summaryrefslogtreecommitdiff
AgeCommit message (Collapse)Author
2020-12-15powerpc/pseries/memhotplug: Quieten some DLPAR operationsLaurent Dufour
When attempting to remove by index a set of LMBs a lot of messages are displayed on the console, even when everything goes fine: pseries-hotplug-mem: Attempting to hot-remove LMB, drc index 8000002d Offlined Pages 4096 pseries-hotplug-mem: Memory at 2d0000000 was hot-removed The 2 messages prefixed by "pseries-hotplug-mem" are not really helpful for the end user, they should be debug outputs. In case of error, because some of the LMB's pages couldn't be offlined, the following is displayed on the console: pseries-hotplug-mem: Attempting to hot-remove LMB, drc index 8000003e pseries-hotplug-mem: Failed to hot-remove memory at 3e0000000 dlpar: Could not handle DLPAR request "memory remove index 0x8000003e" Again, the 2 messages prefixed by "pseries-hotplug-mem" are useless, and the generic DLPAR prefixed message should be enough. These 2 first changes are mainly triggered by the changes introduced in drmgr: https://groups.google.com/g/powerpc-utils-devel/c/Y6ef4NB3EzM/m/9cu5JHRxAQAJ Also, when adding a bunch of LMBs, a message is displayed in the console per LMB like these ones: pseries-hotplug-mem: Memory at 7e0000000 (drc index 8000007e) was hot-added pseries-hotplug-mem: Memory at 7f0000000 (drc index 8000007f) was hot-added pseries-hotplug-mem: Memory at 800000000 (drc index 80000080) was hot-added pseries-hotplug-mem: Memory at 810000000 (drc index 80000081) was hot-added When adding 1TB of memory and LMB size is 256MB, this leads to 4096 messages to be displayed on the console. These messages are not really helpful for the end user, so moving them to the DEBUG level. Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com> [mpe: Tweak change log wording] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20201211145954.90143-1-ldufour@linux.ibm.com
2020-12-15powerpc/ps3: use dma_mapping_error()Vincent Stehlé
The DMA address returned by dma_map_single() should be checked with dma_mapping_error(). Fix the ps3stor_setup() function accordingly. Fixes: 80071802cb9c ("[POWERPC] PS3: Storage Driver Core") Signed-off-by: Vincent Stehlé <vincent.stehle@laposte.net> Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20201213182622.23047-1-vincent.stehle@laposte.net
2020-12-15powerpc: force inlining of csum_partial() to avoid multiple csum_partial() ↵Christophe Leroy
with GCC10 ppc-linux-objdump -d vmlinux | grep -e "<csum_partial>" -e "<__csum_partial>" With gcc9 I get: c0017ef8 <__csum_partial>: c00182fc: 4b ff fb fd bl c0017ef8 <__csum_partial> c0018478: 4b ff fa 80 b c0017ef8 <__csum_partial> c03e8458: 4b c2 fa a0 b c0017ef8 <__csum_partial> c03e8518: 4b c2 f9 e1 bl c0017ef8 <__csum_partial> c03ef410: 4b c2 8a e9 bl c0017ef8 <__csum_partial> c03f0b24: 4b c2 73 d5 bl c0017ef8 <__csum_partial> c04279a4: 4b bf 05 55 bl c0017ef8 <__csum_partial> c0429820: 4b be e6 d9 bl c0017ef8 <__csum_partial> c0429944: 4b be e5 b5 bl c0017ef8 <__csum_partial> c042b478: 4b be ca 81 bl c0017ef8 <__csum_partial> c042b554: 4b be c9 a5 bl c0017ef8 <__csum_partial> c045f15c: 4b bb 8d 9d bl c0017ef8 <__csum_partial> c0492190: 4b b8 5d 69 bl c0017ef8 <__csum_partial> c0492310: 4b b8 5b e9 bl c0017ef8 <__csum_partial> c0495594: 4b b8 29 65 bl c0017ef8 <__csum_partial> c049c420: 4b b7 ba d9 bl c0017ef8 <__csum_partial> c049c870: 4b b7 b6 89 bl c0017ef8 <__csum_partial> c049c930: 4b b7 b5 c9 bl c0017ef8 <__csum_partial> c04a9ca0: 4b b6 e2 59 bl c0017ef8 <__csum_partial> c04bdde4: 4b b5 a1 15 bl c0017ef8 <__csum_partial> c04be480: 4b b5 9a 79 bl c0017ef8 <__csum_partial> c04be710: 4b b5 97 e9 bl c0017ef8 <__csum_partial> c04c969c: 4b b4 e8 5d bl c0017ef8 <__csum_partial> c04ca2fc: 4b b4 db fd bl c0017ef8 <__csum_partial> c04cf5bc: 4b b4 89 3d bl c0017ef8 <__csum_partial> c04d0440: 4b b4 7a b9 bl c0017ef8 <__csum_partial> With gcc10 I get: c0018d08 <__csum_partial>: c0019020 <csum_partial>: c0019020: 4b ff fc e8 b c0018d08 <__csum_partial> c001914c: 4b ff fe d4 b c0019020 <csum_partial> c0019250: 4b ff fd d1 bl c0019020 <csum_partial> c03e404c <csum_partial>: c03e404c: 4b c3 4c bc b c0018d08 <__csum_partial> c03e4050: 4b ff ff fc b c03e404c <csum_partial> c03e40fc: 4b ff ff 51 bl c03e404c <csum_partial> c03e6680: 4b ff d9 cd bl c03e404c <csum_partial> c03e68c4: 4b ff d7 89 bl c03e404c <csum_partial> c03e7934: 4b ff c7 19 bl c03e404c <csum_partial> c03e7bf8: 4b ff c4 55 bl c03e404c <csum_partial> c03eb148: 4b ff 8f 05 bl c03e404c <csum_partial> c03ecf68: 4b c2 bd a1 bl c0018d08 <__csum_partial> c04275b8 <csum_partial>: c04275b8: 4b bf 17 50 b c0018d08 <__csum_partial> c0427884: 4b ff fd 35 bl c04275b8 <csum_partial> c0427b18: 4b ff fa a1 bl c04275b8 <csum_partial> c0427bd8: 4b ff f9 e1 bl c04275b8 <csum_partial> c0427cd4: 4b ff f8 e5 bl c04275b8 <csum_partial> c0427e34: 4b ff f7 85 bl c04275b8 <csum_partial> c045a1c0: 4b bb eb 49 bl c0018d08 <__csum_partial> c0489464 <csum_partial>: c0489464: 4b b8 f8 a4 b c0018d08 <__csum_partial> c04896b0: 4b ff fd b5 bl c0489464 <csum_partial> c048982c: 4b ff fc 39 bl c0489464 <csum_partial> c0490158: 4b b8 8b b1 bl c0018d08 <__csum_partial> c0492f0c <csum_partial>: c0492f0c: 4b b8 5d fc b c0018d08 <__csum_partial> c049326c: 4b ff fc a1 bl c0492f0c <csum_partial> c049333c: 4b ff fb d1 bl c0492f0c <csum_partial> c0493b18: 4b ff f3 f5 bl c0492f0c <csum_partial> c0493f50: 4b ff ef bd bl c0492f0c <csum_partial> c0493ffc: 4b ff ef 11 bl c0492f0c <csum_partial> c04a0f78: 4b b7 7d 91 bl c0018d08 <__csum_partial> c04b3e3c: 4b b6 4e cd bl c0018d08 <__csum_partial> c04b40d0 <csum_partial>: c04b40d0: 4b b6 4c 38 b c0018d08 <__csum_partial> c04b4448: 4b ff fc 89 bl c04b40d0 <csum_partial> c04b46f4: 4b ff f9 dd bl c04b40d0 <csum_partial> c04bf448: 4b b5 98 c0 b c0018d08 <__csum_partial> c04c5264: 4b b5 3a a5 bl c0018d08 <__csum_partial> c04c61e4: 4b b5 2b 25 bl c0018d08 <__csum_partial> gcc10 defines multiple versions of csum_partial() which are just an unconditionnal branch to __csum_partial(). To enforce inlining of that branch to __csum_partial(), mark csum_partial() as __always_inline. With this patch with gcc10: c0018d08 <__csum_partial>: c0019148: 4b ff fb c0 b c0018d08 <__csum_partial> c001924c: 4b ff fa bd bl c0018d08 <__csum_partial> c03e40ec: 4b c3 4c 1d bl c0018d08 <__csum_partial> c03e4120: 4b c3 4b e8 b c0018d08 <__csum_partial> c03eb004: 4b c2 dd 05 bl c0018d08 <__csum_partial> c03ecef4: 4b c2 be 15 bl c0018d08 <__csum_partial> c0427558: 4b bf 17 b1 bl c0018d08 <__csum_partial> c04286e4: 4b bf 06 25 bl c0018d08 <__csum_partial> c0428cd8: 4b bf 00 31 bl c0018d08 <__csum_partial> c0428d84: 4b be ff 85 bl c0018d08 <__csum_partial> c045a17c: 4b bb eb 8d bl c0018d08 <__csum_partial> c0489450: 4b b8 f8 b9 bl c0018d08 <__csum_partial> c0491860: 4b b8 74 a9 bl c0018d08 <__csum_partial> c0492eec: 4b b8 5e 1d bl c0018d08 <__csum_partial> c04a0eac: 4b b7 7e 5d bl c0018d08 <__csum_partial> c04b3e34: 4b b6 4e d5 bl c0018d08 <__csum_partial> c04b426c: 4b b6 4a 9d bl c0018d08 <__csum_partial> c04b463c: 4b b6 46 cd bl c0018d08 <__csum_partial> c04c004c: 4b b5 8c bd bl c0018d08 <__csum_partial> c04c0368: 4b b5 89 a1 bl c0018d08 <__csum_partial> c04c5254: 4b b5 3a b5 bl c0018d08 <__csum_partial> c04c60d4: 4b b5 2c 35 bl c0018d08 <__csum_partial> Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Reviewed-by: Segher Boessenkool <segher@kernel.crashing.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/a1d31f84ddb0926813b17fcd5cc7f3fa7b4deac2.1602759123.git.christophe.leroy@csgroup.eu
2020-12-15powerpc/perf: Fix Threshold Event Counter Multiplier width for P10Madhavan Srinivasan
Threshold Event Counter Multiplier (TECM) is part of Monitor Mode Control Register A (MMCRA). This field along with Threshold Event Counter Exponent (TECE) is used to get threshould counter value. In Power10, this is a 8bit field, so patch fixes the current code to modify the MMCRA[TECM] extraction macro to handle this change. ISA v3.1 says this is a 7 bit field but POWER10 it's actually 8 bits which will hopefully be fixed in ISA v3.1 update. Fixes: 170a315f41c6 ("powerpc/perf: Support to export MMCRA[TEC*] field to userspace") Signed-off-by: Madhavan Srinivasan <maddy@linux.ibm.com> Signed-off-by: Athira Rajeev <atrajeev@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/1608022578-1532-1-git-send-email-atrajeev@linux.vnet.ibm.com
2020-12-15powerpc/mm: Fix hugetlb_free_pmd_range() and hugetlb_free_pud_range()Christophe Leroy
Commit 7bfe54b5f165 ("powerpc/mm: Refactor the floor/ceiling check in hugetlb range freeing functions") inadvertely removed the mask applied to start parameter in those two functions, leading to the following crash on power9. LTP: starting hugemmap05_1 (hugemmap05 -m) ------------[ cut here ]------------ kernel BUG at arch/powerpc/mm/book3s64/pgtable.c:387! Oops: Exception in kernel mode, sig: 5 [#1] LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=256 NUMA PowerNV ... CPU: 99 PID: 308 Comm: ksoftirqd/99 Tainted: G O 5.10.0-rc7-next-20201211 #1 NIP: c00000000005dbec LR: c0000000003352f4 CTR: 0000000000000000 REGS: c00020000bb6f830 TRAP: 0700 Tainted: G O (5.10.0-rc7-next-20201211) MSR: 900000000282b033 <SF,HV,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 24002284 XER: 20040000 GPR00: c0000000003352f4 c00020000bb6fad0 c000000007f70b00 c0002000385b3ff0 GPR04: 0000000000000000 0000000000000003 c00020000bb6f8b4 0000000000000001 GPR08: 0000000000000001 0000000000000009 0000000000000008 0000000000000002 GPR12: 0000000024002488 c000201fff649c00 c000000007f2a20c 0000000000000000 GPR16: 0000000000000007 0000000000000000 c000000000194d10 c000000000194d10 GPR24: 0000000000000014 0000000000000015 c000201cc6e72398 c000000007fac4b4 GPR28: c000000007f2bf80 c000000007fac2f8 0000000000000008 c000200033870000 NIP [c00000000005dbec] __tlb_remove_table+0x1dc/0x1e0 pgtable_free at arch/powerpc/mm/book3s64/pgtable.c:387 (inlined by) __tlb_remove_table at arch/powerpc/mm/book3s64/pgtable.c:405 LR [c0000000003352f4] tlb_remove_table_rcu+0x54/0xa0 Call Trace: __tlb_remove_table+0x13c/0x1e0 (unreliable) tlb_remove_table_rcu+0x54/0xa0 __tlb_remove_table_free at mm/mmu_gather.c:101 (inlined by) tlb_remove_table_rcu at mm/mmu_gather.c:156 rcu_core+0x35c/0xbb0 rcu_do_batch at kernel/rcu/tree.c:2502 (inlined by) rcu_core at kernel/rcu/tree.c:2737 __do_softirq+0x480/0x704 run_ksoftirqd+0x74/0xd0 run_ksoftirqd at kernel/softirq.c:651 (inlined by) run_ksoftirqd at kernel/softirq.c:642 smpboot_thread_fn+0x278/0x320 kthread+0x1c4/0x1d0 ret_from_kernel_thread+0x5c/0x80 Properly apply the masks before calling pmd_free_tlb() and pud_free_tlb() respectively. Fixes: 7bfe54b5f165 ("powerpc/mm: Refactor the floor/ceiling check in hugetlb range freeing functions") Reported-by: Qian Cai <qcai@redhat.com> Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/56feccd7b6fcd98e353361a233fa7bb8e67c3164.1607780469.git.christophe.leroy@csgroup.eu
2020-12-15KVM: PPC: Book3S HV: Fix mask size for emulated msgsndpLeonardo Bras
According to ISAv3.1 and ISAv3.0b, the msgsndp is described to split RB in: msgtype <- (RB) 32:36 payload <- (RB) 37:63 t <- (RB) 57:63 The current way of getting 'msgtype', and 't' is missing their MSB: msgtype: ((arg >> 27) & 0xf) : Gets (RB) 33:36, missing bit 32 t: (arg &= 0x3f) : Gets (RB) 58:63, missing bit 57 Fixes this by applying the correct mask. Signed-off-by: Leonardo Bras <leobras.c@gmail.com> Acked-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20201208215707.31149-1-leobras.c@gmail.com
2020-12-15KVM: PPC: fix comparison to bool warningKaixu Xia
Fix the following coccicheck warning: ./arch/powerpc/kvm/booke.c:503:6-16: WARNING: Comparison to bool ./arch/powerpc/kvm/booke.c:505:6-17: WARNING: Comparison to bool ./arch/powerpc/kvm/booke.c:507:6-16: WARNING: Comparison to bool Reported-by: Tosk Robot <tencent_os_robot@tencent.com> Signed-off-by: Kaixu Xia <kaixuxia@tencent.com> Acked-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/1604764178-8087-1-git-send-email-kaixuxia@tencent.com
2020-12-15KVM: PPC: Book3S: Assign boolean values to a bool variableKaixu Xia
Fix the following coccinelle warnings: ./arch/powerpc/kvm/book3s_xics.c:476:3-15: WARNING: Assignment of 0/1 to bool variable ./arch/powerpc/kvm/book3s_xics.c:504:3-15: WARNING: Assignment of 0/1 to bool variable Reported-by: Tosk Robot <tencent_os_robot@tencent.com> Signed-off-by: Kaixu Xia <kaixuxia@tencent.com> Reviewed-by: Greg Kurz <groug@kaod.org> Acked-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/1604730382-5810-1-git-send-email-kaixuxia@tencent.com
2020-12-15Merge tag 'efi-next-for-v5.11-3' of ↵Thomas Gleixner
git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi into efi/core Pull followup fixes for EFI from Ard Biesheuvel: - fix the build breakage on IA64 caused by recent capsule loader changes - suppress a type mismatch build warning in the expansion of EFI_PHYS_ALIGN on ARM Link: https://lore.kernel.org/r/20201215080144.17077-1-ardb@kernel.org
2020-12-15sched: Optimize finish_lock_switch()Peter Zijlstra
The kernel test robot measured a -1.6% performance regression on will-it-scale/sched_yield due to commit: 2558aacff858 ("sched/hotplug: Ensure only per-cpu kthreads run during hotplug") Even though we were careful to replace a single load with another single load from the same cacheline. Restore finish_lock_switch() to the exact state before the offending patch and solve the problem differently. Fixes: 2558aacff858 ("sched/hotplug: Ensure only per-cpu kthreads run during hotplug") Reported-by: kernel test robot <oliver.sang@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20201210161408.GX3021@hirez.programming.kicks-ass.net
2020-12-15KVM: SVM: Provide support to launch and run an SEV-ES guestTom Lendacky
An SEV-ES guest is started by invoking a new SEV initialization ioctl, KVM_SEV_ES_INIT. This identifies the guest as an SEV-ES guest, which is used to drive the appropriate ASID allocation, VMSA encryption, etc. Before being able to run an SEV-ES vCPU, the vCPU VMSA must be encrypted and measured. This is done using the LAUNCH_UPDATE_VMSA command after all calls to LAUNCH_UPDATE_DATA have been performed, but before LAUNCH_MEASURE has been performed. In order to establish the encrypted VMSA, the current (traditional) VMSA and the GPRs are synced to the page that will hold the encrypted VMSA and then LAUNCH_UPDATE_VMSA is invoked. The vCPU is then marked as having protected guest state. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Message-Id: <e9643245adb809caf3a87c09997926d2f3d6ff41.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-15KVM: SVM: Provide an updated VMRUN invocation for SEV-ES guestsTom Lendacky
The run sequence is different for an SEV-ES guest compared to a legacy or even an SEV guest. The guest vCPU register state of an SEV-ES guest will be restored on VMRUN and saved on VMEXIT. There is no need to restore the guest registers directly and through VMLOAD before VMRUN and no need to save the guest registers directly and through VMSAVE on VMEXIT. Update the svm_vcpu_run() function to skip register state saving and restoring and provide an alternative function for running an SEV-ES guest in vmenter.S Additionally, certain host state is restored across an SEV-ES VMRUN. As a result certain register states are not required to be restored upon VMEXIT (e.g. FS, GS, etc.), so only do that if the guest is not an SEV-ES guest. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Message-Id: <fb1c66d32f2194e171b95fc1a8affd6d326e10c1.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-15KVM: SVM: Provide support for SEV-ES vCPU loadingTom Lendacky
An SEV-ES vCPU requires additional VMCB vCPU load/put requirements. SEV-ES hardware will restore certain registers on VMEXIT, but not save them on VMRUN (see Table B-3 and Table B-4 of the AMD64 APM Volume 2), so make the following changes: General vCPU load changes: - During vCPU loading, perform a VMSAVE to the per-CPU SVM save area and save the current values of XCR0, XSS and PKRU to the per-CPU SVM save area as these registers will be restored on VMEXIT. General vCPU put changes: - Do not attempt to restore registers that SEV-ES hardware has already restored on VMEXIT. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Message-Id: <019390e9cb5e93cd73014fa5a040c17d42588733.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-15KVM: SVM: Provide support for SEV-ES vCPU creation/loadingTom Lendacky
An SEV-ES vCPU requires additional VMCB initialization requirements for vCPU creation and vCPU load/put requirements. This includes: General VMCB initialization changes: - Set a VMCB control bit to enable SEV-ES support on the vCPU. - Set the VMCB encrypted VM save area address. - CRx registers are part of the encrypted register state and cannot be updated. Remove the CRx register read and write intercepts and replace them with CRx register write traps to track the CRx register values. - Certain MSR values are part of the encrypted register state and cannot be updated. Remove certain MSR intercepts (EFER, CR_PAT, etc.). - Remove the #GP intercept (no support for "enable_vmware_backdoor"). - Remove the XSETBV intercept since the hypervisor cannot modify XCR0. General vCPU creation changes: - Set the initial GHCB gpa value as per the GHCB specification. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Message-Id: <3a8aef366416eddd5556dfa3fdc212aafa1ad0a2.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-15KVM: SVM: Update ASID allocation to support SEV-ES guestsTom Lendacky
SEV and SEV-ES guests each have dedicated ASID ranges. Update the ASID allocation routine to return an ASID in the respective range. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Message-Id: <d7aed505e31e3954268b2015bb60a1486269c780.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-15KVM: SVM: Set the encryption mask for the SVM host save areaTom Lendacky
The SVM host save area is used to restore some host state on VMEXIT of an SEV-ES guest. After allocating the save area, clear it and add the encryption mask to the SVM host save area physical address that is programmed into the VM_HSAVE_PA MSR. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Message-Id: <b77aa28af6d7f1a0cb545959e08d6dc75e0c3cba.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-15KVM: SVM: Add NMI support for an SEV-ES guestTom Lendacky
The GHCB specification defines how NMIs are to be handled for an SEV-ES guest. To detect the completion of an NMI the hypervisor must not intercept the IRET instruction (because a #VC while running the NMI will issue an IRET) and, instead, must receive an NMI Complete exit event from the guest. Update the KVM support for detecting the completion of NMIs in the guest to follow the GHCB specification. When an SEV-ES guest is active, the IRET instruction will no longer be intercepted. Now, when the NMI Complete exit event is received, the iret_interception() function will be called to simulate the completion of the NMI. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Message-Id: <5ea3dd69b8d4396cefdc9048ebc1ab7caa70a847.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-15KVM: SVM: Guest FPU state save/restore not needed for SEV-ES guestTom Lendacky
The guest FPU state is automatically restored on VMRUN and saved on VMEXIT by the hardware, so there is no reason to do this in KVM. Eliminate the allocation of the guest_fpu save area and key off that to skip operations related to the guest FPU state. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Message-Id: <173e429b4d0d962c6a443c4553ffdaf31b7665a4.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-15KVM: SVM: Do not report support for SMM for an SEV-ES guestTom Lendacky
SEV-ES guests do not currently support SMM. Update the has_emulated_msr() kvm_x86_ops function to take a struct kvm parameter so that the capability can be reported at a VM level. Since this op is also called during KVM initialization and before a struct kvm instance is available, comments will be added to each implementation of has_emulated_msr() to indicate the kvm parameter can be null. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Message-Id: <75de5138e33b945d2fb17f81ae507bda381808e3.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-15KVM: x86: Update __get_sregs() / __set_sregs() to support SEV-ESTom Lendacky
Since many of the registers used by the SEV-ES are encrypted and cannot be read or written, adjust the __get_sregs() / __set_sregs() to take into account whether the VMSA/guest state is encrypted. For __get_sregs(), return the actual value that is in use by the guest for all registers being tracked using the write trap support. For __set_sregs(), skip setting of all guest registers values. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Message-Id: <23051868db76400a9b07a2020525483a1e62dbcf.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-15KVM: SVM: Add support for CR8 write traps for an SEV-ES guestTom Lendacky
For SEV-ES guests, the interception of control register write access is not recommended. Control register interception occurs prior to the control register being modified and the hypervisor is unable to modify the control register itself because the register is located in the encrypted register state. SEV-ES guests introduce new control register write traps. These traps provide intercept support of a control register write after the control register has been modified. The new control register value is provided in the VMCB EXITINFO1 field, allowing the hypervisor to track the setting of the guest control registers. Add support to track the value of the guest CR8 register using the control register write trap so that the hypervisor understands the guest operating mode. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Message-Id: <5a01033f4c8b3106ca9374b7cadf8e33da852df1.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-15KVM: SVM: Add support for CR4 write traps for an SEV-ES guestTom Lendacky
For SEV-ES guests, the interception of control register write access is not recommended. Control register interception occurs prior to the control register being modified and the hypervisor is unable to modify the control register itself because the register is located in the encrypted register state. SEV-ES guests introduce new control register write traps. These traps provide intercept support of a control register write after the control register has been modified. The new control register value is provided in the VMCB EXITINFO1 field, allowing the hypervisor to track the setting of the guest control registers. Add support to track the value of the guest CR4 register using the control register write trap so that the hypervisor understands the guest operating mode. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Message-Id: <c3880bf2db8693aa26f648528fbc6e967ab46e25.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-15KVM: SVM: Add support for CR0 write traps for an SEV-ES guestTom Lendacky
For SEV-ES guests, the interception of control register write access is not recommended. Control register interception occurs prior to the control register being modified and the hypervisor is unable to modify the control register itself because the register is located in the encrypted register state. SEV-ES support introduces new control register write traps. These traps provide intercept support of a control register write after the control register has been modified. The new control register value is provided in the VMCB EXITINFO1 field, allowing the hypervisor to track the setting of the guest control registers. Add support to track the value of the guest CR0 register using the control register write trap so that the hypervisor understands the guest operating mode. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Message-Id: <182c9baf99df7e40ad9617ff90b84542705ef0d7.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-15KVM: SVM: Add support for EFER write traps for an SEV-ES guestTom Lendacky
For SEV-ES guests, the interception of EFER write access is not recommended. EFER interception occurs prior to EFER being modified and the hypervisor is unable to modify EFER itself because the register is located in the encrypted register state. SEV-ES support introduces a new EFER write trap. This trap provides intercept support of an EFER write after it has been modified. The new EFER value is provided in the VMCB EXITINFO1 field, allowing the hypervisor to track the setting of the guest EFER. Add support to track the value of the guest EFER value using the EFER write trap so that the hypervisor understands the guest operating mode. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Message-Id: <8993149352a3a87cd0625b3b61bfd31ab28977e1.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-15KVM: SVM: Support string IO operations for an SEV-ES guestTom Lendacky
For an SEV-ES guest, string-based port IO is performed to a shared (un-encrypted) page so that both the hypervisor and guest can read or write to it and each see the contents. For string-based port IO operations, invoke SEV-ES specific routines that can complete the operation using common KVM port IO support. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Message-Id: <9d61daf0ffda496703717218f415cdc8fd487100.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-15KVM: SVM: Support MMIO for an SEV-ES guestTom Lendacky
For an SEV-ES guest, MMIO is performed to a shared (un-encrypted) page so that both the hypervisor and guest can read or write to it and each see the contents. The GHCB specification provides software-defined VMGEXIT exit codes to indicate a request for an MMIO read or an MMIO write. Add support to recognize the MMIO requests and invoke SEV-ES specific routines that can complete the MMIO operation. These routines use common KVM support to complete the MMIO operation. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Message-Id: <af8de55127d5bcc3253d9b6084a0144c12307d4d.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-15KVM: SVM: Create trace events for VMGEXIT MSR protocol processingTom Lendacky
Add trace events for entry to and exit from VMGEXIT MSR protocol processing. The vCPU will be common for the trace events. The MSR protocol processing is guided by the GHCB GPA in the VMCB, so the GHCB GPA will represent the input and output values for the entry and exit events, respectively. Additionally, the exit event will contain the return code for the event. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Message-Id: <c5b3b440c3e0db43ff2fc02813faa94fa54896b0.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-15KVM: SVM: Create trace events for VMGEXIT processingTom Lendacky
Add trace events for entry to and exit from VMGEXIT processing. The vCPU id and the exit reason will be common for the trace events. The exit info fields will represent the input and output values for the entry and exit events, respectively. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Message-Id: <25357dca49a38372e8f483753fb0c1c2a70a6898.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-15KVM: SVM: Add support for SEV-ES GHCB MSR protocol function 0x100Tom Lendacky
The GHCB specification defines a GHCB MSR protocol using the lower 12-bits of the GHCB MSR (in the hypervisor this corresponds to the GHCB GPA field in the VMCB). Function 0x100 is a request for termination of the guest. The guest has encountered some situation for which it has requested to be terminated. The GHCB MSR value contains the reason for the request. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Message-Id: <f3a1f7850c75b6ea4101e15bbb4a3af1a203f1dc.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-15KVM: SVM: Add support for SEV-ES GHCB MSR protocol function 0x004Tom Lendacky
The GHCB specification defines a GHCB MSR protocol using the lower 12-bits of the GHCB MSR (in the hypervisor this corresponds to the GHCB GPA field in the VMCB). Function 0x004 is a request for CPUID information. Only a single CPUID result register can be sent per invocation, so the protocol defines the register that is requested. The GHCB MSR value is set to the CPUID register value as per the specification via the VMCB GHCB GPA field. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Message-Id: <fd7ee347d3936e484c06e9001e340bf6387092cd.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-15KVM: SVM: Add support for SEV-ES GHCB MSR protocol function 0x002Tom Lendacky
The GHCB specification defines a GHCB MSR protocol using the lower 12-bits of the GHCB MSR (in the hypervisor this corresponds to the GHCB GPA field in the VMCB). Function 0x002 is a request to set the GHCB MSR value to the SEV INFO as per the specification via the VMCB GHCB GPA field. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Message-Id: <c23c163a505290a0d1b9efc4659b838c8c902cbc.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-15KVM: SVM: Add initial support for a VMGEXIT VMEXITTom Lendacky
SEV-ES adds a new VMEXIT reason code, VMGEXIT. Initial support for a VMGEXIT includes mapping the GHCB based on the guest GPA, which is obtained from a new VMCB field, and then validating the required inputs for the VMGEXIT exit reason. Since many of the VMGEXIT exit reasons correspond to existing VMEXIT reasons, the information from the GHCB is copied into the VMCB control exit code areas and KVM register areas. The standard exit handlers are invoked, similar to standard VMEXIT processing. Before restarting the vCPU, the GHCB is updated with any registers that have been updated by the hypervisor. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Message-Id: <c6a4ed4294a369bd75c44d03bd7ce0f0c3840e50.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-15KVM: SVM: Prepare for SEV-ES exit handling in the sev.c fileTom Lendacky
This is a pre-patch to consolidate some exit handling code into callable functions. Follow-on patches for SEV-ES exit handling will then be able to use them from the sev.c file. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Message-Id: <5b8b0ffca8137f3e1e257f83df9f5c881c8a96a3.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-15KVM: SVM: Cannot re-initialize the VMCB after shutdown with SEV-ESTom Lendacky
When a SHUTDOWN VMEXIT is encountered, normally the VMCB is re-initialized so that the guest can be re-launched. But when a guest is running as an SEV-ES guest, the VMSA cannot be re-initialized because it has been encrypted. For now, just return -EINVAL to prevent a possible attempt at a guest reset. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Message-Id: <aa6506000f6f3a574de8dbcdab0707df844cb00c.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-15KVM: SVM: Do not allow instruction emulation under SEV-ESTom Lendacky
When a guest is running as an SEV-ES guest, it is not possible to emulate instructions. Add support to prevent instruction emulation. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Message-Id: <f6355ea3024fda0a3eb5eb99c6b62dca10d792bd.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-15KVM: SVM: Prevent debugging under SEV-ESTom Lendacky
Since the guest register state of an SEV-ES guest is encrypted, debugging is not supported. Update the code to prevent guest debugging when the guest has protected state. Additionally, an SEV-ES guest must only and always intercept DR7 reads and writes. Update set_dr_intercepts() and clr_dr_intercepts() to account for this. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Message-Id: <8db966fa2f9803d6454ce773863025d0e2e7f3cc.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-15KVM: SVM: Add required changes to support intercepts under SEV-ESTom Lendacky
When a guest is running under SEV-ES, the hypervisor cannot access the guest register state. There are numerous places in the KVM code where certain registers are accessed that are not allowed to be accessed (e.g. RIP, CR0, etc). Add checks to prevent register accesses and add intercept update support at various points within the KVM code. Also, when handling a VMGEXIT, exceptions are passed back through the GHCB. Since the RDMSR/WRMSR intercepts (may) inject a #GP on error, update the SVM intercepts to handle this for SEV-ES guests. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> [Redo MSR part using the .complete_emulated_msr callback. - Paolo] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-15KVM: x86: introduce complete_emulated_msr callbackPaolo Bonzini
This will be used by SEV-ES to inject MSR failure via the GHCB. Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-15KVM: x86: use kvm_complete_insn_gp in emulating RDMSR/WRMSRPaolo Bonzini
Simplify the four functions that handle {kernel,user} {rd,wr}msr, there is still some repetition between the two instances of rdmsr but the whole business of calling kvm_inject_gp and kvm_skip_emulated_instruction can be unified nicely. Because complete_emulated_wrmsr now becomes essentially a call to kvm_complete_insn_gp, remove complete_emulated_msr. Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-15KVM: x86: remove bogus #GP injectionPaolo Bonzini
There is no need to inject a #GP from kvm_mtrr_set_msr, kvm_emulate_wrmsr will handle it. Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-15drm: mxsfb: Silence -EPROBE_DEFER while waiting for bridgeGuido Günther
It can take multiple iterations until all components for an attached DSI bridge are up leading to several: [ 3.796425] mxsfb 30320000.lcd-controller: Cannot connect bridge: -517 [ 3.816952] mxsfb 30320000.lcd-controller: [drm:mxsfb_probe [mxsfb]] *ERROR* failed to attach bridge: -517 Silence this by checking for -EPROBE_DEFER and using dev_err_probe() so we set a deferred reason in case a dependency fails to probe (which quickly happens on small config/DT changes due to the rather long probe chain which can include bridges, phys, panels, backights, leds, etc.). This also removes the only DRM_DEV_ERROR() usage, the rest of the driver uses dev_err(). Signed-off-by: Guido Günther <agx@sigxcpu.org> Fixes: c42001e357f7 ("drm: mxsfb: Use drm_panel_bridge") Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/d5761eb871adde5464ba112b89d966568bc2ff6c.1608020391.git.agx@sigxcpu.org
2020-12-15dma-buf: Fix kerneldoc formattingDaniel Vetter
I wanted to look up something and noticed the hyperlink doesn't work. While fixing that also noticed a trivial kerneldoc comment typo in the same section, fix that too. Reviewed-by: Michael J. Ruhl <michael.j.ruhl@intel.com> Reviewed-by: Simon Ser <contact@emersion.fr> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201204200242.2671481-1-daniel.vetter@ffwll.ch
2020-12-15Merge tag 'irqchip-5.11' of ↵Thomas Gleixner
git://git.kernel.org/pub/scm/linux/kernel/git/maz/arm-platforms into irq/core Pull irqchip updates for 5.11 from Marc Zyngier: - Preliminary support for managed interrupts on platform devices - Correctly identify allocation of MSIs proxyied by another device - Remove the fasteoi IPI flow which has been proved useless - Generalise the Ocelot support to new SoCs - Improve GICv4.1 vcpu entry, matching the corresponding KVM optimisation - Work around spurious interrupts on Qualcomm PDC - Random fixes and cleanups Link: https://lore.kernel.org/r/20201212135626.1479884-1-maz@kernel.org
2020-12-15Merge tag 'drm-misc-next-2020-11-27-1' of ↵Daniel Vetter
git://anongit.freedesktop.org/drm/drm-misc into drm-next drm-misc-next for 5.11: UAPI Changes: Cross-subsystem Changes: * char/agp: Disable frontend without CONFIG_DRM_LEGACY * mm: Fix fput in mmap error path; Introduce vma_set_file() to change vma->vm_file Core Changes: * dma-buf: Use sgtables in system heap; Move heap helpers to CMA-heap code; Skip sync for unmapped buffers; Alloc higher order pages is available; Respect num_fences when initializing shared fence list * doc: Improvements around DRM modes and SCALING_FILTER * Pass full state to connector atomic functions + callee updates * Cleanups * shmem: Map pages with caching by default; Cleanups * ttm: Fix DMA32 for global page pool * fbdev: Cleanups * fb-helper: Update framebuffer after userspace writes; Unmap console buffer during shutdown; Rework damage handling of shadow framebuffer Driver Changes: * amdgpu: Multi-hop fixes, Clenaups * imx: Fix rotation for Vivante tiled formats; Support nearest-neighour skaling; Cleanups * mcde: Fix RGB formats; Support DPI output; Cleanups * meson: HDMI clock fixes * panel: Add driver and bindings for Innolux N125HCE-GN1 * panel/s6e63m0: More backlight levels; Fix init; Cleanups * via: Clenunps * virtio: Use fence ID for handling fences; Cleanups Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> From: Thomas Zimmermann <tzimmermann@suse.de> Link: https://patchwork.freedesktop.org/patch/msgid/20201127083055.GA29139@linux-uq9g
2020-12-15parisc: pci-dma: fix warning unused-functionAnders Roxell
When building tinyconfig on parisc the following warnign shows up: /tmp/arch/parisc/kernel/pci-dma.c:338:12: warning: 'proc_pcxl_dma_show' defined but not used [-Wunused-function] static int proc_pcxl_dma_show(struct seq_file *m, void *v) ^~~~~~~~~~~~~~~~~~ Mark the function as __maybe_unused to fix the warning. Signed-off-by: Anders Roxell <anders.roxell@linaro.org> Signed-off-by: Helge Deller <deller@gmx.de>
2020-12-14net: hns3: fix expression that is currently always trueColin Ian King
The || condition in hdev->fd_active_type != HCLGE_FD_ARFS_ACTIVE || hdev->fd_active_type != HCLGE_FD_RULE_NONE will always be true because hdev->fd_active_type cannot be equal to two different values at the same time. The expression is always true which is not correct. Fix this by replacing || with && to correct the logic in the expression. Addresses-Coverity: ("Constant expression result") Fixes: 0205ec041ec6 ("net: hns3: add support for hw tc offload of tc flower") Signed-off-by: Colin Ian King <colin.king@canonical.com> Reviewed-by: Huazhong Tan <tanhuazhong@huawei.com> Link: https://lore.kernel.org/r/20201215000033.85383-1-colin.king@canonical.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-12-14net: fix proc_fs init handling in af_packet and tlsYonatan Linik
proc_fs was used, in af_packet, without a surrounding #ifdef, although there is no hard dependency on proc_fs. That caused the initialization of the af_packet module to fail when CONFIG_PROC_FS=n. Specifically, proc_create_net() was used in af_packet.c, and when it fails, packet_net_init() returns -ENOMEM. It will always fail when the kernel is compiled without proc_fs, because, proc_create_net() for example always returns NULL. The calling order that starts in af_packet.c is as follows: packet_init() register_pernet_subsys() register_pernet_operations() __register_pernet_operations() ops_init() ops->init() (packet_net_ops.init=packet_net_init()) proc_create_net() It worked in the past because register_pernet_subsys()'s return value wasn't checked before this Commit 36096f2f4fa0 ("packet: Fix error path in packet_init."). It always returned an error, but was not checked before, so everything was working even when CONFIG_PROC_FS=n. The fix here is simply to add the necessary #ifdef. This also fixes a similar error in tls_proc.c, that was found by Jakub Kicinski. Fixes: d26b698dd3cd ("net/tls: add skeleton of MIB statistics") Fixes: 36096f2f4fa0 ("packet: Fix error path in packet_init") Signed-off-by: Yonatan Linik <yonatanlinik@gmail.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-12-14nfc: pn533: convert comma to semicolonZheng Yongjun
Replace a comma between expression statements by a semicolon. Signed-off-by: Zheng Yongjun <zhengyongjun3@huawei.com> Link: https://lore.kernel.org/r/20201214134314.4618-1-zhengyongjun3@huawei.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-12-14Merge branch 'vsock-add-flags-field-in-the-vsock-address'Jakub Kicinski
Andra Paraschiv says: ==================== vsock: Add flags field in the vsock address vsock enables communication between virtual machines and the host they are running on. Nested VMs can be setup to use vsock channels, as the multi transport support has been available in the mainline since the v5.5 Linux kernel has been released. Implicitly, if no host->guest vsock transport is loaded, all the vsock packets are forwarded to the host. This behavior can be used to setup communication channels between sibling VMs that are running on the same host. One example can be the vsock channels that can be established within AWS Nitro Enclaves (see Documentation/virt/ne_overview.rst). To be able to explicitly mark a connection as being used for a certain use case, add a flags field in the vsock address data structure. The value of the flags field is taken into consideration when the vsock transport is assigned. This way can distinguish between different use cases, such as nested VMs / local communication and sibling VMs. The flags field can be set in the user space application connect logic. On the listen path, the field can be set in the kernel space logic. ==================== Link: https://lore.kernel.org/r/20201214161122.37717-1-andraprs@amazon.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-12-14af_vsock: Assign the vsock transport considering the vsock address flagsAndra Paraschiv
The vsock flags field can be set in the connect path (user space app) and the (listen) receive path (kernel space logic). When the vsock transport is assigned, the remote CID is used to distinguish between types of connection. Use the vsock flags value (in addition to the CID) from the remote address to decide which vsock transport to assign. For the sibling VMs use case, all the vsock packets need to be forwarded to the host, so always assign the guest->host transport if the VMADDR_FLAG_TO_HOST flag is set. For the other use cases, the vsock transport assignment logic is not changed. Changelog v3 -> v4 * Update the "remote_flags" local variable type to reflect the change of the "svm_flags" field to be 1 byte in size. v2 -> v3 * Update bitwise check logic to not compare result to the flag value. v1 -> v2 * Use bitwise operator to check the vsock flag. * Use the updated "VMADDR_FLAG_TO_HOST" flag naming. * Merge the checks for the g2h transport assignment in one "if" block. Signed-off-by: Andra Paraschiv <andraprs@amazon.com> Reviewed-by: Stefano Garzarella <sgarzare@redhat.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>