summaryrefslogtreecommitdiff
AgeCommit message (Collapse)Author
2024-11-01KVM: x86: Reject userspace attempts to access PERF_CAPABILITIES w/o PDCMSean Christopherson
Reject userspace accesses to PERF_CAPABILITIES if PDCM isn't set in guest CPUID, i.e. if the vCPU doesn't actually have PERF_CAPABILITIES. But! Do so via KVM_MSR_RET_UNSUPPORTED, so that reads get '0' and writes of '0' are ignored if KVM advertised support PERF_CAPABILITIES. KVM's ABI is that userspace must set guest CPUID prior to setting MSRs, and that setting MSRs that aren't supposed exist is disallowed (modulo the '0' exemption). Link: https://lore.kernel.org/r/20240802185511.305849-5-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-11-01KVM: x86: Quirk initialization of feature MSRs to KVM's max configurationSean Christopherson
Add a quirk to control KVM's misguided initialization of select feature MSRs to KVM's max configuration, as enabling features by default violates KVM's approach of letting userspace own the vCPU model, and is actively problematic for MSRs that are conditionally supported, as the vCPU will end up with an MSR value that userspace can't restore. E.g. if the vCPU is configured with PDCM=0, userspace will save and attempt to restore a non-zero PERF_CAPABILITIES, thanks to KVM's meddling. Link: https://lore.kernel.org/r/20240802185511.305849-4-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-11-01KVM: x86: Disallow changing MSR_PLATFORM_INFO after vCPU has runSean Christopherson
Tag MSR_PLATFORM_INFO as a feature MSR (because it is), i.e. disallow it from being modified after the vCPU has run. To make KVM's selftest compliant, simply delete the userspace MSR write that restores KVM's original value at the end of the test. Verifying that userspace can write back what it originally read is uninteresting in this particular case, because KVM doesn't enforce _any_ bits in the MSR, i.e. userspace should be able to write any arbitrary value. Link: https://lore.kernel.org/r/20240802185511.305849-3-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-11-01KVM: x86: Co-locate initialization of feature MSRs in kvm_arch_vcpu_create()Sean Christopherson
Bunch all of the feature MSR initialization in kvm_arch_vcpu_create() so that it can be easily quirked in a future patch. No functional change intended. Link: https://lore.kernel.org/r/20240802185511.305849-2-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-11-01KVM: x86: Document an erratum in KVM_SET_VCPU_EVENTS on Intel CPUsSean Christopherson
Document a flaw in KVM's ABI which lets userspace attempt to inject a "bad" hardware exception event, and thus induce VM-Fail on Intel CPUs. Fixing the flaw is a fool's errand, as AMD doesn't sanity check the validity of the error code, Intel CPUs that support CET relax the check for Protected Mode, userspace can change the mode after queueing an exception, KVM ignores the error code when emulating Real Mode exceptions, and so on and so forth. The VM-Fail itself doesn't harm KVM or the kernel beyond triggering a ratelimited pr_warn(), so just document the oddity. Link: https://lore.kernel.org/r/20240802200420.330769-1-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-11-01KVM: nVMX: fix canonical check of vmcs12 HOST_RIPMaxim Levitsky
HOST_RIP canonical check should check the L1 of CR4.LA57 stored in the vmcs12 rather than the current L1's because it is legal to change the CR4.LA57 value during VM exit from L2 to L1. This is a theoretical bug though, because it is highly unlikely that a VM exit will change the CR4.LA57 from the value it had on VM entry. Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Link: https://lore.kernel.org/r/20240906221824.491834-5-mlevitsk@redhat.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-11-01KVM: x86: model canonical checks more preciselyMaxim Levitsky
As a result of a recent investigation, it was determined that x86 CPUs which support 5-level paging, don't always respect CR4.LA57 when doing canonical checks. In particular: 1. MSRs which contain a linear address, allow full 57-bitcanonical address regardless of CR4.LA57 state. For example: MSR_KERNEL_GS_BASE. 2. All hidden segment bases and GDT/IDT bases also behave like MSRs. This means that full 57-bit canonical address can be loaded to them regardless of CR4.LA57, both using MSRS (e.g GS_BASE) and instructions (e.g LGDT). 3. TLB invalidation instructions also allow the user to use full 57-bit address regardless of the CR4.LA57. Finally, it must be noted that the CPU doesn't prevent the user from disabling 5-level paging, even when the full 57-bit canonical address is present in one of the registers mentioned above (e.g GDT base). In fact, this can happen without any userspace help, when the CPU enters SMM mode - some MSRs, for example MSR_KERNEL_GS_BASE are left to contain a non-canonical address in regard to the new mode. Since most of the affected MSRs and all segment bases can be read and written freely by the guest without any KVM intervention, this patch makes the emulator closely follow hardware behavior, which means that the emulator doesn't take in the account the guest CPUID support for 5-level paging, and only takes in the account the host CPU support. Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Link: https://lore.kernel.org/r/20240906221824.491834-4-mlevitsk@redhat.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-11-01KVM: x86: Add X86EMUL_F_MSR and X86EMUL_F_DT_LOAD to aid canonical checksMaxim Levitsky
Add emulation flags for MSR accesses and Descriptor Tables loads, and pass the new flags as appropriate to emul_is_noncanonical_address(). The flags will be used to perform the correct canonical check, as the type of access affects whether or not CR4.LA57 is consulted when determining the canonical bit. No functional change is intended. Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Link: https://lore.kernel.org/r/20240906221824.491834-3-mlevitsk@redhat.com [sean: split to separate patch, massage changelog] Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-11-01KVM: x86: Route non-canonical checks in emulator through emulate_opsMaxim Levitsky
Add emulate_ops.is_canonical_addr() to perform (non-)canonical checks in the emulator, which will allow extending is_noncanonical_address() to support different flavors of canonical checks, e.g. for descriptor table bases vs. MSRs, without needing duplicate logic in the emulator. No functional change is intended. Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Link: https://lore.kernel.org/r/20240906221824.491834-3-mlevitsk@redhat.com [sean: separate from additional of flags, massage changelog] Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-11-01KVM: x86: drop x86.h include from cpuid.hMaxim Levitsky
Drop x86.h include from cpuid.h to allow the x86.h to include the cpuid.h instead. Also fix various places where x86.h was implicitly included via cpuid.h Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Link: https://lore.kernel.org/r/20240906221824.491834-2-mlevitsk@redhat.com [sean: fixup a missed include in mtrr.c] Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-11-01KVM: x86: Use '0' for guest RIP if PMI encounters protected guest stateSean Christopherson
Explicitly return '0' for guest RIP when handling a PMI VM-Exit for a vCPU with protected guest state, i.e. when KVM can't read the real RIP. While there is no "right" value, and profiling a protect guest is rather futile, returning the last known RIP is worse than returning obviously "bad" data. E.g. for SEV-ES+, the last known RIP will often point somewhere in the guest's boot flow. Opportunistically add WARNs to effectively assert that the in_kernel() and get_ip() callbacks are restricted to the common PMI handler, as the return values for the protected guest state case are largely arbitrary, i.e. only make any sense whatsoever for PMIs, where the returned values have no functional impact and thus don't truly matter. Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Link: https://lore.kernel.org/r/20241009175002.1118178-5-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-11-01KVM: x86: Add lockdep-guarded asserts on register cache usageSean Christopherson
When lockdep is enabled, assert that KVM accesses the register caches if and only if cache fills are guaranteed to consume fresh data, i.e. when KVM when KVM is in control of the code sequence. Concretely, the caches can only be used from task context (synchronous) or when handling a PMI VM-Exit (asynchronous, but only in specific windows where the caches are in a known, stable state). Generally speaking, there are very few flows where reading register state from an asynchronous context is correct or even necessary. So, rather than trying to figure out a generic solution, simply disallow using the caches outside of task context by default, and deal with any future exceptions on a case-by-case basis _if_ they arise. Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Link: https://lore.kernel.org/r/20241009175002.1118178-4-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-11-01KVM: x86: Bypass register cache when querying CPL from kvm_sched_out()Sean Christopherson
When querying guest CPL to determine if a vCPU was preempted while in kernel mode, bypass the register cache, i.e. always read SS.AR_BYTES from the VMCS on Intel CPUs. If the kernel is running with full preemption enabled, using the register cache in the preemption path can result in stale and/or uninitialized data being cached in the segment cache. In particular the following scenario is currently possible: - vCPU is just created, and the vCPU thread is preempted before SS.AR_BYTES is written in vmx_vcpu_reset(). - When scheduling out the vCPU task, kvm_arch_vcpu_in_kernel() => vmx_get_cpl() reads and caches '0' for SS.AR_BYTES. - vmx_vcpu_reset() => seg_setup() configures SS.AR_BYTES, but doesn't invoke vmx_segment_cache_clear() to invalidate the cache. As a result, KVM retains a stale value in the cache, which can be read, e.g. via KVM_GET_SREGS. Usually this is not a problem because the VMX segment cache is reset on each VM-Exit, but if the userspace VMM (e.g KVM selftests) reads and writes system registers just after the vCPU was created, _without_ modifying SS.AR_BYTES, userspace will write back the stale '0' value and ultimately will trigger a VM-Entry failure due to incorrect SS segment type. Note, the VM-Enter failure can also be avoided by moving the call to vmx_segment_cache_clear() until after the vmx_vcpu_reset() initializes all segments. However, while that change is correct and desirable (and will come along shortly), it does not address the underlying problem that accessing KVM's register caches from !task context is generally unsafe. In addition to fixing the immediate bug, bypassing the cache for this particular case will allow hardening KVM register caching log to assert that the caches are accessed only when KVM _knows_ it is safe to do so. Fixes: de63ad4cf497 ("KVM: X86: implement the logic for spinlock optimization") Reported-by: Maxim Levitsky <mlevitsk@redhat.com> Closes: https://lore.kernel.org/all/20240716022014.240960-3-mlevitsk@redhat.com Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Link: https://lore.kernel.org/r/20241009175002.1118178-2-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-11-01KVM: x86: AMD's IBPB is not equivalent to Intel's IBPBJim Mattson
From Intel's documentation [1], "CPUID.(EAX=07H,ECX=0):EDX[26] enumerates support for indirect branch restricted speculation (IBRS) and the indirect branch predictor barrier (IBPB)." Further, from [2], "Software that executed before the IBPB command cannot control the predicted targets of indirect branches (4) executed after the command on the same logical processor," where footnote 4 reads, "Note that indirect branches include near call indirect, near jump indirect and near return instructions. Because it includes near returns, it follows that **RSB entries created before an IBPB command cannot control the predicted targets of returns executed after the command on the same logical processor.**" [emphasis mine] On the other hand, AMD's IBPB "may not prevent return branch predictions from being specified by pre-IBPB branch targets" [3]. However, some AMD processors have an "enhanced IBPB" [terminology mine] which does clear the return address predictor. This feature is enumerated by CPUID.80000008:EDX.IBPB_RET[bit 30] [4]. Adjust the cross-vendor features enumerated by KVM_GET_SUPPORTED_CPUID accordingly. [1] https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/cpuid-enumeration-and-architectural-msrs.html [2] https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html#Footnotes [3] https://www.amd.com/en/resources/product-security/bulletin/amd-sb-1040.html [4] https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24594.pdf Fixes: 0c54914d0c52 ("KVM: x86: use Intel speculation bugs and features as derived in generic x86 code") Suggested-by: Venkatesh Srinivas <venkateshs@chromium.org> Signed-off-by: Jim Mattson <jmattson@google.com> Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Link: https://lore.kernel.org/r/20241011214353.1625057-5-jmattson@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-11-01KVM: x86: Advertise AMD_IBPB_RET to userspaceJim Mattson
This is an inherent feature of IA32_PRED_CMD[0], so it is trivially virtualizable (as long as IA32_PRED_CMD[0] is virtualized). Suggested-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Jim Mattson <jmattson@google.com> Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20241011214353.1625057-4-jmattson@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-11-01KVM: x86: Ensure vcpu->mode is loaded from memory in kvm_vcpu_exit_request()Sean Christopherson
Wrap kvm_vcpu_exit_request()'s load of vcpu->mode with READ_ONCE() to ensure the variable is re-loaded from memory, as there is no guarantee the caller provides the necessary annotations to ensure KVM sees a fresh value, e.g. the VM-Exit fastpath could theoretically reuse the pre-VM-Enter value. Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Link: https://lore.kernel.org/r/20240828232013.768446-1-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-11-01KVM: x86: Fix a comment inside __kvm_set_or_clear_apicv_inhibit()Kai Huang
Change svm_vcpu_run() to vcpu_enter_guest() in the comment of __kvm_set_or_clear_apicv_inhibit() to make it reflect the fact. When one thread updates VM's APICv state due to updating the APICv inhibit reasons, it kicks off all vCPUs and makes them wait until the new reason has been updated and can be seen by all vCPUs. There was one WARN() to make sure VM's APICv state is consistent with vCPU's APICv state in the svm_vcpu_run(). Commit ee49a8932971 ("KVM: x86: Move SVM's APICv sanity check to common x86") moved that WARN() to x86 common code vcpu_enter_guest() due to the logic is not unique to SVM, and added comments to both __kvm_set_or_clear_apicv_inhibit() and vcpu_enter_guest() to explain this. However, although the comment in __kvm_set_or_clear_apicv_inhibit() mentioned the WARN(), it seems forgot to reflect that the WARN() had been moved to x86 common, i.e., it still mentioned the svm_vcpu_run() but not vcpu_enter_guest(). Fix it. Note after the change the first line that contains vcpu_enter_guest() exceeds 80 characters, but leave it as is to make the diff clean. Fixes: ee49a8932971 ("KVM: x86: Move SVM's APICv sanity check to common x86") Signed-off-by: Kai Huang <kai.huang@intel.com> Link: https://lore.kernel.org/r/e462e7001b8668649347f879c66597d3327dbac2.1728383775.git.kai.huang@intel.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-11-01KVM: x86: Fix a comment inside kvm_vcpu_update_apicv()Kai Huang
The sentence "... so that KVM can the AVIC doorbell to ..." doesn't have a verb. Fix it. After adding the verb 'use', that line exceeds 80 characters. Thus wrap the 'to' to the next line. Signed-off-by: Kai Huang <kai.huang@intel.com> Link: https://lore.kernel.org/r/666e991edf81e1fccfba9466f3fe65965fcba897.1728383775.git.kai.huang@intel.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-10-30KVM: x86/mmu: Batch TLB flushes when zapping collapsible TDP MMU SPTEsDavid Matlack
Set SPTEs directly to SHADOW_NONPRESENT_VALUE and batch up TLB flushes when zapping collapsible SPTEs, rather than freezing them first. Freezing the SPTE first is not required. It is fine for another thread holding mmu_lock for read to immediately install a present entry before TLBs are flushed because the underlying mapping is not changing. vCPUs that translate through the stale 4K mappings or a new huge page mapping will still observe the same GPA->HPA translations. KVM must only flush TLBs before dropping RCU (to avoid use-after-free of the zapped page tables) and before dropping mmu_lock (to synchronize with mmu_notifiers invalidating mappings). In VMs backed with 2MiB pages, batching TLB flushes improves the time it takes to zap collapsible SPTEs to disable dirty logging: $ ./dirty_log_perf_test -s anonymous_hugetlb_2mb -v 64 -e -b 4g Before: Disabling dirty logging time: 14.334453428s (131072 flushes) After: Disabling dirty logging time: 4.794969689s (76 flushes) Skipping freezing SPTEs also avoids stalling vCPU threads on the frozen SPTE for the time it takes to perform a remote TLB flush. vCPUs faulting on the zapped mapping can now immediately install a new huge mapping and proceed with guest execution. Signed-off-by: David Matlack <dmatlack@google.com> Link: https://lore.kernel.org/r/20240823235648.3236880-3-dmatlack@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-10-30KVM: x86/mmu: Drop @max_level from kvm_mmu_max_mapping_level()David Matlack
Drop the @max_level parameter from kvm_mmu_max_mapping_level(). All callers pass in PG_LEVEL_NUM, so @max_level can be replaced with PG_LEVEL_NUM in the function body. No functional change intended. Signed-off-by: David Matlack <dmatlack@google.com> Link: https://lore.kernel.org/r/20240823235648.3236880-2-dmatlack@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-10-30KVM: x86: Don't emit TLB flushes when aging SPTEs for mmu_notifiersSean Christopherson
Follow x86's primary MMU, which hasn't flushed TLBs when clearing Accessed bits for 10+ years, and skip all TLB flushes when aging SPTEs in response to a clear_flush_young() mmu_notifier event. As documented in x86's ptep_clear_flush_young(), the probability and impact of "bad" reclaim due to stale A-bit information is relatively low, whereas the performance cost of TLB flushes is relatively high. I.e. the cost of flushing TLBs outweighs the benefits. On KVM x86, the cost of TLB flushes is even higher, as KVM doesn't batch TLB flushes for mmu_notifier events (KVM's mmu_notifier contract with MM makes it all but impossible), and sending IPIs forces all running vCPUs to go through a VM-Exit => VM-Enter roundtrip. Furthermore, MGLRU aging of secondary MMUs is expected to use flush-less mmu_notifiers, i.e. flushing for the !MGLRU will make even less sense, and will be actively confusing as it wouldn't be clear why KVM "needs" to flush TLBs for legacy LRU aging, but not for MGLRU aging. Cc: James Houghton <jthoughton@google.com> Cc: Yan Zhao <yan.y.zhao@intel.com> Link: https://lore.kernel.org/all/20240926013506.860253-18-jthoughton@google.com Link: https://lore.kernel.org/r/20241011021051.1557902-19-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-10-30KVM: Allow arch code to elide TLB flushes when aging a young pageSean Christopherson
Add a Kconfig to allow architectures to opt-out of a TLB flush when a young page is aged, as invalidating TLB entries is not functionally required on most KVM-supported architectures. Stale TLB entries can result in false negatives and theoretically lead to suboptimal reclaim, but in practice all observations have been that the performance gained by skipping TLB flushes outweighs any performance lost by reclaiming hot pages. E.g. the primary MMUs for x86 RISC-V, s390, and PPC Book3S elide the TLB flush for ptep_clear_flush_young(), and arm64's MMU skips the trailing DSB that's required for ordering (presumably because there are optimizations related to eliding other TLB flushes when doing make-before-break). Link: https://lore.kernel.org/r/20241011021051.1557902-18-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-10-30KVM: x86/mmu: Set Dirty bit for new SPTEs, even if _hardware_ A/D bits are ↵Sean Christopherson
disabled When making a SPTE, set the Dirty bit in the SPTE as appropriate, even if hardware A/D bits are disabled. Only EPT allows A/D bits to be disabled, and for EPT, the bits are software-available (ignored by hardware) when A/D bits are disabled, i.e. it is perfectly legal for KVM to use the Dirty to track dirty pages in software. Link: https://lore.kernel.org/r/20241011021051.1557902-17-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-10-30KVM: x86/mmu: Dedup logic for detecting TLB flushes on leaf SPTE changesSean Christopherson
Now that the shadow MMU and TDP MMU have identical logic for detecting required TLB flushes when updating SPTEs, move said logic to a helper so that the TDP MMU code can benefit from the comments that are currently exclusive to the shadow MMU. No functional change intended. Link: https://lore.kernel.org/r/20241011021051.1557902-16-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-10-30KVM: x86/mmu: Stop processing TDP MMU roots for test_age if young SPTE foundSean Christopherson
Return immediately if a young SPTE is found when testing, but not updating, SPTEs. The return value is a boolean, i.e. whether there is one young SPTE or fifty is irrelevant (ignoring the fact that it's impossible for there to be fifty SPTEs, as KVM has a hard limit on the number of valid TDP MMU roots). Link: https://lore.kernel.org/r/20241011021051.1557902-15-seanjc@google.com [sean: use guard(rcu)(), as suggested by Paolo] Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-10-30KVM: x86/mmu: Process only valid TDP MMU roots when aging a gfn rangeSean Christopherson
Skip invalid TDP MMU roots when aging a gfn range. There is zero reason to process invalid roots, as they by definition hold stale information. E.g. if a root is invalid because its from a previous memslot generation, in the unlikely event the root has a SPTE for the gfn, then odds are good that the gfn=>hva mapping is different, i.e. doesn't map to the hva that is being aged by the primary MMU. Link: https://lore.kernel.org/r/20241011021051.1557902-14-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-10-30KVM: x86/mmu: Use Accessed bit even when _hardware_ A/D bits are disabledSean Christopherson
Use the Accessed bit in SPTEs even when A/D bits are disabled in hardware, i.e. propagate accessed information to SPTE.Accessed even when KVM is doing manual tracking by making SPTEs not-present. In addition to eliminating a small amount of code in is_accessed_spte(), this also paves the way for preserving Accessed information when a SPTE is zapped in response to a mmu_notifier PROTECTION event, e.g. if a SPTE is zapped because NUMA balancing kicks in. Note, EPT is the only flavor of paging in which A/D bits are conditionally enabled, and the Accessed (and Dirty) bit is software-available when A/D bits are disabled. Note #2, there are currently no concrete plans to preserve Accessed information. Explorations on that front were the initial catalyst, but the cleanup is the motivation for the actual commit. Link: https://lore.kernel.org/r/20241011021051.1557902-13-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-10-30KVM: x86/mmu: Set shadow_dirty_mask for EPT even if A/D bits disabledSean Christopherson
Set shadow_dirty_mask to the architectural EPT Dirty bit value even if A/D bits are disabled at the module level, i.e. even if KVM will never enable A/D bits in hardware. Doing so provides consistent behavior for Accessed and Dirty bits, i.e. doesn't leave KVM in a state where it sets shadow_accessed_mask but not shadow_dirty_mask. Functionally, this should be one big nop, as consumption of shadow_dirty_mask is always guarded by a check that hardware A/D bits are enabled. Link: https://lore.kernel.org/r/20241011021051.1557902-12-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-10-30KVM: x86/mmu: Set shadow_accessed_mask for EPT even if A/D bits disabledSean Christopherson
Now that KVM doesn't use shadow_accessed_mask to detect if hardware A/D bits are enabled, set shadow_accessed_mask for EPT even when A/D bits are disabled in hardware. This will allow using shadow_accessed_mask for software purposes, e.g. to preserve accessed status in a non-present SPTE acros NUMA balancing, if something like that is ever desirable. Link: https://lore.kernel.org/r/20241011021051.1557902-11-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-10-30KVM: x86/mmu: Add a dedicated flag to track if A/D bits are globally enabledSean Christopherson
Add a dedicated flag to track if KVM has enabled A/D bits at the module level, instead of inferring the state based on whether or not the MMU's shadow_accessed_mask is non-zero. This will allow defining and using shadow_accessed_mask even when A/D bits aren't used by hardware. Link: https://lore.kernel.org/r/20241011021051.1557902-10-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-10-30KVM: x86/mmu: WARN and flush if resolving a TDP MMU fault clears MMU-writableSean Christopherson
Do a remote TLB flush if installing a leaf SPTE overwrites an existing leaf SPTE (with the same target pfn, which is enforced by a BUG() in handle_changed_spte()) and clears the MMU-Writable bit. Since the TDP MMU passes ACC_ALL to make_spte(), i.e. always requests a Writable SPTE, the only scenario in which make_spte() should create a !MMU-Writable SPTE is if the gfn is write-tracked or if KVM is prefetching a SPTE. When write-protecting for write-tracking, KVM must hold mmu_lock for write, i.e. can't race with a vCPU faulting in the SPTE. And when prefetching a SPTE, the TDP MMU takes care to avoid clobbering a shadow-present SPTE, i.e. it should be impossible to replace a MMU-writable SPTE with a !MMU-writable SPTE when handling a TDP MMU fault. Cc: David Matlack <dmatlack@google.com> Cc: Yan Zhao <yan.y.zhao@intel.com> Link: https://lore.kernel.org/r/20241011021051.1557902-9-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-10-30KVM: x86/mmu: Fold mmu_spte_update_no_track() into mmu_spte_update()Sean Christopherson
Fold the guts of mmu_spte_update_no_track() into mmu_spte_update() now that the latter doesn't flush when clearing A/D bits, i.e. now that there is no need to explicitly avoid TLB flushes when aging SPTEs. Opportunistically WARN if mmu_spte_update() requests a TLB flush when aging SPTEs, as aging should never modify a SPTE in such a way that KVM thinks a TLB flush is needed. Link: https://lore.kernel.org/r/20241011021051.1557902-8-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-10-30KVM: x86/mmu: Drop ignored return value from kvm_tdp_mmu_clear_dirty_slot()Sean Christopherson
Drop the return value from kvm_tdp_mmu_clear_dirty_slot() as its sole caller ignores the result (KVM flushes after clearing dirty logs based on the logs themselves, not based on SPTEs). Cc: David Matlack <dmatlack@google.com> Link: https://lore.kernel.org/r/20241011021051.1557902-7-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-10-30KVM: x86/mmu: Don't flush TLBs when clearing Dirty bit in shadow MMUSean Christopherson
Don't force a TLB flush when an SPTE update in the shadow MMU happens to clear the Dirty bit, as KVM unconditionally flushes TLBs when enabling dirty logging, and when clearing dirty logs, KVM flushes based on its software structures, not the SPTEs. I.e. the flows that care about accurate Dirty bit information already ensure there are no stale TLB entries. Opportunistically drop is_dirty_spte() as mmu_spte_update() was the sole caller. Link: https://lore.kernel.org/r/20241011021051.1557902-6-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-10-30KVM: x86/mmu: Don't force flush if SPTE update clears Accessed bitSean Christopherson
Don't force a TLB flush if mmu_spte_update() clears the Accessed bit, as access tracking tolerates false negatives, as evidenced by the mmu_notifier hooks that explicitly test and age SPTEs without doing a TLB flush. In practice, this is very nearly a nop. spte_write_protect() and spte_clear_dirty() never clear the Accessed bit. make_spte() always sets the Accessed bit for !prefetch scenarios. FNAME(sync_spte) only sets SPTE if the protection bits are changing, i.e. if a flush will be needed regardless of the Accessed bits. And FNAME(pte_prefetch) sets SPTE if and only if the old SPTE is !PRESENT. That leaves kvm_arch_async_page_ready() as the one path that will generate a !ACCESSED SPTE *and* overwrite a PRESENT SPTE. And that's very arguably a bug, as clobbering a valid SPTE in that case is nonsensical. Tested-by: Alex Bennée <alex.bennee@linaro.org> Link: https://lore.kernel.org/r/20241011021051.1557902-5-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-10-30KVM: x86/mmu: Fold all of make_spte()'s writable handling into one if-elseSean Christopherson
Now that make_spte() no longer uses a funky goto to bail out for a special case of its unsync handling, combine all of the unsync vs. writable logic into a single if-else statement. No functional change intended. Link: https://lore.kernel.org/r/20241011021051.1557902-4-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-10-30KVM: x86/mmu: Always set SPTE's dirty bit if it's created as writableSean Christopherson
When creating a SPTE, always set the Dirty bit if the Writable bit is set, i.e. if KVM is creating a writable mapping. If two (or more) vCPUs are racing to install a writable SPTE on a !PRESENT fault, only the "winning" vCPU will create a SPTE with W=1 and D=1, all "losers" will generate a SPTE with W=1 && D=0. As a result, tdp_mmu_map_handle_target_level() will fail to detect that the losing faults are effectively spurious, and will overwrite the D=1 SPTE with a D=0 SPTE. For normal VMs, overwriting a present SPTE is a small performance blip; KVM blasts a remote TLB flush, but otherwise life goes on. For upcoming TDX VMs, overwriting a present SPTE is much more costly, and can even lead to the VM being terminated if KVM isn't careful, e.g. if KVM attempts TDH.MEM.PAGE.AUG because the TDX code doesn't detect that the new SPTE is actually the same as the old SPTE (which would be a bug in its own right). Suggested-by: Sagi Shahar <sagis@google.com> Cc: Yan Zhao <yan.y.zhao@intel.com> Link: https://lore.kernel.org/r/20241011021051.1557902-3-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-10-30KVM: x86/mmu: Flush remote TLBs iff MMU-writable flag is cleared from RO SPTESean Christopherson
Don't force a remote TLB flush if KVM happens to effectively "refresh" a read-only SPTE that is still MMU-Writable, as KVM allows MMU-Writable SPTEs to have Writable TLB entries, even if the SPTE is !Writable. Remote TLBs need to be flushed only when creating a read-only SPTE for write-tracking, i.e. when installing a !MMU-Writable SPTE. In practice, especially now that KVM doesn't overwrite existing SPTEs when prefetching, KVM will rarely "refresh" a read-only, MMU-Writable SPTE, i.e. this is unlikely to eliminate many, if any, TLB flushes. But, more precisely flushing makes it easier to understand exactly when KVM does and doesn't need to flush. Note, x86 architecturally requires relevant TLB entries to be invalidated on a page fault, i.e. there is no risk of putting a vCPU into an infinite loop of read-only page faults. Cc: Yan Zhao <yan.y.zhao@intel.com> Link: https://lore.kernel.org/r/20241011021051.1557902-2-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-10-30KVM: Protect vCPU's "last run PID" with rwlock, not RCUSean Christopherson
To avoid jitter on KVM_RUN due to synchronize_rcu(), use a rwlock instead of RCU to protect vcpu->pid, a.k.a. the pid of the task last used to a vCPU. When userspace is doing M:N scheduling of tasks to vCPUs, e.g. to run SEV migration helper vCPUs during post-copy, the synchronize_rcu() needed to change the PID associated with the vCPU can stall for hundreds of milliseconds, which is problematic for latency sensitive post-copy operations. In the directed yield path, do not acquire the lock if it's contended, i.e. if the associated PID is changing, as that means the vCPU's task is already running. Reported-by: Steve Rutherford <srutherford@google.com> Reviewed-by: Steve Rutherford <srutherford@google.com> Acked-by: Oliver Upton <oliver.upton@linux.dev> Link: https://lore.kernel.org/r/20240802200136.329973-3-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-10-30KVM: Return '0' directly when there's no task to yield toSean Christopherson
Do "return 0" instead of initializing and returning a local variable in kvm_vcpu_yield_to(), e.g. so that it's more obvious what the function returns if there is no task. No functional change intended. Acked-by: Oliver Upton <oliver.upton@linux.dev> Link: https://lore.kernel.org/r/20240802200136.329973-2-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-10-30KVM: Rework core loop of kvm_vcpu_on_spin() to use a single for-loopSean Christopherson
Rework kvm_vcpu_on_spin() to use a single for-loop instead of making "two" passes over all vCPUs. Given N=kvm->last_boosted_vcpu, the logic is to iterate from vCPU[N+1]..vcpu[N-1], i.e. using two loops is just a kludgy way of handling the wrap from the last vCPU to vCPU0 when a boostable vCPU isn't found in vcpu[N+1]..vcpu[MAX]. Open code the xa_load() instead of using kvm_get_vcpu() to avoid reading online_vcpus in every loop, as well as the accompanying smp_rmb(), i.e. make it a custom kvm_for_each_vcpu(), for all intents and purposes. Oppurtunistically clean up the comment explaining the logic. Link: https://lore.kernel.org/r/20240802202121.341348-1-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-10-30KVM: selftests: Use ARRAY_SIZE for array lengthJiapeng Chong
Use of macro ARRAY_SIZE to calculate array size minimizes the redundant code and improves code reusability. ./tools/testing/selftests/kvm/x86_64/debug_regs.c:169:32-33: WARNING: Use ARRAY_SIZE. Reported-by: Abaci Robot <abaci@linux.alibaba.com> Closes: https://bugzilla.openanolis.cn/show_bug.cgi?id=10847 Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com> Link: https://lore.kernel.org/r/20240913054315.130832-1-jiapeng.chong@linux.alibaba.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-10-30KVM: selftests: Remove unused macro in the hardware disable testBa Jing
The macro GUEST_CODE_PIO_PORT is never referenced in the code, just remove it. Signed-off-by: Ba Jing <bajing@cmss.chinamobile.com> Link: https://lore.kernel.org/r/20240903043135.11087-1-bajing@cmss.chinamobile.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-10-30KVM: VMX: Remove the unused variable "gpa" in __invept()Yan Zhao
Remove the unused variable "gpa" in __invept(). The INVEPT instruction only supports two types: VMX_EPT_EXTENT_CONTEXT (1) and VMX_EPT_EXTENT_GLOBAL (2). Neither of these types requires a third variable "gpa". The "gpa" variable for __invept() is always set to 0 and was originally introduced for the old non-existent type VMX_EPT_EXTENT_INDIVIDUAL_ADDR (0). This type was removed by commit 2b3c5cbc0d81 ("kvm: don't use bit24 for detecting address-specific invalidation capability") and commit 63f3ac48133a ("KVM: VMX: clean up declaration of VPID/EPT invalidation types"). Since this variable is not useful for error handling either, remove it to avoid confusion. No functional changes expected. Cc: Yuan Yao <yuan.yao@intel.com> Signed-off-by: Yan Zhao <yan.y.zhao@intel.com> Link: https://lore.kernel.org/r/20241014045931.1061-1-yan.y.zhao@intel.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-10-28RISC-V: KVM: Use NACL HFENCEs for KVM request based HFENCEsAnup Patel
When running under some other hypervisor, use SBI NACL based HFENCEs for TLB shoot-down via KVM requests. This makes HFENCEs faster whenever SBI nested acceleration is available. Signed-off-by: Anup Patel <apatel@ventanamicro.com> Reviewed-by: Atish Patra <atishp@rivosinc.com> Link: https://lore.kernel.org/r/20241020194734.58686-14-apatel@ventanamicro.com Signed-off-by: Anup Patel <anup@brainfault.org>
2024-10-28RISC-V: KVM: Save trap CSRs in kvm_riscv_vcpu_enter_exit()Anup Patel
Save trap CSRs in the kvm_riscv_vcpu_enter_exit() function instead of the kvm_arch_vcpu_ioctl_run() function so that HTVAL and HTINST CSRs are accessed in more optimized manner while running under some other hypervisor. Signed-off-by: Anup Patel <apatel@ventanamicro.com> Reviewed-by: Atish Patra <atishp@rivosinc.com> Link: https://lore.kernel.org/r/20241020194734.58686-13-apatel@ventanamicro.com Signed-off-by: Anup Patel <anup@brainfault.org>
2024-10-28RISC-V: KVM: Use SBI sync SRET call when availableAnup Patel
Implement an optimized KVM world-switch using SBI sync SRET call when SBI nested acceleration extension is available. This improves KVM world-switch when KVM RISC-V is running as a Guest under some other hypervisor. Signed-off-by: Anup Patel <apatel@ventanamicro.com> Reviewed-by: Atish Patra <atishp@rivosinc.com> Link: https://lore.kernel.org/r/20241020194734.58686-12-apatel@ventanamicro.com Signed-off-by: Anup Patel <anup@brainfault.org>
2024-10-28RISC-V: KVM: Use nacl_csr_xyz() for accessing AIA CSRsAnup Patel
When running under some other hypervisor, prefer nacl_csr_xyz() for accessing AIA CSRs in the run-loop. This makes CSR access faster whenever SBI nested acceleration is available. Signed-off-by: Anup Patel <apatel@ventanamicro.com> Reviewed-by: Atish Patra <atishp@rivosinc.com> Link: https://lore.kernel.org/r/20241020194734.58686-11-apatel@ventanamicro.com Signed-off-by: Anup Patel <anup@brainfault.org>
2024-10-28RISC-V: KVM: Use nacl_csr_xyz() for accessing H-extension CSRsAnup Patel
When running under some other hypervisor, prefer nacl_csr_xyz() for accessing H-extension CSRs in the run-loop. This makes CSR access faster whenever SBI nested acceleration is available. Signed-off-by: Anup Patel <apatel@ventanamicro.com> Reviewed-by: Atish Patra <atishp@rivosinc.com> Link: https://lore.kernel.org/r/20241020194734.58686-10-apatel@ventanamicro.com Signed-off-by: Anup Patel <anup@brainfault.org>
2024-10-28RISC-V: KVM: Add common nested acceleration supportAnup Patel
Add a common nested acceleration support which will be shared by all parts of KVM RISC-V. This nested acceleration support detects and enables SBI NACL extension usage based on static keys which ensures minimum impact on the non-nested scenario. Signed-off-by: Anup Patel <apatel@ventanamicro.com> Reviewed-by: Atish Patra <atishp@rivosinc.com> Link: https://lore.kernel.org/r/20241020194734.58686-9-apatel@ventanamicro.com Signed-off-by: Anup Patel <anup@brainfault.org>