Age | Commit message (Collapse) | Author |
|
Use the new helpers in the step 3 tests of dt3k_ai_cmdtest().
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Cc: Ian Abbott <abbotti@mev.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Use the new helpers in the step 3 tests of dt282x_{ai,ao}_cmdtest().
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Cc: Ian Abbott <abbotti@mev.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Use the new helpers in the step 3 tests of dt2814_ai_cmdtest().
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Cc: Ian Abbott <abbotti@mev.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Use the new helpers in the step 3 tests of dmm32at_ai_cmdtest().
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Cc: Ian Abbott <abbotti@mev.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Use the new helpers in the step 3 tests of das1800_ai_do_cmdtest().
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Cc: Ian Abbott <abbotti@mev.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Use the new helpers in the step 3 tests of das16m1_cmd_test().
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Cc: Ian Abbott <abbotti@mev.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Use the new helpers in the step 3 tests of das16_cmd_test().
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Cc: Ian Abbott <abbotti@mev.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Use the new helpers in the step 3 tests of cb_pcidas_{ai,ao}_cmdtest().
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Cc: Ian Abbott <abbotti@mev.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Use the new helpers in the step 3 tests of das16cs_ai_cmdtest().
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Cc: Ian Abbott <abbotti@mev.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Use the new helpers in the step 3 tests of pci230_{ao,ai}_cmdtest().
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Cc: Ian Abbott <abbotti@mev.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Use the new helpers in the step 3 tests of pci224_ao_cmdtest().
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Cc: Ian Abbott <abbotti@mev.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Use the new helpers in the step 3 tests of pci171x_ai_cmdtest().
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Cc: Ian Abbott <abbotti@mev.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Use the new helpers in the step 3 tests of pci9118_ai_do_cmd_test().
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Cc: Ian Abbott <abbotti@mev.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Use the new helpers in the step 3 tests of pci9111_ai_do_cmd_test().
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Cc: Ian Abbott <abbotti@mev.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Use the new helpers in the step 3 tests of i_APCI3120_CommandTestAnalogInput().
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Cc: Ian Abbott <abbotti@mev.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Use the new helpers in the step 3 tests of waveform_ai_cmdtest().
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Cc: Ian Abbott <abbotti@mev.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Use the new helpers in the step 3 tests of das800_ai_do_cmdtest().
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Cc: Ian Abbott <abbotti@mev.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Use the new helpers in the step 3 tests of comedi_pcm_cmdtest().
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Cc: Ian Abbott <abbotti@mev.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Use the new helpers in the step 3 tests of ni_65xx_intr_cmdtest().
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Cc: Ian Abbott <abbotti@mev.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Use the new helpers in the step 3 tests of ni6527_intr_cmdtest().
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Cc: Ian Abbott <abbotti@mev.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Use the new helpers in the step 3 tests of pc236_intr_cmdtest().
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Cc: Ian Abbott <abbotti@mev.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Use the new helpers in the step 3 tests of dio200_subdev_intr_cmdtest().
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Cc: Ian Abbott <abbotti@mev.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Use the new helpers in the step 3 tests of apci1032_cos_cmdtest().
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Cc: Ian Abbott <abbotti@mev.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Use the new helpers in the step 3 tests of parport_intr_cmdtest().
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Cc: Ian Abbott <abbotti@mev.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Use the new helpers in the step 3 tests of subdev_8255_cmdtest().
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Cc: Ian Abbott <abbotti@mev.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Step 3 of the do_cmdtest functions validates the arguments for the
command to be executed. Most of these are simple tests to see if the
argument "is" a value, a "min" value, or a "max" value. Each of these
tests then clamps the argument to the value if it fails the test.
Introduce three new helper functions in comedi_fc.h to handle these
tests and remove the boilerplate code from the drivers.
The new helper functions are:
cfc_check_trigger_arg_is() - argument must be == the value
cfc_check_trigger_arg_min() - argument must be >= the value
cfc_check_trigger_arg_max() - argument must be <= the value
All of these helpers set the argument to the value and return -EINVAL
if the validation fails.
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Cc: Ian Abbott <abbotti@mev.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
bus_remove_device
We hit an hang issue when removing a mmc device on Medfield Android phone by sysfs interface.
device_pm_remove will call pm_runtime_remove which would disable
runtime PM of the device. After that pm_runtime_get* or
pm_runtime_put* will be ignored. So if we disable the runtime PM
before device really be removed, drivers' _remove callback may
access HW even pm_runtime_get* fails. That is bad.
Consider below call sequence when removing a device:
device_del => device_pm_remove
=> class_intf->remove_dev(dev, class_intf) => pm_runtime_get_sync/put_sync
=> bus_remove_device => device_release_driver => pm_runtime_get_sync/put_sync
remove_dev might call pm_runtime_get_sync/put_sync.
Then, generic device_release_driver also calls pm_runtime_get_sync/put_sync.
Since device_del => device_pm_remove firstly, later _get_sync wouldn't really wake up the device.
I git log -p to find the patch which moves the calling to device_pm_remove ahead.
It's below patch:
commit 775b64d2b6ca37697de925f70799c710aab5849a
Author: Rafael J. Wysocki <rjw@sisk.pl>
Date: Sat Jan 12 20:40:46 2008 +0100
PM: Acquire device locks on suspend
This patch reorganizes the way suspend and resume notifications are
sent to drivers. The major changes are that now the PM core acquires
every device semaphore before calling the methods, and calls to
device_add() during suspends will fail, while calls to device_del()
during suspends will block.
It also provides a way to safely remove a suspended device with the
help of the PM core, by using the device_pm_schedule_removal() callback
introduced specifically for this purpose, and updates two drivers (msr
and cpuid) that need to use it.
As device_pm_schedule_removal is deleted by another patch, we need also revert other parts of the patch,
i.e. move the calling of device_pm_remove after the calling to bus_remove_device.
Signed-off-by: LongX Zhang <longx.zhang@intel.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Since the software suspend extents are organized in an rbtree, use rb_entry
instead of container_of, as it is semantically more appropriate in order to
get a node as it is iterated.
Signed-off-by: Davidlohr Bueso <dave@gnu.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Replace strict_strtoul() with kstrtoul() in pm_async_store() and
pm_qos_power_write().
[rjw: Modified subject and changelog.]
Signed-off-by: Daniel Walter <sahne@0x90.at>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
When PM runtime is enabled in DaVinci and the machine migrates to
common clk framework, the clk_enable() gets called without
clk_prepare(). This patch is to fix this issue so that PM run
time can inter work with common clk framework.
Signed-off-by: Murali Karicheri <m-karicheri2@ti.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
The callback function of call_rcu() just calls a kfree(), so we
can use kfree_rcu() instead of call_rcu() + callback function.
dpatch engine is used to auto generate this patch.
(https://github.com/weiyj/dpatch)
Signed-off-by: Wei Yongjun <yongjun_wei@trendmicro.com.cn>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Currently the opp_find* functions return -ENODEV when:
a) it cant find a device (e.g. request for an OPP search on device
which was not registered)
b) When it cant find a match for the search strategy used
This makes life a little in-efficient for users such as devfreq
to make reasonable judgement before switching search strategies.
So, standardize the return results as following:
-EINVAL for bad pointer parameters
-ENODEV when device cannot be found
-ERANGE when search fails
This has the following benefit for devfreq implementation:
The search fails when an unregistered device pointer is provided.
This is a trigger to change the search direction and search for
a better fit, however, if we cannot differentiate between a valid
search range failure Vs an unregistered device, second search goes
through the same fail return condition. This can be avoided by
appropriate handling of error return code.
With this change, we also fix devfreq for the improved search
strategy with updated error code.
Signed-off-by: Nishanth Menon <nm@ti.com>
Reviewed-by: Kevin Hilman <khilman@ti.com>
Acked-by: MyungJoo Ham <myungjoo.ham@samsung.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Export the OPP functions for use by driver modules.
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Kevin Hilman <khilman@ti.com>
Cc: linux-pm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
[nm@ti.com: expansion of functions exported]
Signed-off-by: Nishanth Menon <nm@ti.com>
Signed-off-by: Liam Girdwood <lrg@ti.com>
Acked-by: Kevin Hilman <khilman@ti.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
synchronize_rcu() blocks the caller of opp_enable/disbale
for a complete grace period. This blocking duration prevents
any intensive use of the functions. Replace synchronize_rcu()
by call_rcu() which will call our function for freeing the old
opp element.
The duration of opp_enable() and opp_disable() will be no more
dependant of the grace period.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
devfreq_class is used internally by devfreq and has no
need to be globally available.
This also fixes the following sparse warning:
drivers/devfreq/devfreq.c:30:14: warning: symbol 'devfreq_class' was not declared. Should it be static?
Signed-off-by: Nishanth Menon <nm@ti.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
sscanf returns 0 when an invalid parameter like:
echo -n "a">min_freq
is attempted. Returning back the return result(0) will
cause the command not to return back to command
prompt.
Instead, just return -EINVAL when sscanf does not
return 1.
This is done for min_freq, max_freq and polling_interval
Signed-off-by: Nishanth Menon <nm@ti.com>
Acked-by: MyungJoo Ham <myungjoo.ham@samsung.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Parameter documentation needs a ':' for scripts/kernel-doc
to parse properly.
Minor fixes for ones warned by:
./scripts/kernel-doc -text drivers/devfreq/devfreq.c>/dev/null
Signed-off-by: Nishanth Menon <nm@ti.com>
Acked-by: Randy Dunlap <rdunlap@xenotime.net>
Acked-by: MyungJoo Ham <myungjoo.ham@samsung.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Devfreq returns governor predicted frequency as current frequency
via sysfs interface. But device may not support all frequencies
that governor predicts. So add a callback in device profile to get
current freq from driver. Also add a new sysfs node to expose
governor predicted next target frequency.
Signed-off-by: Rajagopal Venkat <rajagopal.venkat@linaro.org>
Acked-by: MyungJoo Ham <myungjoo.ham@samsung.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Add devfreq suspend/resume apis for devfreq users. This patch
supports suspend and resume of devfreq load monitoring, required
for devices which can idle.
Signed-off-by: Rajagopal Venkat <rajagopal.venkat@linaro.org>
Acked-by: MyungJoo Ham <myungjoo.ham@samsung.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Prepare devfreq core framework to support devices which
can idle. When device idleness is detected perhaps through
runtime-pm, need some mechanism to suspend devfreq load
monitoring and resume back when device is online. Present
code continues monitoring unless device is removed from
devfreq core.
This patch introduces following design changes,
- use per device work instead of global work to monitor device
load. This enables suspend/resume of device devfreq and
reduces monitoring code complexity.
- decouple delayed work based load monitoring logic from core
by introducing helpers functions to be used by governors. This
provides flexibility for governors either to use delayed work
based monitoring functions or to implement their own mechanism.
- devfreq core interacts with governors via events to perform
specific actions. These events include start/stop devfreq.
This sets ground for adding suspend/resume events.
The devfreq apis are not modified and are kept intact.
Signed-off-by: Rajagopal Venkat <rajagopal.venkat@linaro.org>
Acked-by: MyungJoo Ham <myungjoo.ham@samsung.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
With the tegra3 and the big.LITTLE [1] new architectures, several cpus
with different characteristics (latencies and states) can co-exists on the
system.
The cpuidle framework has the limitation of handling only identical cpus.
This patch removes this limitation by introducing the multiple driver support
for cpuidle.
This option is configurable at compile time and should be enabled for the
architectures mentioned above. So there is no impact for the other platforms
if the option is disabled. The option defaults to 'n'. Note the multiple drivers
support is also compatible with the existing drivers, even if just one driver is
needed, all the cpu will be tied to this driver using an extra small chunk of
processor memory.
The multiple driver support use a per-cpu driver pointer instead of a global
variable and the accessor to this variable are done from a cpu context.
In order to keep the compatibility with the existing drivers, the function
'cpuidle_register_driver' and 'cpuidle_unregister_driver' will register
the specified driver for all the cpus.
The semantic for the output of /sys/devices/system/cpu/cpuidle/current_driver
remains the same except the driver name will be related to the current cpu.
The /sys/devices/system/cpu/cpu[0-9]/cpuidle/driver/name files are added
allowing to read the per cpu driver name.
[1] http://lwn.net/Articles/481055/
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Acked-by: Peter De Schrijver <pdeschrijver@nvidia.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
This patch is a preparation for the multiple cpuidle drivers support.
As the next patch will introduce the multiple drivers with the Kconfig
option and we want to keep the code clean and understandable, this patch
defines a set of functions for encapsulating some common parts and splits
what should be done under a lock from the rest.
[rjw: Modified the subject and changelog slightly.]
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Acked-by: Peter De Schrijver <pdeschrijver@nvidia.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
The code is racy and the check with cpuidle_curr_driver should be
done under the lock.
I don't find a path in the different drivers where that could happen
because the arch specific drivers are written in such way it is not
possible to register a driver while it is unregistered, except maybe
in a very improbable case when "intel_idle" and "processor_idle" are
competing. One could unregister a driver, while the other one is
registering.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Acked-by: Peter De Schrijver <pdeschrijver@nvidia.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
We want to support different cpuidle drivers co-existing together.
In this case we should move the refcount to the cpuidle_driver
structure to handle several drivers at a time.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Acked-by: Peter De Schrijver <pdeschrijver@nvidia.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
The "struct device" is only used in sysfs.c.
The other .c files including the private header "cpuidle.h"
do not need to pull the entire headers tree from there as they
don't manipulate the "struct device".
This patch fixes this by moving the header inclusion to sysfs.c
and adding a forward declaration for the struct device.
The number of lines generated by the preprocesor:
Without this patch : 17269 loc
With this patch : 16446 loc
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
The structure cpuidle_state_kobj is not used anywhere except
in the sysfs.c file. The definition of this structure is not
needed in the cpuidle header file. This patch moves it to the
sysfs.c file in order to encapsulate the code a bit more.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
The function detect_repeating_patterns was not very useful for
workloads with alternating long and short pauses, for example
virtual machines handling network requests for each other (say
a web and database server).
Instead, try to find a recent sleep interval that is somewhere
between the median and the mode sleep time, by discarding outliers
to the up side and recalculating the average and standard deviation
until that is no longer required.
This should do something sane with a sleep interval series like:
200 180 210 10000 30 1000 170 200
The current code would simply discard such a series, while the
new code will guess a typical sleep interval just shy of 200.
The original patch come from Rik van Riel <riel@redhat.com>.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Youquan Song <youquan.song@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
When cpuidle governor choose a C-state to enter for idle CPU, but it notice that
there is tasks request to be executed. So the idle CPU will not really enter
the target C-state and go to run task.
In this situation, it will use the residency of previous really entered target
C-states. Obviously, it is not reasonable.
So, this patch fix it by set the target C-state residency to 0.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Youquan Song <youquan.song@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
The prediction for future is difficult and when the cpuidle governor prediction
fails and govenor possibly choose the shallower C-state than it should. How to
quickly notice and find the failure becomes important for power saving.
The patch extends to general case that prediction logic get a small predicted
residency, so it choose a shallow C-state though the expected residency is large
. Once the prediction will be fail, the CPU will keep staying at shallow C-state
for a long time. Acutally, the CPU has change enter into deep C-state.
So when the expected residency is long enough but governor choose a shallow
C-state, an timer will be added in order to monitor if the prediction failure.
When C-state is waken up prior to the adding timer, the timer will be cancelled
initiatively. When the timer is triggered and menu governor will quickly notice
prediction failure and re-evaluates deeper C-states possibility.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Youquan Song <youquan.song@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
The prediction for future is difficult and when the cpuidle governor prediction
fails and govenor possibly choose the shallower C-state than it should. How to
quickly notice and find the failure becomes important for power saving.
cpuidle menu governor has a method to predict the repeat pattern if there are 8
C-states residency which are continuous and the same or very close, so it will
predict the next C-states residency will keep same residency time.
There is a real case that turbostat utility (tools/power/x86/turbostat)
at kernel 3.3 or early. turbostat utility will read 10 registers one by one at
Sandybridge, so it will generate 10 IPIs to wake up idle CPUs. So cpuidle menu
governor will predict it is repeat mode and there is another IPI wake up idle
CPU soon, so it keeps idle CPU stay at C1 state even though CPU is totally
idle. However, in the turbostat, following 10 registers reading is sleep 5
seconds by default, so the idle CPU will keep at C1 for a long time though it is
idle until break event occurs.
In a idle Sandybridge system, run "./turbostat -v", we will notice that deep
C-state dangles between "70% ~ 99%". After patched the kernel, we will notice
deep C-state stays at >99.98%.
In the patch, a timer is added when menu governor detects a repeat mode and
choose a shallow C-state. The timer is set to a time out value that greater
than predicted time, and we conclude repeat mode prediction failure if timer is
triggered. When repeat mode happens as expected, the timer is not triggered
and CPU waken up from C-states and it will cancel the timer initiatively.
When repeat mode does not happen, the timer will be time out and menu governor
will quickly notice that the repeat mode prediction fails and then re-evaluates
deeper C-states possibility.
Below is another case which will clearly show the patch much benefit:
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <signal.h>
#include <sys/time.h>
#include <time.h>
#include <pthread.h>
volatile int * shutdown;
volatile long * count;
int delay = 20;
int loop = 8;
void usage(void)
{
fprintf(stderr,
"Usage: idle_predict [options]\n"
" --help -h Print this help\n"
" --thread -n Thread number\n"
" --loop -l Loop times in shallow Cstate\n"
" --delay -t Sleep time (uS)in shallow Cstate\n");
}
void *simple_loop() {
int idle_num = 1;
while (!(*shutdown)) {
*count = *count + 1;
if (idle_num % loop)
usleep(delay);
else {
/* sleep 1 second */
usleep(1000000);
idle_num = 0;
}
idle_num++;
}
}
static void sighand(int sig)
{
*shutdown = 1;
}
int main(int argc, char *argv[])
{
sigset_t sigset;
int signum = SIGALRM;
int i, c, er = 0, thread_num = 8;
pthread_t pt[1024];
static char optstr[] = "n:l:t:h:";
while ((c = getopt(argc, argv, optstr)) != EOF)
switch (c) {
case 'n':
thread_num = atoi(optarg);
break;
case 'l':
loop = atoi(optarg);
break;
case 't':
delay = atoi(optarg);
break;
case 'h':
default:
usage();
exit(1);
}
printf("thread=%d,loop=%d,delay=%d\n",thread_num,loop,delay);
count = malloc(sizeof(long));
shutdown = malloc(sizeof(int));
*count = 0;
*shutdown = 0;
sigemptyset(&sigset);
sigaddset(&sigset, signum);
sigprocmask (SIG_BLOCK, &sigset, NULL);
signal(SIGINT, sighand);
signal(SIGTERM, sighand);
for(i = 0; i < thread_num ; i++)
pthread_create(&pt[i], NULL, simple_loop, NULL);
for (i = 0; i < thread_num; i++)
pthread_join(pt[i], NULL);
exit(0);
}
Get powertop V2 from git://github.com/fenrus75/powertop, build powertop.
After build the above test application, then run it.
Test plaform can be Intel Sandybridge or other recent platforms.
#./idle_predict -l 10 &
#./powertop
We will find that deep C-state will dangle between 40%~100% and much time spent
on C1 state. It is because menu governor wrongly predict that repeat mode
is kept, so it will choose the C1 shallow C-state even though it has chance to
sleep 1 second in deep C-state.
While after patched the kernel, we find that deep C-state will keep >99.6%.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Youquan Song <youquan.song@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|