summaryrefslogtreecommitdiff
AgeCommit message (Collapse)Author
2020-04-18ipv6: rpl: fix full address compressionAlexander Aring
This patch makes it impossible that cmpri or cmpre values are set to the value 16 which is not possible, because these are 4 bit values. We currently run in an overflow when assigning the value 16 to it. According to the standard a value of 16 can be interpreted as a full elided address which isn't possible to set as compression value. A reason why this cannot be set is that the current ipv6 header destination address should never show up inside the segments of the rpl header. In this case we run in a overflow and the address will have no compression at all. Means cmpri or compre is set to 0. As we handle cmpri and cmpre sometimes as unsigned char or 4 bit value inside the rpl header the current behaviour ends in an invalid header format. This patch simple use the best compression method if we ever run into the case that the destination address is showed up inside the rpl segments. We avoid the overflow handling and the rpl header is still valid, even when we have the destination address inside the rpl segments. Signed-off-by: Alexander Aring <alex.aring@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-04-18net: stmmac: Fix sub-second incrementJulien Beraud
In fine adjustement mode, which is the current default, the sub-second increment register is the number of nanoseconds that will be added to the clock when the accumulator overflows. At each clock cycle, the value of the addend register is added to the accumulator. Currently, we use 20ns = 1e09ns / 50MHz as this value whatever the frequency of the ptp clock actually is. The adjustment is then done on the addend register, only incrementing every X clock cycles X being the ratio between 50MHz and ptp_clock_rate (addend = 2^32 * 50MHz/ptp_clock_rate). This causes the following issues : - In case the frequency of the ptp clock is inferior or equal to 50MHz, the addend value calculation will overflow and the default addend value will be set to 0, causing the clock to not work at all. (For instance, for ptp_clock_rate = 50MHz, addend = 2^32). - The resolution of the timestamping clock is limited to 20ns while it is not needed, thus limiting the accuracy of the timestamping to 20ns. Fix this by setting sub-second increment to 2e09ns / ptp_clock_rate. It will allow to reach the minimum possible frequency for ptp_clk_ref, which is 5MHz for GMII 1000Mps Full-Duplex by setting the sub-second-increment to a higher value. For instance, for 25MHz, it gives ssinc = 80ns and default_addend = 2^31. It will also allow to use a lower value for sub-second-increment, thus improving the timestamping accuracy with frequencies higher than 100MHz, for instance, for 200MHz, ssinc = 10ns and default_addend = 2^31. v1->v2: - Remove modifications to the calculation of default addend, which broke compatibility with clock frequencies for which 2000000000 / ptp_clk_freq is not an integer. - Modify description according to discussions. Signed-off-by: Julien Beraud <julien.beraud@orolia.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-04-18net: stmmac: fix enabling socfpga's ptp_ref_clockJulien Beraud
There are 2 registers to write to enable a ptp ref clock coming from the fpga. One that enables the usage of the clock from the fpga for emac0 and emac1 as a ptp ref clock, and the other to allow signals from the fpga to reach emac0 and emac1. Currently, if the dwmac-socfpga has phymode set to PHY_INTERFACE_MODE_MII, PHY_INTERFACE_MODE_GMII, or PHY_INTERFACE_MODE_SGMII, both registers will be written and the ptp ref clock will be set as coming from the fpga. Separate the 2 register writes to only enable signals from the fpga to reach emac0 or emac1 when ptp ref clock is not coming from the fpga. Signed-off-by: Julien Beraud <julien.beraud@orolia.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-04-18wimax/i2400m: Fix potential urb refcnt leakXiyu Yang
i2400mu_bus_bm_wait_for_ack() invokes usb_get_urb(), which increases the refcount of the "notif_urb". When i2400mu_bus_bm_wait_for_ack() returns, local variable "notif_urb" becomes invalid, so the refcount should be decreased to keep refcount balanced. The issue happens in all paths of i2400mu_bus_bm_wait_for_ack(), which forget to decrease the refcnt increased by usb_get_urb(), causing a refcnt leak. Fix this issue by calling usb_put_urb() before the i2400mu_bus_bm_wait_for_ack() returns. Signed-off-by: Xiyu Yang <xiyuyang19@fudan.edu.cn> Signed-off-by: Xin Tan <tanxin.ctf@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-04-18Merge tag 'scsi-fixes' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi Pull SCSI fixes from James Bottomley: "Seven fixes: three in target, one on a sg error leg, two in qla2xxx fixing warnings introduced in the last merge window and updating MAINTAINERS and one in hisi_sas fixing a problem introduced by libata" * tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi: scsi: sg: add sg_remove_request in sg_common_write scsi: target: tcmu: reset_ring should reset TCMU_DEV_BIT_BROKEN scsi: target: fix PR IN / READ FULL STATUS for FC scsi: target: Write NULL to *port_nexus_ptr if no ISID scsi: MAINTAINERS: Update qla2xxx FC-SCSI driver maintainer scsi: qla2xxx: Fix regression warnings scsi: hisi_sas: Fix build error without SATA_HOST
2020-04-18xattr.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18uapi: linux: fiemap.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18uapi: linux: dlm_device.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18tpm_eventlog.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18ti_wilink_st.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18swap.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18skbuff.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18sched: topology.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18rslib.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18rio.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18posix_acl.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18platform_data: wilco-ec.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18memcontrol.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18list_lru.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18lib: cpu_rmap: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18irq.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18ihex.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18igmp.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18genalloc.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18ethtool.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18energy_model.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18enclosure.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18dirent.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18digsig.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18can: dev: peak_canfd.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18blk_types: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18blk-mq: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18bio: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18Merge tag 'hwmon-for-v5.7-rc2' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/groeck/linux-staging Pull hwmon fixes from Guenter Roeck: - Fix up chip IDs (isl68137) - error handling for invalid temperatures and use true module name (drivetemp) - Fix static symbol warnings (k10temp) - Use valid hwmon device name (jc42) * tag 'hwmon-for-v5.7-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck/linux-staging: hwmon: (jc42) Fix name to have no illegal characters hwmon: (k10temp) make some symbols static hwmon: (drivetemp) Return -ENODATA for invalid temperatures hwmon: (drivetemp) Use drivetemp's true module name in Kconfig section hwmon: (pmbus/isl68137) Fix up chip IDs
2020-04-18tipc: Fix potential tipc_node refcnt leak in tipc_rcvXiyu Yang
tipc_rcv() invokes tipc_node_find() twice, which returns a reference of the specified tipc_node object to "n" with increased refcnt. When tipc_rcv() returns or a new object is assigned to "n", the original local reference of "n" becomes invalid, so the refcount should be decreased to keep refcount balanced. The issue happens in some paths of tipc_rcv(), which forget to decrease the refcnt increased by tipc_node_find() and will cause a refcnt leak. Fix this issue by calling tipc_node_put() before the original object pointed by "n" becomes invalid. Signed-off-by: Xiyu Yang <xiyuyang19@fudan.edu.cn> Signed-off-by: Xin Tan <tanxin.ctf@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-04-18tipc: Fix potential tipc_aead refcnt leak in tipc_crypto_rcvXiyu Yang
tipc_crypto_rcv() invokes tipc_aead_get(), which returns a reference of the tipc_aead object to "aead" with increased refcnt. When tipc_crypto_rcv() returns, the original local reference of "aead" becomes invalid, so the refcount should be decreased to keep refcount balanced. The issue happens in one error path of tipc_crypto_rcv(). When TIPC message decryption status is EINPROGRESS or EBUSY, the function forgets to decrease the refcnt increased by tipc_aead_get() and causes a refcnt leak. Fix this issue by calling tipc_aead_put() on the error path when TIPC message decryption status is EINPROGRESS or EBUSY. Signed-off-by: Xiyu Yang <xiyuyang19@fudan.edu.cn> Signed-off-by: Xin Tan <tanxin.ctf@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-04-18net: netrom: Fix potential nr_neigh refcnt leak in nr_add_nodeXiyu Yang
nr_add_node() invokes nr_neigh_get_dev(), which returns a local reference of the nr_neigh object to "nr_neigh" with increased refcnt. When nr_add_node() returns, "nr_neigh" becomes invalid, so the refcount should be decreased to keep refcount balanced. The issue happens in one normal path of nr_add_node(), which forgets to decrease the refcnt increased by nr_neigh_get_dev() and causes a refcnt leak. It should decrease the refcnt before the function returns like other normal paths do. Fix this issue by calling nr_neigh_put() before the nr_add_node() returns. Signed-off-by: Xiyu Yang <xiyuyang19@fudan.edu.cn> Signed-off-by: Xin Tan <tanxin.ctf@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-04-18ALSA: hda/realtek - Fix unexpected init_amp overrideTakashi Iwai
The commit 1c76aa5fb48d ("ALSA: hda/realtek - Allow skipping spec->init_amp detection") changed the way to assign spec->init_amp field that specifies the way to initialize the amp. Along with the change, the commit also replaced a few fixups that set spec->init_amp in HDA_FIXUP_ACT_PROBE with HDA_FIXUP_ACT_PRE_PROBE. This was rather aligning to the other fixups, and not supposed to change the actual behavior. However, this change turned out to cause a regression on FSC S7020, which hit exactly the above. The reason was that there is still one place that overrides spec->init_amp after HDA_FIXUP_ACT_PRE_PROBE call, namely in alc_ssid_check(). This patch fixes the regression by adding the proper spec->init_amp override check, i.e. verifying whether it's still ALC_INIT_UNDEFINED. Fixes: 1c76aa5fb48d ("ALSA: hda/realtek - Allow skipping spec->init_amp detection") Cc: <stable@vger.kernel.org> BugLink: https://bugzilla.kernel.org/show_bug.cgi?id=207329 Link: https://lore.kernel.org/r/20200418190639.10082-1-tiwai@suse.de Signed-off-by: Takashi Iwai <tiwai@suse.de>
2020-04-18ALSA: usb-audio: Filter out unsupported sample rates on Focusrite devicesAlexander Tsoy
Many Focusrite devices supports a limited set of sample rates per altsetting. These includes audio interfaces with ADAT ports: - Scarlett 18i6, 18i8 1st gen, 18i20 1st gen; - Scarlett 18i8 2nd gen, 18i20 2nd gen; - Scarlett 18i8 3rd gen, 18i20 3rd gen; - Clarett 2Pre USB, 4Pre USB, 8Pre USB. Maximum rate is exposed in the last 4 bytes of Format Type descriptor which has a non-standard bLength = 10. Tested-by: Alexey Skobkin <skobkin-ru@ya.ru> Signed-off-by: Alexander Tsoy <alexander@tsoy.me> Cc: <stable@vger.kernel.org> Link: https://lore.kernel.org/r/20200418175815.12211-1-alexander@tsoy.me Signed-off-by: Takashi Iwai <tiwai@suse.de>
2020-04-18Merge tag 'xfs-5.7-fixes-3' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linuxLinus Torvalds
Pull xfs fixes from Darrick Wong: "The three commits here fix some livelocks and other clashes with fsfreeze, a potential corruption problem, and a minor race between processes freeing and allocating space when the filesystem is near ENOSPC. Summary: - Fix a partially uninitialized variable. - Teach the background gc threads to apply for fsfreeze protection. - Fix some scaling problems when multiple threads try to flush the filesystem when we're about to hit ENOSPC" * tag 'xfs-5.7-fixes-3' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: xfs: move inode flush to the sync workqueue xfs: fix partially uninitialized structure in xfs_reflink_remap_extent xfs: acquire superblock freeze protection on eofblocks scans
2020-04-18Merge tag 'for-linus-2020-04-18' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux Pull thread fixes from Christian Brauner: "A few fixes and minor improvements: - Correctly validate the cgroup file descriptor when clone3() is used with CLONE_INTO_CGROUP. - Check that a new enough version of struct clone_args is passed which supports the cgroup file descriptor argument when CLONE_INTO_CGROUP is set in the flags argument. - Catch nonsensical struct clone_args layouts at build time. - Catch extensions of struct clone_args without updating the uapi visible size definitions at build time. - Check whether the signal is valid early in kill_pid_usb_asyncio() before doing further work. - Replace open-coded rcu_read_lock()+kill_pid_info()+rcu_read_unlock() sequence in kill_something_info() with kill_proc_info() which is a dedicated helper to do just that" * tag 'for-linus-2020-04-18' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux: clone3: add build-time CLONE_ARGS_SIZE_VER* validity checks clone3: add a check for the user struct size if CLONE_INTO_CGROUP is set clone3: fix cgroup argument sanity check signal: use kill_proc_info instead of kill_pid_info in kill_something_info signal: check sig before setting info in kill_pid_usb_asyncio
2020-04-18Merge branch 'i2c/for-current' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/wsa/linux Pull i2c fixes from Wolfram Sang: "Some driver bugfixes and an old API removal now that all users are gone" * 'i2c/for-current' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa/linux: i2c: tegra: Synchronize DMA before termination i2c: tegra: Better handle case where CPU0 is busy for a long time i2c: remove i2c_new_probed_device API i2c: altera: use proper variable to hold errno i2c: designware: platdrv: Remove DPM_FLAG_SMART_SUSPEND flag on BYT and CHT
2020-04-18Merge tag 'drm-fixes-2020-04-18' of git://anongit.freedesktop.org/drm/drmLinus Torvalds
Pull drm fixes from Dave Airlie: "Quiet enough for rc2, mostly amdgpu fixes, a couple of i915 fixes, and one nouveau module firmware fix: i915: - Fix guest page access by using the brand new VFIO dma r/w interface (Yan) - Fix for i915 perf read buffers (Ashutosh) amdgpu: - gfx10 fix - SMU7 overclocking fix - RAS fix - GPU reset fix - Fix a regression in a previous suspend/resume fix - Add a gfxoff quirk nouveau: - fix missing MODULE_FIRMWARE" * tag 'drm-fixes-2020-04-18' of git://anongit.freedesktop.org/drm/drm: drm/nouveau/sec2/gv100-: add missing MODULE_FIRMWARE() drm/amdgpu/gfx9: add gfxoff quirk drm/amdgpu: fix the hw hang during perform system reboot and reset drm/i915/gvt: switch to user vfio_group_pin/upin_pages drm/i915/gvt: subsitute kvm_read/write_guest with vfio_dma_rw drm/i915/gvt: hold reference of VFIO group during opening of vgpu drm/i915/perf: Do not clear pollin for small user read buffers drm/amdgpu: fix wrong vram lost counter increment V2 drm/amd/powerplay: unload mp1 for Arcturus RAS baco reset drm/amd/powerplay: force the trim of the mclk dpm_levels if OD is enabled Revert "drm/amdgpu: change SH MEM alignment mode for gfx10"
2020-04-18hwmon: (jc42) Fix name to have no illegal charactersSascha Hauer
The jc42 driver passes I2C client's name as hwmon device name. In case of device tree probed devices this ends up being part of the compatible string, "jc-42.4-temp". This name contains hyphens and the hwmon core doesn't like this: jc42 2-0018: hwmon: 'jc-42.4-temp' is not a valid name attribute, please fix This changes the name to "jc42" which doesn't have any illegal characters. Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de> Link: https://lore.kernel.org/r/20200417092853.31206-1-s.hauer@pengutronix.de Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2020-04-18clang-format: Update with the latest for_each macro listMiguel Ojeda
Re-run the shell fragment that generated the original list. Signed-off-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
2020-04-18clang-format: don't indent namespacesIan Rogers
This change doesn't affect existing code. Inner namespace indentation can lead to a lot of indentation in the case of anonymous namespaces and the like, impeding readability. Of the clang-format builtin styles LLVM, Google, Chromium and Mozilla use None while WebKit uses Inner. Signed-off-by: Ian Rogers <irogers@google.com> Signed-off-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
2020-04-18x86/split_lock: Add Tremont family CPU modelsTony Luck
Tremont CPUs support IA32_CORE_CAPABILITIES bits to indicate whether specific SKUs have support for split lock detection. Signed-off-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20200416205754.21177-4-tony.luck@intel.com
2020-04-18x86/split_lock: Bits in IA32_CORE_CAPABILITIES are not architecturalTony Luck
The Intel Software Developers' Manual erroneously listed bit 5 of the IA32_CORE_CAPABILITIES register as an architectural feature. It is not. Features enumerated by IA32_CORE_CAPABILITIES are model specific and implementation details may vary in different cpu models. Thus it is only safe to trust features after checking the CPU model. Icelake client and server models are known to implement the split lock detect feature even though they don't enumerate IA32_CORE_CAPABILITIES [ tglx: Use switch() for readability and massage comments ] Fixes: 6650cdd9a8cc ("x86/split_lock: Enable split lock detection by kernel") Signed-off-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20200416205754.21177-3-tony.luck@intel.com
2020-04-17buffer: remove useless comment and WB_REASON_FREE_MORE_MEM, reason.Zhiqiang Liu
free_more_memory func has been completely removed in commit bc48f001de12 ("buffer: eliminate the need to call free_more_memory() in __getblk_slow()") So comment and `WB_REASON_FREE_MORE_MEM` reason about free_more_memory are no longer needed. Fixes: bc48f001de12 ("buffer: eliminate the need to call free_more_memory() in __getblk_slow()") Reviewed-by: Jan Kara <jack@suse.cz> Signed-off-by: Zhiqiang Liu <liuzhiqiang26@huawei.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-04-17drm/dp_mst: Zero assigned PBN when releasing VCPI slotsMikita Lipski
Zero Port's PBN together with VCPI slots when releasing allocated VCPI slots. That way when disabling the connector it will not cause issues in drm_dp_mst_atomic_check verifying branch bw limit. Signed-off-by: Mikita Lipski <mikita.lipski@amd.com> Signed-off-by: Lyude Paul <lyude@redhat.com> Fixes: cd82d82cbc04 ("drm/dp_mst: Add branch bandwidth validation to MST atomic check") Cc: <stable@vger.kernel.org> # v5.6+ Link: https://patchwork.freedesktop.org/patch/msgid/20200407160717.27976-1-mikita.lipski@amd.com