Age | Commit message (Collapse) | Author |
|
Support SEC("xdp_devmap*") as a short cut for loading the program with
type BPF_PROG_TYPE_XDP and expected attach type BPF_XDP_DEVMAP.
Signed-off-by: David Ahern <dsahern@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20200529220716.75383-5-dsahern@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Add xdp_txq_info as the Tx counterpart to xdp_rxq_info. At the
moment only the device is added. Other fields (queue_index)
can be added as use cases arise.
>From a UAPI perspective, add egress_ifindex to xdp context for
bpf programs to see the Tx device.
Update the verifier to only allow accesses to egress_ifindex by
XDP programs with BPF_XDP_DEVMAP expected attach type.
Signed-off-by: David Ahern <dsahern@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20200529220716.75383-4-dsahern@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Add BPF_XDP_DEVMAP attach type for use with programs associated with a
DEVMAP entry.
Allow DEVMAPs to associate a program with a device entry by adding
a bpf_prog.fd to 'struct bpf_devmap_val'. Values read show the program
id, so the fd and id are a union. bpf programs can get access to the
struct via vmlinux.h.
The program associated with the fd must have type XDP with expected
attach type BPF_XDP_DEVMAP. When a program is associated with a device
index, the program is run on an XDP_REDIRECT and before the buffer is
added to the per-cpu queue. At this point rxq data is still valid; the
next patch adds tx device information allowing the prorgam to see both
ingress and egress device indices.
XDP generic is skb based and XDP programs do not work with skb's. Block
the use case by walking maps used by a program that is to be attached
via xdpgeneric and fail if any of them are DEVMAP / DEVMAP_HASH with
Block attach of BPF_XDP_DEVMAP programs to devices.
Signed-off-by: David Ahern <dsahern@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20200529220716.75383-3-dsahern@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
In bpf_seq_printf() helper, when user specified a "%s" in the
format string, strncpy_from_unsafe() is used to read the actual string
to a buffer. The string could be a format string or a string in
the kernel data structure. It is really unlikely that the string
will reside in the user memory.
This is different from Commit b2a5212fb634 ("bpf: Restrict bpf_trace_printk()'s %s
usage and add %pks, %pus specifier") which still used
strncpy_from_unsafe() for "%s" to preserve the old behavior.
If in the future, bpf_seq_printf() indeed needs to read user
memory, we can implement "%pus" format string.
Based on discussion in [1], if the intent is to read kernel memory,
strncpy_from_unsafe_strict() should be used. So this patch
changed to use strncpy_from_unsafe_strict().
[1]: https://lore.kernel.org/bpf/20200521152301.2587579-1-hch@lst.de/T/
Fixes: 492e639f0c22 ("bpf: Add bpf_seq_printf and bpf_seq_write helpers")
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Cc: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/bpf/20200529004810.3352219-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Add 'struct bpf_devmap_val' to formalize the expected values that can
be passed in for a DEVMAP. Update devmap code to use the struct.
Signed-off-by: David Ahern <dsahern@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20200529220716.75383-2-dsahern@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 platform updates from Ingo Molnar:
"This tree cleans up various aspects of the UV platform support code,
it removes unnecessary functions and cleans up the rest"
* tag 'x86-platform-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/apic/uv: Remove code for unused distributed GRU mode
x86/platform/uv: Remove the unused _uv_cpu_blade_processor_id() macro
x86/platform/uv: Unexport uv_apicid_hibits
x86/platform/uv: Remove _uv_hub_info_check()
x86/platform/uv: Simplify uv_send_IPI_one()
x86/platform/uv: Mark uv_min_hub_revision_id static
x86/platform/uv: Mark is_uv_hubless() static
x86/platform/uv: Remove the UV*_HUB_IS_SUPPORTED macros
x86/platform/uv: Unexport symbols only used by x2apic_uv_x.c
x86/platform/uv: Unexport sn_coherency_id
x86/platform/uv: Remove the uv_partition_coherence_id() macro
x86/platform/uv: Mark uv_bios_call() and uv_bios_call_irqsave() static
|
|
Add "rx_queue_mapping" to bpf_sock. This gives read access for the
existing field (sk_rx_queue_mapping) of struct sock from bpf_sock.
Semantics for the bpf_sock rx_queue_mapping access are similar to
sk_rx_queue_get(), i.e the value NO_QUEUE_MAPPING is not allowed
and -1 is returned in that case. This is useful for transmit queue
selection based on the received queue index which is cached in the
socket in the receive path.
v3: Addressed review comments to add usecase in patch description,
and fixed default value for rx_queue_mapping.
v2: fixed build error for CONFIG_XPS wrapping, reported by
kbuild test robot <lkp@intel.com>
Signed-off-by: Amritha Nambiar <amritha.nambiar@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Andrii Nakryiko says:
====================
Implement a new BPF ring buffer, as presented at BPF virtual conference ([0]).
It presents an alternative to perf buffer, following its semantics closely,
but allowing sharing same instance of ring buffer across multiple CPUs
efficiently.
Most patches have extensive commentary explaining various aspects, so I'll
keep cover letter short. Overall structure of the patch set:
- patch #1 adds BPF ring buffer implementation to kernel and necessary
verifier support;
- patch #2 adds libbpf consumer implementation for BPF ringbuf;
- patch #3 adds selftest, both for single BPF ring buf use case, as well as
using it with array/hash of maps;
- patch #4 adds extensive benchmarks and provide some analysis in commit
message, it builds upon selftests/bpf's bench runner.
- patch #5 adds most of patch #1 commit message as a doc under
Documentation/bpf/ringbuf.rst.
Litmus tests, validating consumer/producer protocols and memory orderings,
were moved out as discussed in [1] and are going to be posted against -rcu
tree and put under Documentation/litmus-tests/bpf-rb.
[0] https://docs.google.com/presentation/d/18ITdg77Bj6YDOH2LghxrnFxiPWe0fAqcmJY95t_qr0w
[1] https://lkml.org/lkml/2020/5/22/1011
v3->v4:
- fix ringbuf freeing (vunmap, __free_page); verified with a trivial loop
creating and closing ringbuf map endlessly (Daniel);
v2->v3:
- dropped unnecessary smp_wmb() (Paul);
- verifier reference type enhancement patch was dropped (Alexei);
- better verifier message for various memory access checks (Alexei);
- clarified a bit roundup_len() bit shifting (Alexei);
- converted doc to .rst (Alexei);
- fixed warning on 32-bit arches regarding tautological ring area size check.
v1->v2:
- commit()/discard()/output() accept flags (NO_WAKEUP/FORCE_WAKEUP) (Stanislav);
- bpf_ringbuf_query() added, returning available data size, ringbuf size,
consumer/producer positions, needed to implement smarter notification policy
(Stanislav);
- added ringbuf UAPI constants to include/uapi/linux/bpf.h (Jonathan);
- fixed sample size check, added proper ringbuf size check (Jonathan, Alexei);
- wake_up_all() is done through irq_work (Alexei);
- consistent use of smp_load_acquire/smp_store_release, no
READ_ONCE/WRITE_ONCE (Alexei);
- added Documentation/bpf/ringbuf.txt (Stanislav);
- updated litmus test with smp_load_acquire/smp_store_release changes;
- added ring_buffer__consume() API to libbpf for busy-polling;
- ring_buffer__poll() on success returns number of records consumed;
- fixed EPOLL notifications, don't assume available data, done similarly to
perfbuf's implementation;
- both ringbuf and perfbuf now have --rb-sampled mode, instead of
pb-raw/pb-custom mode, updated benchmark results;
- extended ringbuf selftests to validate epoll logic/manual notification
logic, as well as bpf_ringbuf_query().
====================
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
For write-only stacks and queues bpf_map_update_elem should be allowed, but
bpf_map_lookup_elem and bpf_map_lookup_and_delete_elem should fail with EPERM.
Signed-off-by: Anton Protopopov <a.s.protopopov@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200527185700.14658-6-a.s.protopopov@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Add commit description from patch #1 as a stand-alone documentation under
Documentation/bpf, as it might be more convenient format, in long term
perspective.
Suggested-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200529075424.3139988-6-andriin@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Extend bench framework with ability to have benchmark-provided child argument
parser for custom benchmark-specific parameters. This makes bench generic code
modular and independent from any specific benchmark.
Also implement a set of benchmarks for new BPF ring buffer and existing perf
buffer. 4 benchmarks were implemented: 2 variations for each of BPF ringbuf
and perfbuf:,
- rb-libbpf utilizes stock libbpf ring_buffer manager for reading data;
- rb-custom implements custom ring buffer setup and reading code, to
eliminate overheads inherent in generic libbpf code due to callback
functions and the need to update consumer position after each consumed
record, instead of batching updates (due to pessimistic assumption that
user callback might take long time and thus could unnecessarily hold ring
buffer space for too long);
- pb-libbpf uses stock libbpf perf_buffer code with all the default
settings, though uses higher-performance raw event callback to minimize
unnecessary overhead;
- pb-custom implements its own custom consumer code to minimize any possible
overhead of generic libbpf implementation and indirect function calls.
All of the test support default, no data notification skipped, mode, as well
as sampled mode (with --rb-sampled flag), which allows to trigger epoll
notification less frequently and reduce overhead. As will be shown, this mode
is especially critical for perf buffer, which suffers from high overhead of
wakeups in kernel.
Otherwise, all benchamrks implement similar way to generate a batch of records
by using fentry/sys_getpgid BPF program, which pushes a bunch of records in
a tight loop and records number of successful and dropped samples. Each record
is a small 8-byte integer, to minimize the effect of memory copying with
bpf_perf_event_output() and bpf_ringbuf_output().
Benchmarks that have only one producer implement optional back-to-back mode,
in which record production and consumption is alternating on the same CPU.
This is the highest-throughput happy case, showing ultimate performance
achievable with either BPF ringbuf or perfbuf.
All the below scenarios are implemented in a script in
benchs/run_bench_ringbufs.sh. Tests were performed on 28-core/56-thread
Intel Xeon CPU E5-2680 v4 @ 2.40GHz CPU.
Single-producer, parallel producer
==================================
rb-libbpf 12.054 ± 0.320M/s (drops 0.000 ± 0.000M/s)
rb-custom 8.158 ± 0.118M/s (drops 0.001 ± 0.003M/s)
pb-libbpf 0.931 ± 0.007M/s (drops 0.000 ± 0.000M/s)
pb-custom 0.965 ± 0.003M/s (drops 0.000 ± 0.000M/s)
Single-producer, parallel producer, sampled notification
========================================================
rb-libbpf 11.563 ± 0.067M/s (drops 0.000 ± 0.000M/s)
rb-custom 15.895 ± 0.076M/s (drops 0.000 ± 0.000M/s)
pb-libbpf 9.889 ± 0.032M/s (drops 0.000 ± 0.000M/s)
pb-custom 9.866 ± 0.028M/s (drops 0.000 ± 0.000M/s)
Single producer on one CPU, consumer on another one, both running at full
speed. Curiously, rb-libbpf has higher throughput than objectively faster (due
to more lightweight consumer code path) rb-custom. It appears that faster
consumer causes kernel to send notifications more frequently, because consumer
appears to be caught up more frequently. Performance of perfbuf suffers from
default "no sampling" policy and huge overhead that causes.
In sampled mode, rb-custom is winning very significantly eliminating too
frequent in-kernel wakeups, the gain appears to be more than 2x.
Perf buffer achieves even more impressive wins, compared to stock perfbuf
settings, with 10x improvements in throughput with 1:500 sampling rate. The
trade-off is that with sampling, application might not get next X events until
X+1st arrives, which is not always acceptable. With steady influx of events,
though, this shouldn't be a problem.
Overall, single-producer performance of ring buffers seems to be better no
matter the sampled/non-sampled modes, but it especially beats ring buffer
without sampling due to its adaptive notification approach.
Single-producer, back-to-back mode
==================================
rb-libbpf 15.507 ± 0.247M/s (drops 0.000 ± 0.000M/s)
rb-libbpf-sampled 14.692 ± 0.195M/s (drops 0.000 ± 0.000M/s)
rb-custom 21.449 ± 0.157M/s (drops 0.000 ± 0.000M/s)
rb-custom-sampled 20.024 ± 0.386M/s (drops 0.000 ± 0.000M/s)
pb-libbpf 1.601 ± 0.015M/s (drops 0.000 ± 0.000M/s)
pb-libbpf-sampled 8.545 ± 0.064M/s (drops 0.000 ± 0.000M/s)
pb-custom 1.607 ± 0.022M/s (drops 0.000 ± 0.000M/s)
pb-custom-sampled 8.988 ± 0.144M/s (drops 0.000 ± 0.000M/s)
Here we test a back-to-back mode, which is arguably best-case scenario both
for BPF ringbuf and perfbuf, because there is no contention and for ringbuf
also no excessive notification, because consumer appears to be behind after
the first record. For ringbuf, custom consumer code clearly wins with 21.5 vs
16 million records per second exchanged between producer and consumer. Sampled
mode actually hurts a bit due to slightly slower producer logic (it needs to
fetch amount of data available to decide whether to skip or force notification).
Perfbuf with wakeup sampling gets 5.5x throughput increase, compared to
no-sampling version. There also doesn't seem to be noticeable overhead from
generic libbpf handling code.
Perfbuf back-to-back, effect of sample rate
===========================================
pb-sampled-1 1.035 ± 0.012M/s (drops 0.000 ± 0.000M/s)
pb-sampled-5 3.476 ± 0.087M/s (drops 0.000 ± 0.000M/s)
pb-sampled-10 5.094 ± 0.136M/s (drops 0.000 ± 0.000M/s)
pb-sampled-25 7.118 ± 0.153M/s (drops 0.000 ± 0.000M/s)
pb-sampled-50 8.169 ± 0.156M/s (drops 0.000 ± 0.000M/s)
pb-sampled-100 8.887 ± 0.136M/s (drops 0.000 ± 0.000M/s)
pb-sampled-250 9.180 ± 0.209M/s (drops 0.000 ± 0.000M/s)
pb-sampled-500 9.353 ± 0.281M/s (drops 0.000 ± 0.000M/s)
pb-sampled-1000 9.411 ± 0.217M/s (drops 0.000 ± 0.000M/s)
pb-sampled-2000 9.464 ± 0.167M/s (drops 0.000 ± 0.000M/s)
pb-sampled-3000 9.575 ± 0.273M/s (drops 0.000 ± 0.000M/s)
This benchmark shows the effect of event sampling for perfbuf. Back-to-back
mode for highest throughput. Just doing every 5th record notification gives
3.5x speed up. 250-500 appears to be the point of diminishing return, with
almost 9x speed up. Most benchmarks use 500 as the default sampling for pb-raw
and pb-custom.
Ringbuf back-to-back, effect of sample rate
===========================================
rb-sampled-1 1.106 ± 0.010M/s (drops 0.000 ± 0.000M/s)
rb-sampled-5 4.746 ± 0.149M/s (drops 0.000 ± 0.000M/s)
rb-sampled-10 7.706 ± 0.164M/s (drops 0.000 ± 0.000M/s)
rb-sampled-25 12.893 ± 0.273M/s (drops 0.000 ± 0.000M/s)
rb-sampled-50 15.961 ± 0.361M/s (drops 0.000 ± 0.000M/s)
rb-sampled-100 18.203 ± 0.445M/s (drops 0.000 ± 0.000M/s)
rb-sampled-250 19.962 ± 0.786M/s (drops 0.000 ± 0.000M/s)
rb-sampled-500 20.881 ± 0.551M/s (drops 0.000 ± 0.000M/s)
rb-sampled-1000 21.317 ± 0.532M/s (drops 0.000 ± 0.000M/s)
rb-sampled-2000 21.331 ± 0.535M/s (drops 0.000 ± 0.000M/s)
rb-sampled-3000 21.688 ± 0.392M/s (drops 0.000 ± 0.000M/s)
Similar benchmark for ring buffer also shows a great advantage (in terms of
throughput) of skipping notifications. Skipping every 5th one gives 4x boost.
Also similar to perfbuf case, 250-500 seems to be the point of diminishing
returns, giving roughly 20x better results.
Keep in mind, for this test, notifications are controlled manually with
BPF_RB_NO_WAKEUP and BPF_RB_FORCE_WAKEUP. As can be seen from previous
benchmarks, adaptive notifications based on consumer's positions provides same
(or even slightly better due to simpler load generator on BPF side) benefits in
favorable back-to-back scenario. Over zealous and fast consumer, which is
almost always caught up, will make thoughput numbers smaller. That's the case
when manual notification control might prove to be extremely beneficial.
Ringbuf back-to-back, reserve+commit vs output
==============================================
reserve 22.819 ± 0.503M/s (drops 0.000 ± 0.000M/s)
output 18.906 ± 0.433M/s (drops 0.000 ± 0.000M/s)
Ringbuf sampled, reserve+commit vs output
=========================================
reserve-sampled 15.350 ± 0.132M/s (drops 0.000 ± 0.000M/s)
output-sampled 14.195 ± 0.144M/s (drops 0.000 ± 0.000M/s)
BPF ringbuf supports two sets of APIs with various usability and performance
tradeoffs: bpf_ringbuf_reserve()+bpf_ringbuf_commit() vs bpf_ringbuf_output().
This benchmark clearly shows superiority of reserve+commit approach, despite
using a small 8-byte record size.
Single-producer, consumer/producer competing on the same CPU, low batch count
=============================================================================
rb-libbpf 3.045 ± 0.020M/s (drops 3.536 ± 0.148M/s)
rb-custom 3.055 ± 0.022M/s (drops 3.893 ± 0.066M/s)
pb-libbpf 1.393 ± 0.024M/s (drops 0.000 ± 0.000M/s)
pb-custom 1.407 ± 0.016M/s (drops 0.000 ± 0.000M/s)
This benchmark shows one of the worst-case scenarios, in which producer and
consumer do not coordinate *and* fight for the same CPU. No batch count and
sampling settings were able to eliminate drops for ringbuffer, producer is
just too fast for consumer to keep up. But ringbuf and perfbuf still able to
pass through quite a lot of messages, which is more than enough for a lot of
applications.
Ringbuf, multi-producer contention
==================================
rb-libbpf nr_prod 1 10.916 ± 0.399M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 2 4.931 ± 0.030M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 3 4.880 ± 0.006M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 4 3.926 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 8 4.011 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 12 3.967 ± 0.016M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 16 2.604 ± 0.030M/s (drops 0.001 ± 0.002M/s)
rb-libbpf nr_prod 20 2.233 ± 0.003M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 24 2.085 ± 0.015M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 28 2.055 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 32 1.962 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 36 2.089 ± 0.005M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 40 2.118 ± 0.006M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 44 2.105 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 48 2.120 ± 0.058M/s (drops 0.000 ± 0.001M/s)
rb-libbpf nr_prod 52 2.074 ± 0.024M/s (drops 0.007 ± 0.014M/s)
Ringbuf uses a very short-duration spinlock during reservation phase, to check
few invariants, increment producer count and set record header. This is the
biggest point of contention for ringbuf implementation. This benchmark
evaluates the effect of multiple competing writers on overall throughput of
a single shared ringbuffer.
Overall throughput drops almost 2x when going from single to two
highly-contended producers, gradually dropping with additional competing
producers. Performance drop stabilizes at around 20 producers and hovers
around 2mln even with 50+ fighting producers, which is a 5x drop compared to
non-contended case. Good kernel implementation in kernel helps maintain decent
performance here.
Note, that in the intended real-world scenarios, it's not expected to get even
close to such a high levels of contention. But if contention will become
a problem, there is always an option of sharding few ring buffers across a set
of CPUs.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200529075424.3139988-5-andriin@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Both singleton BPF ringbuf and BPF ringbuf with map-in-map use cases are tested.
Also reserve+submit/discards and output variants of API are validated.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200529075424.3139988-4-andriin@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Declaring and instantiating BPF ring buffer doesn't require any changes to
libbpf, as it's just another type of maps. So using existing BTF-defined maps
syntax with __uint(type, BPF_MAP_TYPE_RINGBUF) and __uint(max_elements,
<size-of-ring-buf>) is all that's necessary to create and use BPF ring buffer.
This patch adds BPF ring buffer consumer to libbpf. It is very similar to
perf_buffer implementation in terms of API, but also attempts to fix some
minor problems and inconveniences with existing perf_buffer API.
ring_buffer support both single ring buffer use case (with just using
ring_buffer__new()), as well as allows to add more ring buffers, each with its
own callback and context. This allows to efficiently poll and consume
multiple, potentially completely independent, ring buffers, using single
epoll instance.
The latter is actually a problem in practice for applications
that are using multiple sets of perf buffers. They have to create multiple
instances for struct perf_buffer and poll them independently or in a loop,
each approach having its own problems (e.g., inability to use a common poll
timeout). struct ring_buffer eliminates this problem by aggregating many
independent ring buffer instances under the single "ring buffer manager".
Second, perf_buffer's callback can't return error, so applications that need
to stop polling due to error in data or data signalling the end, have to use
extra mechanisms to signal that polling has to stop. ring_buffer's callback
can return error, which will be passed through back to user code and can be
acted upon appropariately.
Two APIs allow to consume ring buffer data:
- ring_buffer__poll(), which will wait for data availability notification
and will consume data only from reported ring buffer(s); this API allows
to efficiently use resources by reading data only when it becomes
available;
- ring_buffer__consume(), will attempt to read new records regardless of
data availablity notification sub-system. This API is useful for cases
when lowest latency is required, in expense of burning CPU resources.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200529075424.3139988-3-andriin@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
This commit adds a new MPSC ring buffer implementation into BPF ecosystem,
which allows multiple CPUs to submit data to a single shared ring buffer. On
the consumption side, only single consumer is assumed.
Motivation
----------
There are two distinctive motivators for this work, which are not satisfied by
existing perf buffer, which prompted creation of a new ring buffer
implementation.
- more efficient memory utilization by sharing ring buffer across CPUs;
- preserving ordering of events that happen sequentially in time, even
across multiple CPUs (e.g., fork/exec/exit events for a task).
These two problems are independent, but perf buffer fails to satisfy both.
Both are a result of a choice to have per-CPU perf ring buffer. Both can be
also solved by having an MPSC implementation of ring buffer. The ordering
problem could technically be solved for perf buffer with some in-kernel
counting, but given the first one requires an MPSC buffer, the same solution
would solve the second problem automatically.
Semantics and APIs
------------------
Single ring buffer is presented to BPF programs as an instance of BPF map of
type BPF_MAP_TYPE_RINGBUF. Two other alternatives considered, but ultimately
rejected.
One way would be to, similar to BPF_MAP_TYPE_PERF_EVENT_ARRAY, make
BPF_MAP_TYPE_RINGBUF could represent an array of ring buffers, but not enforce
"same CPU only" rule. This would be more familiar interface compatible with
existing perf buffer use in BPF, but would fail if application needed more
advanced logic to lookup ring buffer by arbitrary key. HASH_OF_MAPS addresses
this with current approach. Additionally, given the performance of BPF
ringbuf, many use cases would just opt into a simple single ring buffer shared
among all CPUs, for which current approach would be an overkill.
Another approach could introduce a new concept, alongside BPF map, to
represent generic "container" object, which doesn't necessarily have key/value
interface with lookup/update/delete operations. This approach would add a lot
of extra infrastructure that has to be built for observability and verifier
support. It would also add another concept that BPF developers would have to
familiarize themselves with, new syntax in libbpf, etc. But then would really
provide no additional benefits over the approach of using a map.
BPF_MAP_TYPE_RINGBUF doesn't support lookup/update/delete operations, but so
doesn't few other map types (e.g., queue and stack; array doesn't support
delete, etc).
The approach chosen has an advantage of re-using existing BPF map
infrastructure (introspection APIs in kernel, libbpf support, etc), being
familiar concept (no need to teach users a new type of object in BPF program),
and utilizing existing tooling (bpftool). For common scenario of using
a single ring buffer for all CPUs, it's as simple and straightforward, as
would be with a dedicated "container" object. On the other hand, by being
a map, it can be combined with ARRAY_OF_MAPS and HASH_OF_MAPS map-in-maps to
implement a wide variety of topologies, from one ring buffer for each CPU
(e.g., as a replacement for perf buffer use cases), to a complicated
application hashing/sharding of ring buffers (e.g., having a small pool of
ring buffers with hashed task's tgid being a look up key to preserve order,
but reduce contention).
Key and value sizes are enforced to be zero. max_entries is used to specify
the size of ring buffer and has to be a power of 2 value.
There are a bunch of similarities between perf buffer
(BPF_MAP_TYPE_PERF_EVENT_ARRAY) and new BPF ring buffer semantics:
- variable-length records;
- if there is no more space left in ring buffer, reservation fails, no
blocking;
- memory-mappable data area for user-space applications for ease of
consumption and high performance;
- epoll notifications for new incoming data;
- but still the ability to do busy polling for new data to achieve the
lowest latency, if necessary.
BPF ringbuf provides two sets of APIs to BPF programs:
- bpf_ringbuf_output() allows to *copy* data from one place to a ring
buffer, similarly to bpf_perf_event_output();
- bpf_ringbuf_reserve()/bpf_ringbuf_commit()/bpf_ringbuf_discard() APIs
split the whole process into two steps. First, a fixed amount of space is
reserved. If successful, a pointer to a data inside ring buffer data area
is returned, which BPF programs can use similarly to a data inside
array/hash maps. Once ready, this piece of memory is either committed or
discarded. Discard is similar to commit, but makes consumer ignore the
record.
bpf_ringbuf_output() has disadvantage of incurring extra memory copy, because
record has to be prepared in some other place first. But it allows to submit
records of the length that's not known to verifier beforehand. It also closely
matches bpf_perf_event_output(), so will simplify migration significantly.
bpf_ringbuf_reserve() avoids the extra copy of memory by providing a memory
pointer directly to ring buffer memory. In a lot of cases records are larger
than BPF stack space allows, so many programs have use extra per-CPU array as
a temporary heap for preparing sample. bpf_ringbuf_reserve() avoid this needs
completely. But in exchange, it only allows a known constant size of memory to
be reserved, such that verifier can verify that BPF program can't access
memory outside its reserved record space. bpf_ringbuf_output(), while slightly
slower due to extra memory copy, covers some use cases that are not suitable
for bpf_ringbuf_reserve().
The difference between commit and discard is very small. Discard just marks
a record as discarded, and such records are supposed to be ignored by consumer
code. Discard is useful for some advanced use-cases, such as ensuring
all-or-nothing multi-record submission, or emulating temporary malloc()/free()
within single BPF program invocation.
Each reserved record is tracked by verifier through existing
reference-tracking logic, similar to socket ref-tracking. It is thus
impossible to reserve a record, but forget to submit (or discard) it.
bpf_ringbuf_query() helper allows to query various properties of ring buffer.
Currently 4 are supported:
- BPF_RB_AVAIL_DATA returns amount of unconsumed data in ring buffer;
- BPF_RB_RING_SIZE returns the size of ring buffer;
- BPF_RB_CONS_POS/BPF_RB_PROD_POS returns current logical possition of
consumer/producer, respectively.
Returned values are momentarily snapshots of ring buffer state and could be
off by the time helper returns, so this should be used only for
debugging/reporting reasons or for implementing various heuristics, that take
into account highly-changeable nature of some of those characteristics.
One such heuristic might involve more fine-grained control over poll/epoll
notifications about new data availability in ring buffer. Together with
BPF_RB_NO_WAKEUP/BPF_RB_FORCE_WAKEUP flags for output/commit/discard helpers,
it allows BPF program a high degree of control and, e.g., more efficient
batched notifications. Default self-balancing strategy, though, should be
adequate for most applications and will work reliable and efficiently already.
Design and implementation
-------------------------
This reserve/commit schema allows a natural way for multiple producers, either
on different CPUs or even on the same CPU/in the same BPF program, to reserve
independent records and work with them without blocking other producers. This
means that if BPF program was interruped by another BPF program sharing the
same ring buffer, they will both get a record reserved (provided there is
enough space left) and can work with it and submit it independently. This
applies to NMI context as well, except that due to using a spinlock during
reservation, in NMI context, bpf_ringbuf_reserve() might fail to get a lock,
in which case reservation will fail even if ring buffer is not full.
The ring buffer itself internally is implemented as a power-of-2 sized
circular buffer, with two logical and ever-increasing counters (which might
wrap around on 32-bit architectures, that's not a problem):
- consumer counter shows up to which logical position consumer consumed the
data;
- producer counter denotes amount of data reserved by all producers.
Each time a record is reserved, producer that "owns" the record will
successfully advance producer counter. At that point, data is still not yet
ready to be consumed, though. Each record has 8 byte header, which contains
the length of reserved record, as well as two extra bits: busy bit to denote
that record is still being worked on, and discard bit, which might be set at
commit time if record is discarded. In the latter case, consumer is supposed
to skip the record and move on to the next one. Record header also encodes
record's relative offset from the beginning of ring buffer data area (in
pages). This allows bpf_ringbuf_commit()/bpf_ringbuf_discard() to accept only
the pointer to the record itself, without requiring also the pointer to ring
buffer itself. Ring buffer memory location will be restored from record
metadata header. This significantly simplifies verifier, as well as improving
API usability.
Producer counter increments are serialized under spinlock, so there is
a strict ordering between reservations. Commits, on the other hand, are
completely lockless and independent. All records become available to consumer
in the order of reservations, but only after all previous records where
already committed. It is thus possible for slow producers to temporarily hold
off submitted records, that were reserved later.
Reservation/commit/consumer protocol is verified by litmus tests in
Documentation/litmus-test/bpf-rb.
One interesting implementation bit, that significantly simplifies (and thus
speeds up as well) implementation of both producers and consumers is how data
area is mapped twice contiguously back-to-back in the virtual memory. This
allows to not take any special measures for samples that have to wrap around
at the end of the circular buffer data area, because the next page after the
last data page would be first data page again, and thus the sample will still
appear completely contiguous in virtual memory. See comment and a simple ASCII
diagram showing this visually in bpf_ringbuf_area_alloc().
Another feature that distinguishes BPF ringbuf from perf ring buffer is
a self-pacing notifications of new data being availability.
bpf_ringbuf_commit() implementation will send a notification of new record
being available after commit only if consumer has already caught up right up
to the record being committed. If not, consumer still has to catch up and thus
will see new data anyways without needing an extra poll notification.
Benchmarks (see tools/testing/selftests/bpf/benchs/bench_ringbuf.c) show that
this allows to achieve a very high throughput without having to resort to
tricks like "notify only every Nth sample", which are necessary with perf
buffer. For extreme cases, when BPF program wants more manual control of
notifications, commit/discard/output helpers accept BPF_RB_NO_WAKEUP and
BPF_RB_FORCE_WAKEUP flags, which give full control over notifications of data
availability, but require extra caution and diligence in using this API.
Comparison to alternatives
--------------------------
Before considering implementing BPF ring buffer from scratch existing
alternatives in kernel were evaluated, but didn't seem to meet the needs. They
largely fell into few categores:
- per-CPU buffers (perf, ftrace, etc), which don't satisfy two motivations
outlined above (ordering and memory consumption);
- linked list-based implementations; while some were multi-producer designs,
consuming these from user-space would be very complicated and most
probably not performant; memory-mapping contiguous piece of memory is
simpler and more performant for user-space consumers;
- io_uring is SPSC, but also requires fixed-sized elements. Naively turning
SPSC queue into MPSC w/ lock would have subpar performance compared to
locked reserve + lockless commit, as with BPF ring buffer. Fixed sized
elements would be too limiting for BPF programs, given existing BPF
programs heavily rely on variable-sized perf buffer already;
- specialized implementations (like a new printk ring buffer, [0]) with lots
of printk-specific limitations and implications, that didn't seem to fit
well for intended use with BPF programs.
[0] https://lwn.net/Articles/779550/
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200529075424.3139988-2-andriin@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
The map_lookup_and_delete_elem() function should check for both FMODE_CAN_WRITE
and FMODE_CAN_READ permissions because it returns a map element to user space.
Fixes: bd513cd08f10 ("bpf: add MAP_LOOKUP_AND_DELETE_ELEM syscall")
Signed-off-by: Anton Protopopov <a.s.protopopov@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200527185700.14658-5-a.s.protopopov@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Make comments inside the test_map_rdonly and test_map_wronly tests
consistent with logic.
Signed-off-by: Anton Protopopov <a.s.protopopov@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200527185700.14658-4-a.s.protopopov@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
The test_map_rdonly and test_map_wronly tests should close file descriptors
which they open.
Signed-off-by: Anton Protopopov <a.s.protopopov@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200527185700.14658-3-a.s.protopopov@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Trivial fix to a typo in the test_map_wronly test: "read" -> "write"
Signed-off-by: Anton Protopopov <a.s.protopopov@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200527185700.14658-2-a.s.protopopov@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
In case the cpu_bufs are sparsely allocated they are not all
free'ed. These changes will fix this.
Fixes: fb84b8224655 ("libbpf: add perf buffer API")
Signed-off-by: Eelco Chaudron <echaudro@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/159056888305.330763.9684536967379110349.stgit@ebuild
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Lets test using probe* in SCHED_CLS network programs as well just
to be sure these keep working. Its cheap to add the extra test
and provides a second context to test outside of sk_msg after
we generalized probe* helpers to all networking types.
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/159033911685.12355.15951980509828906214.stgit@john-Precision-5820-Tower
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
The test itself is not particularly useful but it encodes a common
pattern we have.
Namely do a sk storage lookup then depending on data here decide if
we need to do more work or alternatively allow packet to PASS. Then
if we need to do more work consult task_struct for more information
about the running task. Finally based on this additional information
drop or pass the data. In this case the suspicious check is not so
realisitic but it encodes the general pattern and uses the helpers
so we test the workflow.
This is a load test to ensure verifier correctly handles this case.
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/159033909665.12355.6166415847337547879.stgit@john-Precision-5820-Tower
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Add helpers to use local socket storage.
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/159033907577.12355.14740125020572756560.stgit@john-Precision-5820-Tower
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Often it is useful when applying policy to know something about the
task. If the administrator has CAP_SYS_ADMIN rights then they can
use kprobe + networking hook and link the two programs together to
accomplish this. However, this is a bit clunky and also means we have
to call both the network program and kprobe program when we could just
use a single program and avoid passing metadata through sk_msg/skb->cb,
socket, maps, etc.
To accomplish this add probe_* helpers to bpf_base_func_proto programs
guarded by a perfmon_capable() check. New supported helpers are the
following,
BPF_FUNC_get_current_task
BPF_FUNC_probe_read_user
BPF_FUNC_probe_read_kernel
BPF_FUNC_probe_read_user_str
BPF_FUNC_probe_read_kernel_str
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/159033905529.12355.4368381069655254932.stgit@john-Precision-5820-Tower
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Add these generic helpers that may be useful to use from sk_msg programs.
The helpers do not depend on ctx so we can simply add them here,
BPF_FUNC_perf_event_output
BPF_FUNC_get_current_uid_gid
BPF_FUNC_get_current_pid_tgid
BPF_FUNC_get_current_cgroup_id
BPF_FUNC_get_current_ancestor_cgroup_id
BPF_FUNC_get_cgroup_classid
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/159033903373.12355.15489763099696629346.stgit@john-Precision-5820-Tower
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Since dynamic symbols are used for dynamic linking it makes sense to
use them (readelf --dyn-syms) for abi check.
Found with some configuration on powerpc where linker puts
local *.plt_call.* symbols into .so.
Signed-off-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200525061846.16524-1-yauheni.kaliuta@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Change 'handeled' to 'handled'.
Signed-off-by: Chris Packham <chris.packham@alliedtelesis.co.nz>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200525230025.14470-1-chris.packham@alliedtelesis.co.nz
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Current 'make install' results in only pkg-config and library binaries
being installed. For consistency also install headers as part of
"make install"
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200526174612.5447-1-nborisov@suse.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
This new API, perf_buffer__consume, can be used as follows:
- When you have a perf ring where wakeup_events is higher than 1,
and you have remaining data in the rings you would like to pull
out on exit (or maybe based on a timeout).
- For low latency cases where you burn a CPU that constantly polls
the queues.
Signed-off-by: Eelco Chaudron <echaudro@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/159048487929.89441.7465713173442594608.stgit@ebuild
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Commit 2b43470add8c ("xsk: Introduce AF_XDP buffer allocation API") added a
new header file include/net/xsk_buff_pool.h, but commit 28bee21dc04b
("MAINTAINERS, xsk: Update AF_XDP section after moves/adds") added a file
entry referring to include/net/xsk_buffer_pool.h.
Hence, ./scripts/get_maintainer.pl --self-test=patterns complains:
warning: no file matches F: include/net/xsk_buffer_pool.h
Adjust the entry in XDP SOCKETS to the actual file name.
Signed-off-by: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200525141553.7035-1-lukas.bulwahn@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
System calls encode returned errors as negative values. Fix a typo that
breaks this convention for bpf(LINK_UPDATE) when bpf_link doesn't support
update operation.
Fixes: f9d041271cf4 ("bpf: Refactor bpf_link update handling")
Signed-off-by: Jakub Sitnicki <jakub@cloudflare.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200525122928.1164495-1-jakub@cloudflare.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
btf__parse_raw and btf__parse_elf return negative error numbers wrapped
in an ERR_PTR, so the extracted value needs to be negated before passing
them to strerror which expects a positive error number.
Before:
Error: failed to load BTF from .../vmlinux: Unknown error -2
After:
Error: failed to load BTF from .../vmlinux: No such file or directory
Signed-off-by: Tobias Klauser <tklauser@distanz.ch>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200525135421.4154-1-tklauser@distanz.ch
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Following the introduction of CAP_BPF, and the switch from CAP_SYS_ADMIN
to other capabilities for various BPF features, update the capability
checks (and potentially, drops) in bpftool for feature probes. Because
bpftool and/or the system might not know of CAP_BPF yet, some caution is
necessary:
- If compiled and run on a system with CAP_BPF, check CAP_BPF,
CAP_SYS_ADMIN, CAP_PERFMON, CAP_NET_ADMIN.
- Guard against CAP_BPF being undefined, to allow compiling bpftool from
latest sources on older systems. If the system where feature probes
are run does not know of CAP_BPF, stop checking after CAP_SYS_ADMIN,
as this should be the only capability required for all the BPF
probing.
- If compiled from latest sources on a system without CAP_BPF, but later
executed on a newer system with CAP_BPF knowledge, then we only test
CAP_SYS_ADMIN. Some probes may fail if the bpftool process has
CAP_SYS_ADMIN but misses the other capabilities. The alternative would
be to redefine the value for CAP_BPF in bpftool, but this does not
look clean, and the case sounds relatively rare anyway.
Note that libcap offers a cap_to_name() function to retrieve the name of
a given capability (e.g. "cap_sys_admin"). We do not use it because
deriving the names from the macros looks simpler than using
cap_to_name() (doing a strdup() on the string) + cap_free() + handling
the case of failed allocations, when we just want to use the name of the
capability in an error message.
The checks when compiling without libcap (i.e. root versus non-root) are
unchanged.
v2:
- Do not allocate cap_list dynamically.
- Drop BPF-related capabilities when running with "unprivileged", even
if we didn't have the full set in the first place (in v1, we would
skip dropping them in that case).
- Keep track of what capabilities we have, print the names of the
missing ones for privileged probing.
- Attempt to drop only the capabilities we actually have.
- Rename a couple variables.
Signed-off-by: Quentin Monnet <quentin@isovalent.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200523010247.20654-1-quentin@isovalent.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
This is a clean-up for the formatting of the do_help functions for
bpftool's subcommands. The following fixes are included:
- Do not use argv[-2] for "iter" help message, as the help is shown by
default if no "iter" action is selected, resulting in messages looking
like "./bpftool bpftool pin...".
- Do not print unused HELP_SPEC_PROGRAM in help message for "bpftool
link".
- Andrii used argument indexing to avoid having multiple occurrences of
bin_name and argv[-2] in the fprintf() for the help message, for
"bpftool gen" and "bpftool link". Let's reuse this for all other help
functions. We can remove up to thirty arguments for the "bpftool map"
help message.
- Harmonise all functions, e.g. use ending quotes-comma on a separate
line.
Signed-off-by: Quentin Monnet <quentin@isovalent.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200523010751.23465-1-quentin@isovalent.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 FPU updates from Ingo Molnar:
"Most of the changes here related to 'XSAVES supervisor state' support,
which is a feature that allows kernel-only data to be automatically
saved/restored by the FPU context switching code.
CPU features that can be supported this way are Intel PT, 'PASID' and
CET features"
* tag 'x86-fpu-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/fpu/xstate: Restore supervisor states for signal return
x86/fpu/xstate: Preserve supervisor states for the slow path in __fpu__restore_sig()
x86/fpu: Introduce copy_supervisor_to_kernel()
x86/fpu/xstate: Update copy_kernel_to_xregs_err() for supervisor states
x86/fpu/xstate: Update sanitize_restored_xstate() for supervisor xstates
x86/fpu/xstate: Define new functions for clearing fpregs and xstates
x86/fpu/xstate: Introduce XSAVES supervisor states
x86/fpu/xstate: Separate user and supervisor xfeatures mask
x86/fpu/xstate: Define new macros for supervisor and user xstates
x86/fpu/xstate: Rename validate_xstate_header() to validate_user_xstate_header()
|
|
The PA-RISC Linux project web page is now hosted at
https://parisc.wiki.kernel.org
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
The PA-RISC Linux project web page is now hosted at
https://parisc.wiki.kernel.org
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
The PA-RISC Linux project web page is now hosted at
https://parisc.wiki.kernel.org
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
The PA-RISC Linux project web page is now hosted at
https://parisc.wiki.kernel.org
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
The PA-RISC Linux project web page is now hosted at
https://parisc.wiki.kernel.org
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpu updates from Ingo Molnar:
"Misc updates:
- Extend the x86 family/model macros with a steppings dimension,
because x86 life isn't complex enough and Intel uses steppings to
differentiate between different CPUs. :-/
- Convert the TSC deadline timer quirks to the steppings macros.
- Clean up asm mnemonics.
- Fix the handling of an AMD erratum, or in other words, fix a kernel
erratum"
* tag 'x86-cpu-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu: Use RDRAND and RDSEED mnemonics in archrandom.h
x86/cpu: Use INVPCID mnemonic in invpcid.h
x86/cpu/amd: Make erratum #1054 a legacy erratum
x86/apic: Convert the TSC deadline timer matching to steppings macro
x86/cpu: Add a X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS() macro
x86/cpu: Add a steppings field to struct x86_cpu_id
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cleanups from Ingo Molnar:
"Misc cleanups, with an emphasis on removing obsolete/dead code"
* tag 'x86-cleanups-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/spinlock: Remove obsolete ticket spinlock macros and types
x86/mm: Drop deprecated DISCONTIGMEM support for 32-bit
x86/apb_timer: Drop unused declaration and macro
x86/apb_timer: Drop unused TSC calibration
x86/io_apic: Remove unused function mp_init_irq_at_boot()
x86/mm: Stop printing BRK addresses
x86/audit: Fix a -Wmissing-prototypes warning for ia32_classify_syscall()
x86/nmi: Remove edac.h include leftover
mm: Remove MPX leftovers
x86/mm/mmap: Fix -Wmissing-prototypes warnings
x86/early_printk: Remove unused includes
crash_dump: Remove no longer used saved_max_pfn
x86/smpboot: Remove the last ICPU() macro
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 build updates from Ingo Molnar:
"Misc dependency fixes, plus a documentation update about memory
protection keys support"
* tag 'x86-build-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/Kconfig: Update config and kernel doc for MPK feature on AMD
x86/boot: Discard .discard.unreachable for arch/x86/boot/compressed/vmlinux
x86/boot/build: Add phony targets in arch/x86/boot/Makefile to PHONY
x86/boot/build: Make 'make bzlilo' not depend on vmlinux or $(obj)/bzImage
x86/boot/build: Add cpustr.h to targets and remove clean-files
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 boot updates from Ingo Molnar:
"Misc updates:
- Add the initrdmem= boot option to specify an initrd embedded in RAM
(flash most likely)
- Sanitize the CS value earlier during boot, which also fixes SEV-ES
- Various fixes and smaller cleanups"
* tag 'x86-boot-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot: Correct relocation destination on old linkers
x86/boot/compressed/64: Switch to __KERNEL_CS after GDT is loaded
x86/boot: Fix -Wint-to-pointer-cast build warning
x86/boot: Add kstrtoul() from lib/
x86/tboot: Mark tboot static
x86/setup: Add an initrdmem= option to specify initrd physical address
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull SMP updates from Ingo Molnar:
"Misc cleanups in the SMP hotplug and cross-call code"
* tag 'smp-core-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
cpu/hotplug: Remove __freeze_secondary_cpus()
cpu/hotplug: Remove disable_nonboot_cpus()
cpu/hotplug: Fix a typo in comment "broadacasted"->"broadcasted"
smp: Use smp_call_func_t in on_each_cpu()
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull EFI updates from Ingo Molnar:
"The EFI changes for this cycle are:
- preliminary changes for RISC-V
- Add support for setting the resolution on the EFI framebuffer
- Simplify kernel image loading for arm64
- Move .bss into .data via the linker script instead of relying on
symbol annotations.
- Get rid of __pure getters to access global variables
- Clean up the config table matching arrays
- Rename pr_efi/pr_efi_err to efi_info/efi_err, and use them
consistently
- Simplify and unify initrd loading
- Parse the builtin command line on x86 (if provided)
- Implement printk() support, including support for wide character
strings
- Simplify GDT handling in early mixed mode thunking code
- Some other minor fixes and cleanups"
* tag 'efi-core-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (79 commits)
efi/x86: Don't blow away existing initrd
efi/x86: Drop the special GDT for the EFI thunk
efi/libstub: Add missing prototype for PE/COFF entry point
efi/efivars: Add missing kobject_put() in sysfs entry creation error path
efi/libstub: Use pool allocation for the command line
efi/libstub: Don't parse overlong command lines
efi/libstub: Use snprintf with %ls to convert the command line
efi/libstub: Get the exact UTF-8 length
efi/libstub: Use %ls for filename
efi/libstub: Add UTF-8 decoding to efi_puts
efi/printf: Add support for wchar_t (UTF-16)
efi/gop: Add an option to list out the available GOP modes
efi/libstub: Add definitions for console input and events
efi/libstub: Implement printk-style logging
efi/printf: Turn vsprintf into vsnprintf
efi/printf: Abort on invalid format
efi/printf: Refactor code to consolidate padding and output
efi/printf: Handle null string input
efi/printf: Factor out integer argument retrieval
efi/printf: Factor out width/precision parsing
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf updates from Ingo Molnar:
"Kernel side changes:
- Add AMD Fam17h RAPL support
- Introduce CAP_PERFMON to kernel and user space
- Add Zhaoxin CPU support
- Misc fixes and cleanups
Tooling changes:
- perf record:
Introduce '--switch-output-event' to use arbitrary events to be
setup and read from a side band thread and, when they take place a
signal be sent to the main 'perf record' thread, reusing the core
for '--switch-output' to take perf.data snapshots from the ring
buffer used for '--overwrite', e.g.:
# perf record --overwrite -e sched:* \
--switch-output-event syscalls:*connect* \
workload
will take perf.data.YYYYMMDDHHMMSS snapshots up to around the
connect syscalls.
Add '--num-synthesize-threads' option to control degree of
parallelism of the synthesize_mmap() code which is scanning
/proc/PID/task/PID/maps and can be time consuming. This mimics
pre-existing behaviour in 'perf top'.
- perf bench:
Add a multi-threaded synthesize benchmark and kallsyms parsing
benchmark.
- Intel PT support:
Stitch LBR records from multiple samples to get deeper backtraces,
there are caveats, see the csets for details.
Allow using Intel PT to synthesize callchains for regular events.
Add support for synthesizing branch stacks for regular events
(cycles, instructions, etc) from Intel PT data.
Misc changes:
- Updated perf vendor events for power9 and Coresight.
- Add flamegraph.py script via 'perf flamegraph'
- Misc other changes, fixes and cleanups - see the Git log for details
Also, since over the last couple of years perf tooling has matured and
decoupled from the kernel perf changes to a large degree, going
forward Arnaldo is going to send perf tooling changes via direct pull
requests"
* tag 'perf-core-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (163 commits)
perf/x86/rapl: Add AMD Fam17h RAPL support
perf/x86/rapl: Make perf_probe_msr() more robust and flexible
perf/x86/rapl: Flip logic on default events visibility
perf/x86/rapl: Refactor to share the RAPL code between Intel and AMD CPUs
perf/x86/rapl: Move RAPL support to common x86 code
perf/core: Replace zero-length array with flexible-array
perf/x86: Replace zero-length array with flexible-array
perf/x86/intel: Add more available bits for OFFCORE_RESPONSE of Intel Tremont
perf/x86/rapl: Add Ice Lake RAPL support
perf flamegraph: Use /bin/bash for report and record scripts
perf cs-etm: Move definition of 'traceid_list' global variable from header file
libsymbols kallsyms: Move hex2u64 out of header
libsymbols kallsyms: Parse using io api
perf bench: Add kallsyms parsing
perf: cs-etm: Update to build with latest opencsd version.
perf symbol: Fix kernel symbol address display
perf inject: Rename perf_evsel__*() operating on 'struct evsel *' to evsel__*()
perf annotate: Rename perf_evsel__*() operating on 'struct evsel *' to evsel__*()
perf trace: Rename perf_evsel__*() operating on 'struct evsel *' to evsel__*()
perf script: Rename perf_evsel__*() operating on 'struct evsel *' to evsel__*()
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull objtool updates from Ingo Molnar:
"There are a lot of objtool changes in this cycle, all across the map:
- Speed up objtool significantly, especially when there are large
number of sections
- Improve objtool's understanding of special instructions such as
IRET, to reduce the number of annotations required
- Implement 'noinstr' validation
- Do baby steps for non-x86 objtool use
- Simplify/fix retpoline decoding
- Add vmlinux validation
- Improve documentation
- Fix various bugs and apply smaller cleanups"
* tag 'objtool-core-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (54 commits)
objtool: Enable compilation of objtool for all architectures
objtool: Move struct objtool_file into arch-independent header
objtool: Exit successfully when requesting help
objtool: Add check_kcov_mode() to the uaccess safelist
samples/ftrace: Fix asm function ELF annotations
objtool: optimize add_dead_ends for split sections
objtool: use gelf_getsymshndx to handle >64k sections
objtool: Allow no-op CFI ops in alternatives
x86/retpoline: Fix retpoline unwind
x86: Change {JMP,CALL}_NOSPEC argument
x86: Simplify retpoline declaration
x86/speculation: Change FILL_RETURN_BUFFER to work with objtool
objtool: Add support for intra-function calls
objtool: Move the IRET hack into the arch decoder
objtool: Remove INSN_STACK
objtool: Make handle_insn_ops() unconditional
objtool: Rework allocating stack_ops on decode
objtool: UNWIND_HINT_RET_OFFSET should not check registers
objtool: is_fentry_call() crashes if call has no destination
x86,smap: Fix smap_{save,restore}() alternatives
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Ingo Molnar:
"The biggest change to core locking facilities in this cycle is the
introduction of local_lock_t - this primitive comes from the -rt
project and identifies CPU-local locking dependencies normally handled
opaquely beind preempt_disable() or local_irq_save/disable() critical
sections.
The generated code on mainline kernels doesn't change as a result, but
still there are benefits: improved debugging and better documentation
of data structure accesses.
The new local_lock_t primitives are introduced and then utilized in a
couple of kernel subsystems. No change in functionality is intended.
There's also other smaller changes and cleanups"
* tag 'locking-core-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
zram: Use local lock to protect per-CPU data
zram: Allocate struct zcomp_strm as per-CPU memory
connector/cn_proc: Protect send_msg() with a local lock
squashfs: Make use of local lock in multi_cpu decompressor
mm/swap: Use local_lock for protection
radix-tree: Use local_lock for protection
locking: Introduce local_lock()
locking/lockdep: Replace zero-length array with flexible-array
locking/rtmutex: Remove unused rt_mutex_cmpxchg_relaxed()
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RCU updates from Ingo Molnar:
"The RCU updates for this cycle were:
- RCU-tasks update, including addition of RCU Tasks Trace for BPF use
and TASKS_RUDE_RCU
- kfree_rcu() updates.
- Remove scheduler locking restriction
- RCU CPU stall warning updates.
- Torture-test updates.
- Miscellaneous fixes and other updates"
* tag 'core-rcu-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (103 commits)
rcu: Allow for smp_call_function() running callbacks from idle
rcu: Provide rcu_irq_exit_check_preempt()
rcu: Abstract out rcu_irq_enter_check_tick() from rcu_nmi_enter()
rcu: Provide __rcu_is_watching()
rcu: Provide rcu_irq_exit_preempt()
rcu: Make RCU IRQ enter/exit functions rely on in_nmi()
rcu/tree: Mark the idle relevant functions noinstr
x86: Replace ist_enter() with nmi_enter()
x86/mce: Send #MC singal from task work
x86/entry: Get rid of ist_begin/end_non_atomic()
sched,rcu,tracing: Avoid tracing before in_nmi() is correct
sh/ftrace: Move arch_ftrace_nmi_{enter,exit} into nmi exception
lockdep: Always inline lockdep_{off,on}()
hardirq/nmi: Allow nested nmi_enter()
arm64: Prepare arch_nmi_enter() for recursion
printk: Disallow instrumenting print_nmi_enter()
printk: Prepare for nested printk_nmi_enter()
rcutorture: Convert ULONG_CMP_LT() to time_before()
torture: Add a --kasan argument
torture: Save a few lines by using config_override_param initially
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull kprobes updates from Ingo Molnar:
"Various kprobes updates, mostly centered around cleaning up the
no-instrumentation logic.
Instead of the current per debug facility blacklist, use the more
generic .noinstr.text approach, combined with a 'noinstr' marker for
functions.
Also add instrumentation_begin()/end() to better manage the exact
place in entry code where instrumentation may be used.
And add a kprobes blacklist for modules"
* tag 'core-kprobes-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
kprobes: Prevent probes in .noinstr.text section
vmlinux.lds.h: Create section for protection against instrumentation
samples/kprobes: Add __kprobes and NOKPROBE_SYMBOL() for handlers.
kprobes: Support NOKPROBE_SYMBOL() in modules
kprobes: Support __kprobes blacklist in modules
kprobes: Lock kprobe_mutex while showing kprobe_blacklist
|