is a little too memory heavy (we can
easily have double digits megabytes used only on rwsemaphores).
Switch over from rwlock_t to a atomic_t-based implementation of a
reader-writer semaphore that satisfies all of the preconditions.
The spin-lock based zspage_lock is suggested by Hillf Danton.
Link: https://lkml.kernel.org/r/20250303022425.285971-14-senozhatsky@chromium.org
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Suggested-by: Hillf Danton <hdanton@sina.com>
Cc: Kairui Song <ryncsn@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Yosry Ahmed <yosry.ahmed@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The old name comes from the times when the pool did not have compaction
(defragmentation). Rename it to ->lock because these days it synchronizes
not only migration.
Link: https://lkml.kernel.org/r/20250303022425.285971-13-senozhatsky@chromium.org
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Reviewed-by: Yosry Ahmed <yosry.ahmed@linux.dev>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Kairui Song <ryncsn@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Allocate post-processing target in place_pp_slot(). This simplifies
scan_slots_for_writeback() and scan_slots_for_recompress() loops because
we don't need to track pps pointer state anymore. Previously we have to
explicitly NULL the point if it has been added to a post-processing bucket
or re-use previously allocated pointer otherwise and make sure we don't
leak the memory in the end.
We are also fine doing GFP_NOIO allocation, as post-processing can be
called under memory pressure so we better pick as many slots as we can as
soon as we can and start post-processing them, possibly saving the memory.
Allocation failure there is not fatal, we will post-process whatever we
put into the buckets on previous iterations.
Link: https://lkml.kernel.org/r/20250303022425.285971-12-senozhatsky@chromium.org
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Kairui Song <ryncsn@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Yosry Ahmed <yosry.ahmed@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This reworks recompression loop handling:
- set a rule that stream-put NULLs the stream pointer If the loop
returns with a non-NULL stream then it's a successful recompression,
otherwise the stream should always be NULL.
- do not count the number of recompressions Mark object as
incompressible as soon as the algorithm with the highest priority failed
to compress that object.
- count compression errors as resource usage Even if compression has
failed, we still need to bump num_recomp_pages counter.
Link: https://lkml.kernel.org/r/20250303022425.285971-11-senozhatsky@chromium.org
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Kairui Song <ryncsn@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Yosry Ahmed <yosry.ahmed@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|