Age | Commit message (Collapse) | Author |
|
git://git.kernel.org/pub/scm/linux/kernel/git/broonie/sound into for-linus
ASoC: Fixes for v4.0
As well as the usual collection of driver specific fixes there's a few
more generic things:
- Lots of fixes from Takashi for drivers using the wrong field in the
control union to communicate with userspace, leading to potential
errors on 64 bit systems.
- A fix from Lars for locking of the lists of devices we maintain,
mostly only likely to trigger during device probe and removal.
|
|
The Store System Information (STSI) instruction currently collects all
information it relays to the caller in the kernel. Some information,
however, is only available in user space. An example of this is the
guest name: The kernel always sets "KVMGuest", but user space knows the
actual guest name.
This patch introduces a new exit, KVM_EXIT_S390_STSI, guarded by a
capability that can be enabled by user space if it wants to be able to
insert such data. User space will be provided with the target buffer
and the requested STSI function code.
Reviewed-by: Eric Farman <farman@linux.vnet.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Ekaterina Tumanova <tumanova@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
On s390, we've got to make sure to hold the IPTE lock while accessing
logical memory. So let's add an ioctl for reading and writing logical
memory to provide this feature for userspace, too.
The maximum transfer size of this call is limited to 64kB to prevent
that the guest can trigger huge copy_from/to_user transfers. QEMU
currently only requests up to one or two pages so far, so 16*4kB seems
to be a reasonable limit here.
Signed-off-by: Thomas Huth <thuth@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
Access register mode is one of the modes that control dynamic address
translation. In this mode the address space is specified by values of
the access registers. The effective address-space-control element is
obtained from the result of the access register translation. See
the "Access-Register Introduction" section of the chapter 5 "Program
Execution" in "Principles of Operations" for more details.
Signed-off-by: Alexander Yarygin <yarygin@linux.vnet.ibm.com>
Reviewed-by: Thomas Huth <thuth@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
During dynamic address translation the get_vcpu_asce()
function can be invoked several times. It's ok for usual modes, but will
be slow if CPUs are in AR mode. Let's call the get_vcpu_asce() once and
pass the result to the called functions.
Signed-off-by: Alexander Yarygin <yarygin@linux.vnet.ibm.com>
Reviewed-by: Thomas Huth <thuth@linux.vnet.ibm.com>
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
In access register mode, the write_guest() read_guest() and other
functions will invoke the access register translation, which
requires an ar, designated by one of the instruction fields.
Signed-off-by: Alexander Yarygin <yarygin@linux.vnet.ibm.com>
Reviewed-by: Thomas Huth <thuth@linux.vnet.ibm.com>
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
The kvm_s390_check_low_addr_protection() function is used only with real
addresses. According to the POP (the "Low-Address Protection"
paragraph in chapter 3), if the effective address is real or absolute,
the low-address protection procedure should raise a PROTECTION exception
only when the low-address protection is enabled in the control register
0 and the address is low.
This patch removes ASCE checks from the function and renames it to
better reflect its behavior.
Cc: Thomas Huth <thuth@linux.vnet.ibm.com>
Signed-off-by: Alexander Yarygin <yarygin@linux.vnet.ibm.com>
Reviewed-by: Thomas Huth <thuth@linux.vnet.ibm.com>
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
As all cleanup functions can handle their respective NULL case
there is no need to have more than one error jump label.
Signed-off-by: Dominik Dingel <dingel@linux.vnet.ibm.com>
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Message-Id: <1425932832-6244-1-git-send-email-geert+renesas@glider.be>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
Make clear that the usage of PER_CPU(old_rsp) is purely temporary,
by renaming it to 'rsp_scratch'.
Cc: Alexei Starovoitov <ast@plumgrid.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Will Drewry <wad@chromium.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Tweak a few outdated comments that were obsoleted by recent changes
to syscall entry code:
- we no longer have a "partial stack frame" on
entry, ever.
- explain the syscall entry usage of old_rsp.
Partially based on a (split out of) patch from Denys Vlasenko.
Originally-from: Denys Vlasenko <dvlasenk@redhat.com>
Acked-by: Borislav Petkov <bp@alien8.de>
Cc: Alexei Starovoitov <ast@plumgrid.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Will Drewry <wad@chromium.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Nothing uses thread_struct::usersp anymore, so remove it.
Originally-from: Denys Vlasenko <dvlasenk@redhat.com>
Tested-by: Borislav Petkov <bp@alien8.de>
Acked-by: Borislav Petkov <bp@alien8.de>
Cc: Alexei Starovoitov <ast@plumgrid.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Will Drewry <wad@chromium.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Remove all manipulations of PER_CPU(old_rsp) in C code:
- it is not used on SYSRET return anymore, and system entries
are atomic, so updating it from the fork and context switch
paths is pointless.
- Tweak a few related comments as well: we no longer have a
"partial stack frame" on entry, ever.
Based on (split out of) patch from Denys Vlasenko.
Originally-from: Denys Vlasenko <dvlasenk@redhat.com>
Tested-by: Borislav Petkov <bp@alien8.de>
Acked-by: Borislav Petkov <bp@alien8.de>
Cc: Alexei Starovoitov <ast@plumgrid.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Will Drewry <wad@chromium.org>
Link: http://lkml.kernel.org/r/1426599779-8010-2-git-send-email-dvlasenk@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
We want to use PER_CPU_VAR(old_rsp) as a simple temporary register,
to shuffle user-space RSP into (and from) when we set up the system
call stack frame. At that point we cannot shuffle values into general
purpose registers, because we have not saved them yet.
To be able to do this shuffling into a memory location, we must be
atomic and must not be preempted while we do the shuffling, otherwise
the 'temporary' register gets overwritten by some other task's
temporary register contents ...
Tested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
Acked-by: Borislav Petkov <bp@alien8.de>
Cc: Alexei Starovoitov <ast@plumgrid.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Will Drewry <wad@chromium.org>
Link: http://lkml.kernel.org/r/1426600344-8254-1-git-send-email-dvlasenk@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Writing the block group cache will modify the extent tree quite a bit because it
truncates the old space cache and pre-allocates new stuff. To try and cut down
on the churn lets do the setup dance first, then later on hopefully we can avoid
looping with newly dirtied roots. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
|
|
earlyprintk is not initialised yet by the setup_early_printk() function
so we can remove it.
Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com>
Cc: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1426597205-5142-1-git-send-email-kuleshovmail@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
If there's an existing base chain, we have to allow to change the
default policy without indicating the hook information.
However, if the chain doesn't exists, we have to enforce the presence of
the hook attribute.
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
|
|
Since the last and the only user of this driver is converted to use dw_dmac we
can remove driver from the tree.
Moreover, besides the driver is unmaintained a long time, it serves for the
DesignWare DMA IP, for which we have already driver in the tree.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Acked-by: Vinod Koul <vinod.koul@intel.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
|
|
Altera's Arria10 SoC interconnect requires a 32-bit write for APB
peripherals. The current spi-dw driver uses 16-bit accesses in
some locations. This patch converts all the 16-bit reads and
writes to 32-bit reads and writes.
Additional Documentation to Support this Change:
The DW_apb_ssi databook states:
"All registers in the DW_apb_ssi are addressed at 32-bit boundaries
to remain consistent with the AHB bus. Where the physical size of
any register is less than 32-bits wide, the upper unused bits of
the 32-bit boundary are reserved. Writing to these bits has no
effect; reading from these bits returns 0." [1]
[1] Section 6.1 of dw_apb_ssi.pdf (version 3.22a)
Request for test with platforms using the DesignWare SPI IP.
Tested On:
Altera CycloneV development kit
Altera Arria10 development kit
Compile tested for build errors on x86_64 (allyesconfigs)
Signed-off-by: Thor Thayer <tthayer@opensource.altera.com>
Reviewed-and-tested-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
|
|
Currently the omap100k driver uses prepare and unprepare transfer hardware
to enable and disable clocks for the IP block. Since these functions are
called along with runtime PM and end up duplicating its functionality in a
less flexible fashion we are trying to phase them out so convert this
driver to do runtime PM instead.
While doing so add missing error handling and remove a redundant NULL
assignment.
Signed-off-by: Mark Brown <broonie@kernel.org>
|
|
Palmas driver is used to cater to even TPS659038 but TPS659038 does not have
REGEN3 resource. Adding another field in the driver data to check on that.
Signed-off-by: Keerthy <j-keerthy@ti.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/broonie/regulator into regulator-palmas
|
|
The register offset for REGEN2_CTRL in different for TPS659038 chip as when
compared with other Palmas family PMICs. In the case of TPS659038 the wrong
offset pointed to PLLEN_CTRL and was causing a hang. Correcting the same.
Signed-off-by: Keerthy <j-keerthy@ti.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Cc: stable@vger.kernel.org
|
|
of_device_id is always used as const.
(See driver.of_match_table and open firmware functions)
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Signed-off-by: Mark Brown <broonie@kernel.org>
|
|
of_device_id is always used as const.
(See driver.of_match_table and open firmware functions)
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Signed-off-by: Mark Brown <broonie@kernel.org>
|
|
applying new changes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
There is a notifier that handles live patches for coming and going modules.
It takes klp_mutex lock to avoid races with coming and going patches but
it does not keep the lock all the time. Therefore the following races are
possible:
1. The notifier is called sometime in STATE_MODULE_COMING. The module
is visible by find_module() in this state all the time. It means that
new patch can be registered and enabled even before the notifier is
called. It might create wrong order of stacked patches, see below
for an example.
2. New patch could still see the module in the GOING state even after
the notifier has been called. It will try to initialize the related
object structures but the module could disappear at any time. There
will stay mess in the structures. It might even cause an invalid
memory access.
This patch solves the problem by adding a boolean variable into struct module.
The value is true after the coming and before the going handler is called.
New patches need to be applied when the value is true and they need to ignore
the module when the value is false.
Note that we need to know state of all modules on the system. The races are
related to new patches. Therefore we do not know what modules will get
patched.
Also note that we could not simply ignore going modules. The code from the
module could be called even in the GOING state until mod->exit() finishes.
If we start supporting patches with semantic changes between function
calls, we need to apply new patches to any still usable code.
See below for an example.
Finally note that the patch solves only the situation when a new patch is
registered. There are no such problems when the patch is being removed.
It does not matter who disable the patch first, whether the normal
disable_patch() or the module notifier. There is nothing to do
once the patch is disabled.
Alternative solutions:
======================
+ reject new patches when a patched module is coming or going; this is ugly
+ wait with adding new patch until the module leaves the COMING and GOING
states; this might be dangerous and complicated; we would need to release
kgr_lock in the middle of the patch registration to avoid a deadlock
with the coming and going handlers; also we might need a waitqueue for
each module which seems to be even bigger overhead than the boolean
+ stop modules from entering COMING and GOING states; wait until modules
leave these states when they are already there; looks complicated; we would
need to ignore the module that asked to stop the others to avoid a deadlock;
also it is unclear what to do when two modules asked to stop others and
both are in COMING state (situation when two new patches are applied)
+ always register/enable new patches and fix up the potential mess (registered
patches order) in klp_module_init(); this is nasty and prone to regressions
in the future development
+ add another MODULE_STATE where the kallsyms are visible but the module is not
used yet; this looks too complex; the module states are checked on "many"
locations
Example of patch stacking breakage:
===================================
The notifier could _not_ _simply_ ignore already initialized module objects.
For example, let's have three patches (P1, P2, P3) for functions a() and b()
where a() is from vmcore and b() is from a module M. Something like:
a() b()
P1 a1() b1()
P2 a2() b2()
P3 a3() b3(3)
If you load the module M after all patches are registered and enabled.
The ftrace ops for function a() and b() has listed the functions in this
order:
ops_a->func_stack -> list(a3,a2,a1)
ops_b->func_stack -> list(b3,b2,b1)
, so the pointer to b3() is the first and will be used.
Then you might have the following scenario. Let's start with state when patches
P1 and P2 are registered and enabled but the module M is not loaded. Then ftrace
ops for b() does not exist. Then we get into the following race:
CPU0 CPU1
load_module(M)
complete_formation()
mod->state = MODULE_STATE_COMING;
mutex_unlock(&module_mutex);
klp_register_patch(P3);
klp_enable_patch(P3);
# STATE 1
klp_module_notify(M)
klp_module_notify_coming(P1);
klp_module_notify_coming(P2);
klp_module_notify_coming(P3);
# STATE 2
The ftrace ops for a() and b() then looks:
STATE1:
ops_a->func_stack -> list(a3,a2,a1);
ops_b->func_stack -> list(b3);
STATE2:
ops_a->func_stack -> list(a3,a2,a1);
ops_b->func_stack -> list(b2,b1,b3);
therefore, b2() is used for the module but a3() is used for vmcore
because they were the last added.
Example of the race with going modules:
=======================================
CPU0 CPU1
delete_module() #SYSCALL
try_stop_module()
mod->state = MODULE_STATE_GOING;
mutex_unlock(&module_mutex);
klp_register_patch()
klp_enable_patch()
#save place to switch universe
b() # from module that is going
a() # from core (patched)
mod->exit();
Note that the function b() can be called until we call mod->exit().
If we do not apply patch against b() because it is in MODULE_STATE_GOING,
it will call patched a() with modified semantic and things might get wrong.
[jpoimboe@redhat.com: use one boolean instead of two]
Signed-off-by: Petr Mladek <pmladek@suse.cz>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
|
|
syscall32_cpu_init() functions
Clean up the flow and document the functions a bit better.
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Alexei Starovoitov <ast@plumgrid.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Will Drewry <wad@chromium.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Before the patch, the 'tss_struct::stack' field was not referenced anywhere.
It was used only to set SYSENTER's stack to point after the last byte
of tss_struct, thus the trailing field, stack[64], was used.
But grep would not know it. You can comment it out, compile,
and kernel will even run until an unlucky NMI corrupts
io_bitmap[] (which is also not easily detectable).
This patch changes code so that the purpose and usage of this
field is not mysterious anymore, and can be easily grepped for.
This does change generated code, for a subtle reason:
since tss_struct is ____cacheline_aligned, there happens to be
5 longs of padding at the end. Old code was using the padding
too; new code will strictly use it only for SYSENTER_stack[].
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Alexei Starovoitov <ast@plumgrid.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Will Drewry <wad@chromium.org>
Link: http://lkml.kernel.org/r/1425912738-559-2-git-send-email-dvlasenk@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Suggested by Andy.
Suggested-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Alexei Starovoitov <ast@plumgrid.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Will Drewry <wad@chromium.org>
Link: http://lkml.kernel.org/r/1425912738-559-1-git-send-email-dvlasenk@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Before this change, task_pt_regs() was using KSTK_TOP(),
and it was the only use of that macro. In turn, KSTK_TOP used
THREAD_SIZE_LONGS, and it was the only use of that macro too.
Fold these macros into task_pt_regs(). Tweak comment
about "- 8" - we now use a symbolic constant, not literal 8.
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Alexei Starovoitov <ast@plumgrid.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Drewry <wad@chromium.org>
Link: http://lkml.kernel.org/r/1426255743-5394-1-git-send-email-dvlasenk@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
This has confused me for a while. Now that I figured it out, document it.
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/b7efc1b7364039824776f68e9ddee9ec1500e894.1426009661.git.luto@amacapital.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
x86_32 and x86_64 need slightly different thread_struct::sp0 values, and
x86_32's was incorrect for init.
This never mattered -- the init thread never runs user code, so we never
used thread_struct::sp0 for anything.
Fix it and mostly unify them.
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1b810c1d2e797e27bb4a7708c426101161edd1f6.1426009661.git.luto@amacapital.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
x86_32, unlike x86_64, pads the top of the kernel stack, because the
hardware stack frame formats are variable in size.
Document this padding and give it a name.
This should make no change whatsoever to the compiled kernel
image. It also doesn't fix any of the current bugs in this area.
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Acked-by: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/02bf2f54b8dcb76a62a142b6dfe07d4ef7fc582e.1426009661.git.luto@amacapital.net
[ Fixed small details, such as a missed magic constant in entry_32.S pointed out by Denys Vlasenko. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
As far as I can tell, these fields have been set to zero on save
and ignored on restore since Linux was imported into git.
Rename them '__pad1' and '__pad2' to avoid confusion. This may
also allow us to recycle them some day.
This also adds a comment clarifying the history of those fields.
I'm intentionally avoiding calling either of them '__pad0': the
field formerly known as '__pad0' is now 'ss'.
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/844f8490e938780c03355be4c9b69eb4c494bf4e.1426193719.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The comment in the signal code says that apps can save/restore
other segments on their own. It's true that apps can *save* SS
on their own, but there's no way for apps to restore it: SYSCALL
effectively resets SS to __USER_DS, so any value that user code
tries to load into SS gets lost on entry to sigreturn.
This recycles two padding bytes in the segment selector area for SS.
While we're at it, we need a second change to make this useful.
If the signal we're delivering is caused by a bad SS value,
saving that value isn't enough. We need to remove that bad
value from the regs before we try to deliver the signal. Oddly,
the i386 code already got this right.
I suspect that 64-bit programs that try to run 16-bit code and
use signals will have a lot of trouble without this.
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Borislav Petkov <bp@suse.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/405594361340a2ec32f8e2b115c142df0e180d8e.1426193719.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Going over the virtio mmio code, I noticed that it doesn't correctly
access modern device config values using "natural" accessors: it uses
readb to get/set them byte by byte, while the virtio 1.0 spec explicitly states:
4.2.2.2 Driver Requirements: MMIO Device Register Layout
...
The driver MUST only use 32 bit wide and aligned reads and writes to
access the control registers described in table 4.1.
For the device-specific configuration space, the driver MUST use
8 bit wide accesses for 8 bit wide fields, 16 bit wide and aligned
accesses for 16 bit wide fields and 32 bit wide and aligned accesses for
32 and 64 bit wide fields.
Borrow code from virtio_pci_modern to do this correctly.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
|
|
git://anongit.freedesktop.org/git/nouveau/linux-2.6 into drm-fixes
nouveau fixes, and gm206 modesetting enables.
* 'linux-4.0' of git://anongit.freedesktop.org/git/nouveau/linux-2.6:
drm/nouveau/bios: fix i2c table parsing for dcb 4.1
drm/nouveau/device/gm100: Basic GM206 bring up (as copy of GM204)
drm/nouveau/device: post write to NV_PMC_BOOT_1 when flipping endian switch
drm/nouveau/gr/gf100: fix some accidental or'ing of buffer addresses
drm/nouveau/fifo/nv04: remove the loop from the interrupt handler
|
|
Code before looked only at bit 31 to decide if a port is unused.
However dcb 4.1 spec says 0x1F in bits 31-27 and 26-22 means unused.
This fixed hdmi monitor detection on GM206.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
|
|
Enough to get VGA monitor on DVI-I output have output.
HDMI output not yet working
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
|
|
fdo#88868
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
|
|
fdo#83992
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
|
|
Complete bong hit (and not the last...), the hardware will reassert the
interrupt to PMC if it's necessary.
Also potentially harmful in the face of interrupts such as the non-stall
interrupt, which remain active in NV_PFIFO_INTR even when we don't care
about servicing it.
It appears (hopefully, fdo#87244), that under certain loads, the methods
may pass quickly enough to hit the "100 spins and kill PFIFO" thing that
we had going on. Not ideal ;)
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm
Fixes for KVM/ARM for 4.0-rc5.
Fixes page refcounting issues in our Stage-2 page table management code,
fixes a missing unlock in a gicv3 error path, and fixes a race that can
cause lost interrupts if signals are pending just prior to entering the
guest.
|
|
The family information in the soc-bus data is currently
not classified properly for AM33xx devices, and a read
of /sys/bus/soc/devices/soc0/family currently shows
"Unknown". Fix the same.
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
|
|
This patch adds missing dma DTS definitions for omap aes and sham drivers.
Without it kernel drivers do not work for device tree based booting
while it works for legacy booting on general purpose SoCs.
Note that further changes are still needed for high secure SoCs. But since
that never worked in legacy boot mode either, those will be sent separately.
Signed-off-by: Pali Rohár <pali.rohar@gmail.com>
Acked-by: Pavel Machek <pavel@ucw.cz>
[tony@atomide.com: updated comments]
Signed-off-by: Tony Lindgren <tony@atomide.com>
|
|
The current CP firmware can handle Usermode Queues only on MEC1.
To reflect this firmware change, this commit reduces number of compute pipelines
to 4 - 1, from 8 - 1 (the first pipeline is allocated for kgd).
Signed-off-by: Ben Goz <ben.goz@amd.com>
Signed-off-by: Oded Gabbay <oded.gabbay@amd.com>
Cc: stable@vger.kernel.org
|
|
This patch fixes the SDMA queue initialization, when running in non-HWS mode.
The first fix is to move the initialization of SDMA VM parameters before the
initialization of the SDMA MQD.
The second fix is to load the MQD to an HQD after the initialization of the MQD.
Signed-off-by: Ben Goz <ben.goz@amd.com>
Signed-off-by: Oded Gabbay <oded.gabbay@amd.com>
Reviewed-by: Alex Deucher <alexander.deucher@amd.com>
|
|
This patch adds a missing destruction of mqd, when destroying a kernel queue.
Without the destruction, there is a memory leakage when repeatedly creating and
destroying kernel queues.
Signed-off-by: Ben Goz <ben.goz@amd.com>
Signed-off-by: Oded Gabbay <oded.gabbay@amd.com>
Reviewed-by: Alex Deucher <alexander.deucher@amd.com>
Cc: stable@vger.kernel.org
|
|
E1x chips (57710, 57711(E)) have no support for encapsulation
offload. bnx2x incorrectly advertises the support as available.
Setting of those features is conditional on "!CHIP_IS_E1x(bp)", but
the bp struct is not initialized yet at this point and consequently
any chip passes the check.
The check must use the "chip_is_e1x" local variable instead to work
correctly.
Signed-off-by: Michal Schmidt <mschmidt@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|