Age | Commit message (Collapse) | Author |
|
Remove non-functioning secondary email address from maintainer information.
Signed-off-by: Harry Morris <h.morris@cascoda.com>
Signed-off-by: Stefan Schmidt <stefan@osg.samsung.com>
|
|
The check is valid but it does not warrant to crash the kernel. A
WARN_ON() is good enough here.
Found by checkpatch.
Signed-off-by: Stefan Schmidt <stefan@osg.samsung.com>
|
|
Fix a long line, wrong comment format and misaligned indent.
Signed-off-by: Stefan Schmidt <stefan@osg.samsung.com>
|
|
Instead of having the function name hard-coded (it might change and we
forgot to update them in the debug output) we can use __func__ instead
and also shorter the line so we do not need to break it.
Found by checkpatch.
Signed-off-by: Stefan Schmidt <stefan@osg.samsung.com>
|
|
Switch top the preferred kernel type naming.
Found by checkpatch.
Signed-off-by: Stefan Schmidt <stefan@osg.samsung.com>
|
|
Signed-off-by: Wang Long <wanglong19@meituan.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
Signed-off-by: Konstantinos Tsimpoukas <kostaslinuxxx@gmail.com>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
Pull another fix of URB EP type check.
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
The us122l driver creates URBs per the fixed endpoints, and this may
end up with URBs with inconsistent pipes when a fuzzer or a malicious
program deals with the manipulated endpoints. It ends up with a
kernel warning like:
usb 1-1: BOGUS urb xfer, pipe 0 != type 3
------------[ cut here ]------------
WARNING: CPU: 0 PID: 24 at drivers/usb/core/urb.c:471
usb_submit_urb+0x113e/0x1400
Call Trace:
usb_stream_start+0x48a/0x9f0 sound/usb/usx2y/usb_stream.c:690
us122l_start+0x116/0x290 sound/usb/usx2y/us122l.c:365
us122l_create_card sound/usb/usx2y/us122l.c:502
us122l_usb_probe sound/usb/usx2y/us122l.c:588
....
For avoiding the bad access, this patch adds a few sanity checks of
the validity of created URBs like previous similar fixes using the new
usb_urb_ep_type_check() helper function.
Reported-by: Andrey Konovalov <andreyknvl@google.com>
Tested-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
Instead of passing mask to all the helpers, just fixup the search key
early.
After rbtree conversion, each rbtree node stores connections of same
'addr & mask', so no need to pass the mask too.
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
|
|
buf is initialized to buf_start and then set on the next statement
to buf_start + offsets[i]. Clean this up to just initialize buf
to buf_start + offsets[i] to clean up the clang build warning:
"Value stored to 'buf' during its initialization is never read"
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
|
|
Information about ipvs in different network namespace can be seen via procfs.
How to reproduce:
# ip netns add ns01
# ip netns add ns02
# ip netns exec ns01 ip a add dev lo 127.0.0.1/8
# ip netns exec ns02 ip a add dev lo 127.0.0.1/8
# ip netns exec ns01 ipvsadm -A -t 10.1.1.1:80
# ip netns exec ns02 ipvsadm -A -t 10.1.1.2:80
The ipvsadm displays information about its own network namespace only.
# ip netns exec ns01 ipvsadm -Ln
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
-> RemoteAddress:Port Forward Weight ActiveConn InActConn
TCP 10.1.1.1:80 wlc
# ip netns exec ns02 ipvsadm -Ln
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
-> RemoteAddress:Port Forward Weight ActiveConn InActConn
TCP 10.1.1.2:80 wlc
But I can see information about other network namespace via procfs.
# ip netns exec ns01 cat /proc/net/ip_vs
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
-> RemoteAddress:Port Forward Weight ActiveConn InActConn
TCP 0A010101:0050 wlc
TCP 0A010102:0050 wlc
# ip netns exec ns02 cat /proc/net/ip_vs
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
-> RemoteAddress:Port Forward Weight ActiveConn InActConn
TCP 0A010102:0050 wlc
Signed-off-by: KUWAZAWA Takuya <albatross0@gmail.com>
Acked-by: Julian Anastasov <ja@ssi.bg>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
|
|
The debug and error printk functions in ipvs uses wrongly the %pF instead of
the %pS printk format specifier for printing symbols for the address returned
by _builtin_return_address(0). Fix it for the ia64, ppc64 and parisc64
architectures.
Signed-off-by: Helge Deller <deller@gmx.de>
Cc: Wensong Zhang <wensong@linux-vs.org>
Cc: netdev@vger.kernel.org
Cc: lvs-devel@vger.kernel.org
Cc: netfilter-devel@vger.kernel.org
Acked-by: Simon Horman <horms@verge.net.au>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
|
|
Use kernel preferred dev_* family of functions in place of pr_*,
wherever a device object is present.
Done with the help of coccinelle.
Signed-off-by: Aishwarya Pant <aishpant@gmail.com>
Signed-off-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
|
|
Make the ACPI PM domain take DPM_FLAG_SMART_SUSPEND into account in
its system suspend callbacks.
[Note that the pm_runtime_suspended() check in acpi_dev_needs_resume()
is an optimization, because if is not passed, all of the subsequent
checks may be skipped and some of them are much more overhead in
general.]
Also use the observation that if the device is in runtime suspend
at the beginning of the "late" phase of a system-wide suspend-like
transition, its state cannot change going forward (runtime PM is
disabled for it at that time) until the transition is over and the
subsequent system-wide PM callbacks should be skipped for it (as
they generally assume the device to not be suspended), so add
checks for that in acpi_subsys_suspend_late/noirq() and
acpi_subsys_freeze_late/noirq().
Moreover, if acpi_subsys_resume_noirq() is called during the
subsequent system-wide resume transition and if the device was left
in runtime suspend previously, its runtime PM status needs to be
changed to "active" as it is going to be put into the full-power
state going forward, so add a check for that too in there.
In turn, if acpi_subsys_thaw_noirq() runs after the device has been
left in runtime suspend, the subsequent "thaw" callbacks need
to be skipped for it (as they may not work correctly with a
suspended device), so set the power.direct_complete flag for the
device then to make the PM core skip those callbacks.
On top of the above, make the analogous changes in the acpi_lpss
driver that uses the ACPI PM domain callbacks.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Make the PCI bus type take DPM_FLAG_SMART_SUSPEND into account in its
system-wide PM callbacks and make sure that all code that should not
run in parallel with pci_pm_runtime_resume() is executed in the "late"
phases of system suspend, freeze and poweroff transitions.
[Note that the pm_runtime_suspended() check in pci_dev_keep_suspended()
is an optimization, because if is not passed, all of the subsequent
checks may be skipped and some of them are much more overhead in
general.]
Also use the observation that if the device is in runtime suspend
at the beginning of the "late" phase of a system-wide suspend-like
transition, its state cannot change going forward (runtime PM is
disabled for it at that time) until the transition is over and the
subsequent system-wide PM callbacks should be skipped for it (as
they generally assume the device to not be suspended), so add checks
for that in pci_pm_suspend_late/noirq(), pci_pm_freeze_late/noirq()
and pci_pm_poweroff_late/noirq().
Moreover, if pci_pm_resume_noirq() or pci_pm_restore_noirq() is
called during the subsequent system-wide resume transition and if
the device was left in runtime suspend previously, its runtime PM
status needs to be changed to "active" as it is going to be put
into the full-power state, so add checks for that too to these
functions.
In turn, if pci_pm_thaw_noirq() runs after the device has been
left in runtime suspend, the subsequent "thaw" callbacks need
to be skipped for it (as they may not work correctly with a
suspended device), so set the power.direct_complete flag for the
device then to make the PM core skip those callbacks.
In addition to the above add a core helper for checking if
DPM_FLAG_SMART_SUSPEND is set and the device runtime PM status is
"suspended" at the same time, which is done quite often in the new
code (and will be done elsewhere going forward too).
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
The only user of non-empty pcibios_pm_ops is s390 and it only uses
"noirq" callbacks, so drop the invocations of the other pcibios_pm_ops
callbacks from the PCI PM code.
That will allow subsequent changes to be somewhat simpler.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org>
|
|
Define and document a SMART_SUSPEND flag to instruct bus types and PM
domains that the system suspend callbacks provided by the driver can
cope with runtime-suspended devices, so from the driver's perspective
it should be safe to leave devices in runtime suspend during system
suspend.
Setting that flag may also cause middle-layer code (bus types,
PM domains etc.) to skip invocations of the ->suspend_late and
->suspend_noirq callbacks provided by the driver if the device
is in runtime suspend at the beginning of the "late" phase of
the system-wide suspend transition, in which case the driver's
system-wide resume callbacks may be invoked back-to-back with
its ->runtime_suspend callback, so the driver has to be able to
cope with that too.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org>
|
|
Replace the PCI-specific flag PCI_DEV_FLAGS_NEEDS_RESUME with the
PM core's DPM_FLAG_NEVER_SKIP one everywhere and drop it.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org>
|
|
The motivation for this change is to provide a way to work around
a problem with the direct-complete mechanism used for avoiding
system suspend/resume handling for devices in runtime suspend.
The problem is that some middle layer code (the PCI bus type and
the ACPI PM domain in particular) returns positive values from its
system suspend ->prepare callbacks regardless of whether the driver's
->prepare returns a positive value or 0, which effectively prevents
drivers from being able to control the direct-complete feature.
Some drivers need that control, however, and the PCI bus type has
grown its own flag to deal with this issue, but since it is not
limited to PCI, it is better to address it by adding driver flags at
the core level.
To that end, add a driver_flags field to struct dev_pm_info for flags
that can be set by device drivers at the probe time to inform the PM
core and/or bus types, PM domains and so on on the capabilities and/or
preferences of device drivers. Also add two static inline helpers
for setting that field and testing it against a given set of flags
and make the driver core clear it automatically on driver remove
and probe failures.
Define and document two PM driver flags related to the direct-
complete feature: NEVER_SKIP and SMART_PREPARE that can be used,
respectively, to indicate to the PM core that the direct-complete
mechanism should never be used for the device and to inform the
middle layer code (bus types, PM domains etc) that it can only
request the PM core to use the direct-complete mechanism for
the device (by returning a positive value from its ->prepare
callback) if it also has been requested by the driver.
While at it, make the core check pm_runtime_suspended() when
setting power.direct_complete so that it doesn't need to be
checked by ->prepare callbacks.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org>
|
|
|
|
Variable charging_start is being set but is never read, it is therefore
redundant and can be removed. Cleans up sparse warning:
drivers/power/supply/pcf50633-charger.c:61:3: warning: Value stored to
'charging_start' is never read
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
|
|
Pointer pdata is assigned but never used, so remove it. Cleans up the
clang warning:
drivers/power/supply/generic-adc-battery.c:211:2: warning: Value
stored to 'pdata' is never read
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
|
|
Replace the specification of a data structure by a pointer dereference
as the parameter for the operator "sizeof" to make the corresponding size
determination a bit safer according to the Linux coding style convention.
This issue was detected by using the Coccinelle software.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Signed-off-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
|
|
When CONFIG_DEBUG_USER is enabled, it's possible for a user to
deliberately trigger dump_instr() with a chosen kernel address.
Let's avoid problems resulting from this by using get_user() rather than
__get_user(), ensuring that we don't erroneously access kernel memory.
So that we can use the same code to dump user instructions and kernel
instructions, the common dumping code is factored out to __dump_instr(),
with the fs manipulated appropriately in dump_instr() around calls to
this.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: stable@vger.kernel.org
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
The reworked MPU code produces a new warning in some configurations,
presumably starting with the code move after the compiler now makes
different inlining decisions:
arch/arm/mm/pmsa-v7.c: In function 'adjust_lowmem_bounds_mpu':
arch/arm/mm/pmsa-v7.c:310:5: error: 'specified_mem_size' may be used uninitialized in this function [-Werror=maybe-uninitialized]
This appears to be harmless, as we know that there is always at
least one memblock, and the only way this could get triggered is
if the for_each_memblock() loop was never entered.
I could not come up with a better workaround than initializing
the specified_mem_size to zero, but at least that is the value
that the variable would have in the hypothetical case of no
memblocks.
Fixes: 877ec119dbbf ("ARM: 8706/1: NOMMU: Move out MPU setup in separate module")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
Some terminals apparently have issues with "\n\r" and mess up the
display. Let's use the traditional "\r\n" ordering.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Reported-by: Chris Brandt <Chris.Brandt@renesas.com>
Tested-by: Chris Brandt <Chris.Brandt@renesas.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
DD2.1 does not have to save MMCR0 for all state-loss idle states,
only after deep idle states (like other PMU registers).
Reviewed-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
DD2.1 does not have to flush the ERAT after a state-loss idle.
Performance testing was done on a DD2.1 using only the stop0 idle state
(the shallowest state which supports state loss), using context_switch
selftest configured to ping-poing between two threads on the same core
and two different cores.
Performance improvement for same core is 7.0%, different cores is 14.8%.
Reviewed-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Cc: Michael Neuling <mikey@neuling.org>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
'regmap/topic/hwspinlock' into regmap-next
|
|
|
|
PTR_ERR(NULL) is success. Normally when a function returns both NULL
and error pointers, it means that NULL is not a error.
But, rsnd_dmaen_request_channel() returns NULL if requested resource
was failed.
Let's return -EIO if rsnd_dmaen_request_channel() was failed on
rsnd_dmaen_nolock_start().
This patch fixes commit edce5c496c6a ("ASoC: rsnd: Request/Release DMA
channel eachtime")
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
|
|
This patch fixes the warning of label 'err_map' defined but not used.
Signed-off-by: Baolin Wang <baolin.wang@linaro.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
|
|
Trying to work with hwspinlock from built in code is painful as it can
be built modular. Invert the test for REGMAP_HWSPINLOCK for now so we
end up requiring users to depend on HWSPINLOCK=y in order to turn on the
hwspinlock code.
Signed-off-by: Mark Brown <broonie@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/iwlwifi/iwlwifi-next
iwlwifi updates
* Some new PCI IDs;
* A bunch of cleanups;
* The timers update by Kees;
* Add more register dump call-sites;
* A fix for a locking issue in the TX flush code;
* Actual implementation of the TX flush code for A000;
* An optimization to drop RX frames during restart to avoid BA issues;
|
|
Currently we allow unlimited number of timer instances, and it may
bring the system hogging way too much CPU when too many timer
instances are opened and processed concurrently. This may end up with
a soft-lockup report as triggered by syzkaller, especially when
hrtimer backend is deployed.
Since such insane number of instances aren't demanded by the normal
use case of ALSA sequencer and it merely opens a risk only for abuse,
this patch introduces the upper limit for the number of instances per
timer backend. As default, it's set to 1000, but for the fine-grained
timer like hrtimer, it's set to 100.
Reported-by: syzbot
Tested-by: Jérôme Glisse <jglisse@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
After handling a transactional FP, Altivec or VSX unavailable exception.
The return to userspace code will detect that the TIF_RESTORE_TM bit is
set and call restore_tm_state(). restore_tm_state() will call
restore_math() to ensure that the correct facilities are loaded.
This means that all the loadup code in {fp,altivec,vsx}_unavailable_tm()
is doing pointless work and can simply be removed.
Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Lazy save and restore of FP/Altivec means that a userspace process can
be sent to userspace with FP or Altivec disabled and loaded only as
required (by way of an FP/Altivec unavailable exception). Transactional
Memory complicates this situation as a transaction could be started
without FP/Altivec being loaded up. This causes the hardware to
checkpoint incorrect registers. Handling FP/Altivec unavailable
exceptions while a thread is transactional requires a reclaim and
recheckpoint to ensure the CPU has correct state for both sets of
registers.
tm_reclaim() has optimisations to not always save the FP/Altivec
registers to the checkpointed save area. This was originally done
because the caller might have information that the checkpointed
registers aren't valid due to lazy save and restore. We've also been a
little vague as to how tm_reclaim() leaves the FP/Altivec state since it
doesn't necessarily always save it to the thread struct. This has lead
to an (incorrect) assumption that it leaves the checkpointed state on
the CPU.
tm_recheckpoint() has similar optimisations in reverse. It may not
always reload the checkpointed FP/Altivec registers from the thread
struct before the trecheckpoint. It is therefore quite unclear where it
expects to get the state from. This didn't help with the assumption
made about tm_reclaim().
These optimisations sit in what is by definition a slow path. If a
process has to go through a reclaim/recheckpoint then its transaction
will be doomed on returning to userspace. This mean that the process
will be unable to complete its transaction and be forced to its failure
handler. This is already an out if line case for userspace. Furthermore,
the cost of copying 64 times 128 bits from registers isn't very long[0]
(at all) on modern processors. As such it appears these optimisations
have only served to increase code complexity and are unlikely to have
had a measurable performance impact.
Our transactional memory handling has been riddled with bugs. A cause
of this has been difficulty in following the code flow, code complexity
has not been our friend here. It makes sense to remove these
optimisations in favour of a (hopefully) more stable implementation.
This patch does mean that some times the assembly will needlessly save
'junk' registers which will subsequently get overwritten with the
correct value by the C code which calls the assembly function. This
small inefficiency is far outweighed by the reduction in complexity for
general TM code, context switching paths, and transactional facility
unavailable exception handler.
0: I tried to measure it once for other work and found that it was
hiding in the noise of everything else I was working with. I find it
exceedingly likely this will be the case here.
Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
exception
Lazy save and restore of FP/Altivec means that a userspace process can
be sent to userspace with FP or Altivec disabled and loaded only as
required (by way of an FP/Altivec unavailable exception). Transactional
Memory complicates this situation as a transaction could be started
without FP/Altivec being loaded up. This causes the hardware to
checkpoint incorrect registers. Handling FP/Altivec unavailable
exceptions while a thread is transactional requires a reclaim and
recheckpoint to ensure the CPU has correct state for both sets of
registers.
tm_reclaim() has optimisations to not always save the FP/Altivec
registers to the checkpointed save area. This was originally done
because the caller might have information that the checkpointed
registers aren't valid due to lazy save and restore. We've also been a
little vague as to how tm_reclaim() leaves the FP/Altivec state since it
doesn't necessarily always save it to the thread struct. This has lead
to an (incorrect) assumption that it leaves the checkpointed state on
the CPU.
tm_recheckpoint() has similar optimisations in reverse. It may not
always reload the checkpointed FP/Altivec registers from the thread
struct before the trecheckpoint. It is therefore quite unclear where it
expects to get the state from. This didn't help with the assumption
made about tm_reclaim().
This patch is a minimal fix for ease of backporting. A more correct fix
which removes the msr parameter to tm_reclaim() and tm_recheckpoint()
altogether has been upstreamed to apply on top of this patch.
Fixes: dc3106690b20 ("powerpc: tm: Always use fp_state and vr_state to
store live registers")
Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Lazy save and restore of FP/Altivec means that a userspace process can
be sent to userspace with FP or Altivec disabled and loaded only as
required (by way of an FP/Altivec unavailable exception). Transactional
Memory complicates this situation as a transaction could be started
without FP/Altivec being loaded up. This causes the hardware to
checkpoint incorrect registers. Handling FP/Altivec unavailable
exceptions while a thread is transactional requires a reclaim and
recheckpoint to ensure the CPU has correct state for both sets of
registers.
Lazy save and restore of FP/Altivec cannot be done if a process is
transactional. If a facility was enabled it must remain enabled whenever
a thread is transactional.
Commit dc16b553c949 ("powerpc: Always restore FPU/VEC/VSX if hardware
transactional memory in use") ensures that the facilities are always
enabled if a thread is transactional. A bug in the introduced code may
cause it to inadvertently enable a facility that was (and should remain)
disabled. The problem with this extraneous enablement is that the
registers for the erroneously enabled facility have not been correctly
recheckpointed - the recheckpointing code assumed the facility would
remain disabled.
Further compounding the issue, the transactional {fp,altivec,vsx}
unavailable code has been incorrectly using the MSR to enable
facilities. The presence of the {FP,VEC,VSX} bit in the regs->msr simply
means if the registers are live on the CPU, not if the kernel should
load them before returning to userspace. This has worked due to the bug
mentioned above.
This causes transactional threads which return to their failure handler
to observe incorrect checkpointed registers. Perhaps an example will
help illustrate the problem:
A userspace process is running and uses both FP and Altivec registers.
This process then continues to run for some time without touching
either sets of registers. The kernel subsequently disables the
facilities as part of lazy save and restore. The userspace process then
performs a tbegin and the CPU checkpoints 'junk' FP and Altivec
registers. The process then performs a floating point instruction
triggering a fp unavailable exception in the kernel.
The kernel then loads the FP registers - and only the FP registers.
Since the thread is transactional it must perform a reclaim and
recheckpoint to ensure both the checkpointed registers and the
transactional registers are correct. It then (correctly) enables
MSR[FP] for the process. Later (on exception exist) the kernel also
(inadvertently) enables MSR[VEC]. The process is then returned to
userspace.
Since the act of loading the FP registers doomed the transaction we know
CPU will fail the transaction, restore its checkpointed registers, and
return the process to its failure handler. The problem is that we're
now running with Altivec enabled and the 'junk' checkpointed registers
are restored. The kernel had only recheckpointed FP.
This patch solves this by only activating FP/Altivec if userspace was
using them when it entered the kernel and not simply if the process is
transactional.
Fixes: dc16b553c949 ("powerpc: Always restore FPU/VEC/VSX if hardware
transactional memory in use")
Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
The OPAL calls performed in this driver shouldn't be using
opal_async_wait_response() as this performs a wait_event() which, on
long running OPAL calls could result in hung task warnings. wait_event()
prevents timely signal delivery which is also undesirable.
This patch also attempts to quieten down the use of dev_err() when
errors haven't actually occurred and also to return better information up
the stack rather than always -EIO.
Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
Acked-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Also export opal_error_code() so that it can be used in modules
Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This patch adds an _interruptible version of opal_async_wait_response().
This is useful when a long running OPAL call is performed on behalf of
a userspace thread, for example, the opal_flash_{read,write,erase}
functions performed by the powernv-flash MTD driver.
It is foreseeable that these functions would take upwards of two
minutes causing the wait_event() to block long enough to cause hung
task warnings. Furthermore, wait_event_interruptible() is preferable
as otherwise there is no way for signals to stop the process which is
going to be confusing in userspace.
Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Parallel sensor reads could run out of async tokens due to
opal_get_sensor_data grabbing tokens but then doing the sensor
read behind a mutex, essentially serializing the (possibly
asynchronous and relatively slow) sensor read.
It turns out that the mutex isn't needed at all, not only
should the OPAL interface allow concurrent reads, the implementation
is certainly safe for that, and if any sensor we were reading
from somewhere isn't, doing the mutual exclusion in the kernel
is the wrong place to do it, OPAL should be doing it for the kernel.
So, remove the mutex.
Additionally, we shouldn't be printing out an error when we don't
get a token as the only way this should happen is if we've been
interrupted in down_interruptible() on the semaphore.
Reported-by: Robert Lippert <rlippert@google.com>
Signed-off-by: Stewart Smith <stewart@linux.vnet.ibm.com>
Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Future work will add an opal_async_wait_response_interruptible()
which will call wait_event_interruptible(). This work requires extra
token state to be tracked as wait_event_interruptible() can return and
the caller could release the token before OPAL responds.
Currently token state is tracked with two bitfields which are 64 bits
big but may not need to be as OPAL informs Linux how many async tokens
there are. It also uses an array indexed by token to store response
messages for each token.
The bitfields make it difficult to add more state and also provide a
hard maximum as to how many tokens there can be - it is possible that
OPAL will inform Linux that there are more than 64 tokens.
Rather than add a bitfield to track the extra state, rework the
internals slightly.
Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
[mpe: Fix __opal_async_get_token() when no tokens are free]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
There are no callers of both __opal_async_get_token() and
__opal_async_release_token().
This patch also removes the possibility of "emergency through
synchronous call to __opal_async_get_token()" as such it makes more
sense to initialise opal_sync_sem for the maximum number of async
tokens.
Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Because the MTD core might split up a read() or write() from userspace
into several calls to the driver, we may fail to get a token but already
have done some work, best to return -EINTR back to userspace and have
them decide what to do.
Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
Acked-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
powernv_flash_probe() has pointless goto statements which jump to the
end of the function to simply return a variable. Rather than checking
for error and going to the label, just return the error as soon as it is
detected.
Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
Acked-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
While this driver expects to interact asynchronously, OPAL is well
within its rights to return OPAL_SUCCESS to indicate that the operation
completed without the need for a callback. We shouldn't treat
OPAL_SUCCESS as an error rather we should wrap up and return promptly to
the caller.
Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
Acked-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|