Age | Commit message (Collapse) | Author |
|
* powercap:
powercap: make documentation reflect code
powercap/intel_rapl: add support for AlderLake
powercap/intel_rapl: add support for RocketLake
powercap/intel_rapl: add support for TigerLake Desktop
|
|
git://anongit.freedesktop.org/drm/drm-misc into drm-fixes
drm-misc-fixes for v5.9-rc5:
- Fix double free in virtio.
- Add missing put_device in sun4i, and other fixes.
- Small ingenic fixes.
- Handle sun4i alpha on lowest plane correctly.
- Remove output->enabled from virtio, as it should use crtc_state.
- Fix tve200 enable/disable.
- Documentation fix.
- Fix virtio unblank.
Signed-off-by: Dave Airlie <airlied@redhat.com>
From: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/478b49d1-b1b3-c983-7056-8a89249be435@mblankhorst.nl
|
|
git://anongit.freedesktop.org/drm/drm-intel into drm-fixes
drm/i915 fixes for v5.9-rc5:
- Fix regression leading to audio probe failure
Signed-off-by: Dave Airlie <airlied@redhat.com>
From: Jani Nikula <jani.nikula@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/875z8m2hss.fsf@intel.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs
Pull f2fs fixes from Jaegeuk Kim:
"Small bug fixes for:
- SMR drive fix
- infinite loop when building free node ids
- EOF at DIO read"
* tag 'f2fs-for-5.9-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs:
f2fs: Return EOF on unaligned end of file DIO read
f2fs: fix indefinite loop scanning for free nid
f2fs: Fix type of section block count variables
|
|
Fix up the documentation of the struct powercap_control_type members
to match the code.
Also fixup stray whitespace.
Signed-off-by: Amit Kucheria <amitk@kernel.org>
[ rjw: Changelog edits ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Fix kernel-doc warning in <linux/device.h>:
../include/linux/device.h:613: warning: Function parameter or member 'em_pd' not described in 'device'
Fixes: 1bc138c62295 ("PM / EM: add support for other devices than CPUs in Energy Model")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Add intel_rapl support for the AlderLake platform.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Add intel_rapl support for the RocketLake platform.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Add intel_rapl support for the TigerLake desktop platform.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
This reverts commit 14775b04964264189caa4a0862eac05dab8c0502 as there
were still some parsing problems with it, and the follow-on patch for
it.
Let's revisit it later, just drop it for now.
Cc: <jbaron@akamai.com>
Cc: Jim Cromie <jim.cromie@gmail.com>
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Fixes: 14775b049642 ("dyndbg: accept query terms like file=bar and module=foo")
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This reverts commit 42f07816ac0cc797928119cc039c414ae2b95d34 as it
still causes problems. It will be resolved later, let's revert it so we
can also revert the original patch this was supposed to be helping with.
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Fixes: 42f07816ac0c ("dyndbg: fix problem parsing format="foo bar"")
Cc: Jim Cromie <jim.cromie@gmail.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
On non-EFI systems, it wasn't possible to test the platform firmware
loader because it will have never set "checked_fw" during __init.
Instead, allow the test code to override this check. Additionally split
the declarations into a private symbol namespace so there is greater
enforcement of the symbol visibility.
Fixes: 548193cba2a7 ("test_firmware: add support for firmware_request_platform")
Cc: stable@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20200909225354.3118328-1-keescook@chromium.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This function should be an int, not a bool.
Presumably because we had the same 2 reverts in a slightly different
way, git got confused.
Thanks to Dan for reporting. :)
The conflict is between the 3 reverts in drm-fixes:
4993a8a37808 ("Revert "drm/i915: Remove i915_gem_object_get_dirty_page()"")
ad5d95e4d538 ("Revert "drm/i915/gem: Async GPU relocations only"")
20561da3a2e1 ("Revert "drm/i915/gem: Delete unused code"")
And the slightly different combined revert in drm-intel-gt-next, but
with the same goal:
102a0a9051f4 ("Revert "drm/i915/gem: Async GPU relocations only"")
In the merge commit 1f4b2aca794f ("Merge tag
'drm-intel-gt-next-2020-09-07' of git://anongit.freedesktop.org/drm/drm-intel into drm-next") things
went wrong, but the merge commit view now doesn't show any conflict
anymore (as git tends to do when the resolution picks one or the other
branch).
The need to handle other than just true/false error codes in
__reloc_entry_gpu was added in the dma_resv locking changes in
c43ce12328df ("drm/i915: Use per object locking in execbuf, v12.")
Signed-off-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Dave Airlie <airlied@redhat.com>
[danvet: Explain this entire saga a lot better, adding tons of commit
references. Also note that this was merged before full intel-gfx-CI
results, only after BAT, since the breakage at the BAT run is already
severe enough to block all pre-merge testing.]
Fixes: 1f4b2aca794f ("Merge tag 'drm-intel-gt-next-2020-09-07' of git://anongit.freedesktop.org/drm/drm-intel into drm-next")
Acked-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Link: https://patchwork.freedesktop.org/patch/msgid/20200910111225.2184193-1-maarten.lankhorst@linux.intel.com
|
|
Pull NVMe fixes from Christoph.
"nvme fixes for 5.9
- cancel async events before freeing them (David Milburn)
- revert a broken race fix (James Smart)
- fix command processing during resets (Sagi Grimberg)"
* tag 'nvme-5.9-2020-09-10' of git://git.infradead.org/nvme:
nvme-fabrics: allow to queue requests for live queues
nvme-tcp: cancel async events before freeing event struct
nvme-rdma: cancel async events before freeing event struct
nvme-fc: cancel async events before freeing event struct
nvme: Revert: Fix controller creation races with teardown flow
|
|
The Documentation/DMA-API-HOWTO.txt states that the dma_map_sg() function
returns the number of the created entries in the DMA address space.
However the subsequent calls to the dma_sync_sg_for_{device,cpu}() and
dma_unmap_sg must be called with the original number of the entries
passed to the dma_map_sg().
struct sg_table is a common structure used for describing a non-contiguous
memory buffer, used commonly in the DRM and graphics subsystems. It
consists of a scatterlist with memory pages and DMA addresses (sgl entry),
as well as the number of scatterlist entries: CPU pages (orig_nents entry)
and DMA mapped pages (nents entry).
It turned out that it was a common mistake to misuse nents and orig_nents
entries, calling DMA-mapping functions with a wrong number of entries or
ignoring the number of mapped entries returned by the dma_map_sg()
function.
To avoid such issues, lets use a common dma-mapping wrappers operating
directly on the struct sg_table objects and use scatterlist page
iterators where possible. This, almost always, hides references to the
nents and orig_nents entries, making the code robust, easier to follow
and copy/paste safe.
While touching this code, also add missing call to dma_unmap_sgtable.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
|
|
The Documentation/DMA-API-HOWTO.txt states that the dma_map_sg() function
returns the number of the created entries in the DMA address space.
However the subsequent calls to the dma_sync_sg_for_{device,cpu}() and
dma_unmap_sg must be called with the original number of the entries
passed to the dma_map_sg().
struct sg_table is a common structure used for describing a non-contiguous
memory buffer, used commonly in the DRM and graphics subsystems. It
consists of a scatterlist with memory pages and DMA addresses (sgl entry),
as well as the number of scatterlist entries: CPU pages (orig_nents entry)
and DMA mapped pages (nents entry).
It turned out that it was a common mistake to misuse nents and orig_nents
entries, calling DMA-mapping functions with a wrong number of entries or
ignoring the number of mapped entries returned by the dma_map_sg()
function.
To avoid such issues, lets use a common dma-mapping wrappers operating
directly on the struct sg_table objects and use scatterlist page
iterators where possible. This, almost always, hides references to the
nents and orig_nents entries, making the code robust, easier to follow
and copy/paste safe.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Acked-by: Gerd Hoffmann <kraxel@redhat.com>
|
|
The Documentation/DMA-API-HOWTO.txt states that the dma_map_sg() function
returns the number of the created entries in the DMA address space.
However the subsequent calls to the dma_sync_sg_for_{device,cpu}() and
dma_unmap_sg must be called with the original number of the entries
passed to the dma_map_sg().
struct sg_table is a common structure used for describing a non-contiguous
memory buffer, used commonly in the DRM and graphics subsystems. It
consists of a scatterlist with memory pages and DMA addresses (sgl entry),
as well as the number of scatterlist entries: CPU pages (orig_nents entry)
and DMA mapped pages (nents entry).
It turned out that it was a common mistake to misuse nents and orig_nents
entries, calling DMA-mapping functions with a wrong number of entries or
ignoring the number of mapped entries returned by the dma_map_sg()
function.
To avoid such issues, lets use a common dma-mapping wrappers operating
directly on the struct sg_table objects and use scatterlist page
iterators where possible. This, almost always, hides references to the
nents and orig_nents entries, making the code robust, easier to follow
and copy/paste safe.
dma_map_sgtable() function returns zero or an error code, so adjust the
return value check for the vsp1_du_map_sg() function.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
|
|
The Documentation/DMA-API-HOWTO.txt states that the dma_map_sg() function
returns the number of the created entries in the DMA address space.
However the subsequent calls to the dma_sync_sg_for_{device,cpu}() and
dma_unmap_sg must be called with the original number of the entries
passed to the dma_map_sg().
struct sg_table is a common structure used for describing a non-contiguous
memory buffer, used commonly in the DRM and graphics subsystems. It
consists of a scatterlist with memory pages and DMA addresses (sgl entry),
as well as the number of scatterlist entries: CPU pages (orig_nents entry)
and DMA mapped pages (nents entry).
It turned out that it was a common mistake to misuse nents and orig_nents
entries, calling DMA-mapping functions with a wrong number of entries or
ignoring the number of mapped entries returned by the dma_map_sg()
function.
To avoid such issues, lets use a common dma-mapping wrappers operating
directly on the struct sg_table objects and use scatterlist page
iterators where possible. This, almost always, hides references to the
nents and orig_nents entries, making the code robust, easier to follow
and copy/paste safe.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
|
|
The Documentation/DMA-API-HOWTO.txt states that the dma_map_sg() function
returns the number of the created entries in the DMA address space.
However the subsequent calls to the dma_sync_sg_for_{device,cpu}() and
dma_unmap_sg must be called with the original number of the entries
passed to the dma_map_sg().
struct sg_table is a common structure used for describing a non-contiguous
memory buffer, used commonly in the DRM and graphics subsystems. It
consists of a scatterlist with memory pages and DMA addresses (sgl entry),
as well as the number of scatterlist entries: CPU pages (orig_nents entry)
and DMA mapped pages (nents entry).
It turned out that it was a common mistake to misuse nents and orig_nents
entries, calling DMA-mapping functions with a wrong number of entries or
ignoring the number of mapped entries returned by the dma_map_sg()
function.
To avoid such issues, lets use a common dma-mapping wrappers operating
directly on the struct sg_table objects and use scatterlist page
iterators where possible. This, almost always, hides references to the
nents and orig_nents entries, making the code robust, easier to follow
and copy/paste safe.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Acked-by: Juergen Gross <jgross@suse.com>
|
|
The Documentation/DMA-API-HOWTO.txt states that the dma_map_sg() function
returns the number of the created entries in the DMA address space.
However the subsequent calls to the dma_sync_sg_for_{device,cpu}() and
dma_unmap_sg must be called with the original number of the entries
passed to the dma_map_sg().
struct sg_table is a common structure used for describing a non-contiguous
memory buffer, used commonly in the DRM and graphics subsystems. It
consists of a scatterlist with memory pages and DMA addresses (sgl entry),
as well as the number of scatterlist entries: CPU pages (orig_nents entry)
and DMA mapped pages (nents entry).
It turned out that it was a common mistake to misuse nents and orig_nents
entries, calling DMA-mapping functions with a wrong number of entries or
ignoring the number of mapped entries returned by the dma_map_sg()
function.
Fix the code to refer to proper nents or orig_nents entries. This driver
reports the number of the pages in the imported scatterlist, so it should
refer to sg_table->orig_nents entry.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Acked-by: Oleksandr Andrushchenko <oleksandr_andrushchenko@epam.com>
|
|
The Documentation/DMA-API-HOWTO.txt states that the dma_map_sg() function
returns the number of the created entries in the DMA address space.
However the subsequent calls to the dma_sync_sg_for_{device,cpu}() and
dma_unmap_sg must be called with the original number of the entries
passed to the dma_map_sg().
struct sg_table is a common structure used for describing a non-contiguous
memory buffer, used commonly in the DRM and graphics subsystems. It
consists of a scatterlist with memory pages and DMA addresses (sgl entry),
as well as the number of scatterlist entries: CPU pages (orig_nents entry)
and DMA mapped pages (nents entry).
It turned out that it was a common mistake to misuse nents and orig_nents
entries, calling DMA-mapping functions with a wrong number of entries or
ignoring the number of mapped entries returned by the dma_map_sg()
function.
To avoid such issues, lets use a common dma-mapping wrappers operating
directly on the struct sg_table objects and use scatterlist page
iterators where possible. This, almost always, hides references to the
nents and orig_nents entries, making the code robust, easier to follow
and copy/paste safe.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Acked-by: Roland Scheidegger <sroland@vmware.com>
|
|
The Documentation/DMA-API-HOWTO.txt states that the dma_map_sg() function
returns the number of the created entries in the DMA address space.
However the subsequent calls to the dma_sync_sg_for_{device,cpu}() and
dma_unmap_sg must be called with the original number of the entries
passed to the dma_map_sg().
struct sg_table is a common structure used for describing a non-contiguous
memory buffer, used commonly in the DRM and graphics subsystems. It
consists of a scatterlist with memory pages and DMA addresses (sgl entry),
as well as the number of scatterlist entries: CPU pages (orig_nents entry)
and DMA mapped pages (nents entry).
It turned out that it was a common mistake to misuse nents and orig_nents
entries, calling DMA-mapping functions with a wrong number of entries or
ignoring the number of mapped entries returned by the dma_map_sg()
function.
To avoid such issues, lets use a common dma-mapping wrappers operating
directly on the struct sg_table objects and use scatterlist page
iterators where possible. This, almost always, hides references to the
nents and orig_nents entries, making the code robust, easier to follow
and copy/paste safe.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Acked-by: Gerd Hoffmann <kraxel@redhat.com>
|
|
The Documentation/DMA-API-HOWTO.txt states that the dma_map_sg() function
returns the number of the created entries in the DMA address space.
However the subsequent calls to the dma_sync_sg_for_{device,cpu}() and
dma_unmap_sg must be called with the original number of the entries
passed to the dma_map_sg().
struct sg_table is a common structure used for describing a non-contiguous
memory buffer, used commonly in the DRM and graphics subsystems. It
consists of a scatterlist with memory pages and DMA addresses (sgl entry),
as well as the number of scatterlist entries: CPU pages (orig_nents entry)
and DMA mapped pages (nents entry).
It turned out that it was a common mistake to misuse nents and orig_nents
entries, calling DMA-mapping functions with a wrong number of entries or
ignoring the number of mapped entries returned by the dma_map_sg()
function.
To avoid such issues, lets use a common dma-mapping wrappers operating
directly on the struct sg_table objects and use scatterlist page
iterators where possible. This, almost always, hides references to the
nents and orig_nents entries, making the code robust, easier to follow
and copy/paste safe.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Eric Anholt <eric@anholt.net>
|
|
The Documentation/DMA-API-HOWTO.txt states that the dma_map_sg() function
returns the number of the created entries in the DMA address space.
However the subsequent calls to the dma_sync_sg_for_{device,cpu}() and
dma_unmap_sg must be called with the original number of the entries
passed to the dma_map_sg().
struct sg_table is a common structure used for describing a non-contiguous
memory buffer, used commonly in the DRM and graphics subsystems. It
consists of a scatterlist with memory pages and DMA addresses (sgl entry),
as well as the number of scatterlist entries: CPU pages (orig_nents entry)
and DMA mapped pages (nents entry).
It turned out that it was a common mistake to misuse nents and orig_nents
entries, calling DMA-mapping functions with a wrong number of entries or
ignoring the number of mapped entries returned by the dma_map_sg()
function.
To avoid such issues, lets use a common dma-mapping wrappers operating
directly on the struct sg_table objects and use scatterlist page
iterators where possible. This, almost always, hides references to the
nents and orig_nents entries, making the code robust, easier to follow
and copy/paste safe.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
|
|
The Documentation/DMA-API-HOWTO.txt states that the dma_map_sg() function
returns the number of the created entries in the DMA address space.
However the subsequent calls to the dma_sync_sg_for_{device,cpu}() and
dma_unmap_sg must be called with the original number of the entries
passed to the dma_map_sg().
struct sg_table is a common structure used for describing a non-contiguous
memory buffer, used commonly in the DRM and graphics subsystems. It
consists of a scatterlist with memory pages and DMA addresses (sgl entry),
as well as the number of scatterlist entries: CPU pages (orig_nents entry)
and DMA mapped pages (nents entry).
It turned out that it was a common mistake to misuse nents and orig_nents
entries, calling DMA-mapping functions with a wrong number of entries or
ignoring the number of mapped entries returned by the dma_map_sg()
function.
To avoid such issues, lets use a common dma-mapping wrappers operating
directly on the struct sg_table objects and use scatterlist page
iterators where possible. This, almost always, hides references to the
nents and orig_nents entries, making the code robust, easier to follow
and copy/paste safe.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
|
|
Use common helper for checking the contiguity of the imported dma-buf.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
|
|
The Documentation/DMA-API-HOWTO.txt states that the dma_map_sg() function
returns the number of the created entries in the DMA address space.
However the subsequent calls to the dma_sync_sg_for_{device,cpu}() and
dma_unmap_sg must be called with the original number of the entries
passed to the dma_map_sg().
struct sg_table is a common structure used for describing a non-contiguous
memory buffer, used commonly in the DRM and graphics subsystems. It
consists of a scatterlist with memory pages and DMA addresses (sgl entry),
as well as the number of scatterlist entries: CPU pages (orig_nents entry)
and DMA mapped pages (nents entry).
It turned out that it was a common mistake to misuse nents and orig_nents
entries, calling DMA-mapping functions with a wrong number of entries or
ignoring the number of mapped entries returned by the dma_map_sg()
function.
To avoid such issues, lets use a common dma-mapping wrappers operating
directly on the struct sg_table objects and use scatterlist page
iterators where possible. This, almost always, hides references to the
nents and orig_nents entries, making the code robust, easier to follow
and copy/paste safe.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Reviewed-by: Rob Herring <robh@kernel.org>
|
|
Use common helper for converting a sg_table object into struct
page pointer array.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
|
|
The Documentation/DMA-API-HOWTO.txt states that the dma_map_sg() function
returns the number of the created entries in the DMA address space.
However the subsequent calls to the dma_sync_sg_for_{device,cpu}() and
dma_unmap_sg must be called with the original number of the entries
passed to the dma_map_sg().
struct sg_table is a common structure used for describing a non-contiguous
memory buffer, used commonly in the DRM and graphics subsystems. It
consists of a scatterlist with memory pages and DMA addresses (sgl entry),
as well as the number of scatterlist entries: CPU pages (orig_nents entry)
and DMA mapped pages (nents entry).
It turned out that it was a common mistake to misuse nents and orig_nents
entries, calling DMA-mapping functions with a wrong number of entries or
ignoring the number of mapped entries returned by the dma_map_sg()
function.
To avoid such issues, lets use a common dma-mapping wrappers operating
directly on the struct sg_table objects and use scatterlist page
iterators where possible. This, almost always, hides references to the
nents and orig_nents entries, making the code robust, easier to follow
and copy/paste safe.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Acked-by: Rob Clark <robdclark@gmail.com>
|
|
Use common helper for converting a sg_table object into struct
page pointer array.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Acked-by: Chun-Kuang Hu <chunkuang.hu@kernel.org>
|
|
Use common helper for checking the contiguity of the imported dma-buf and
do this check before allocating resources, so the error path is simpler.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Acked-by: Chun-Kuang Hu <chunkuang.hu@kernel.org>
|
|
The Documentation/DMA-API-HOWTO.txt states that the dma_map_sg() function
returns the number of the created entries in the DMA address space.
However the subsequent calls to the dma_sync_sg_for_{device,cpu}() and
dma_unmap_sg must be called with the original number of the entries
passed to the dma_map_sg().
struct sg_table is a common structure used for describing a non-contiguous
memory buffer, used commonly in the DRM and graphics subsystems. It
consists of a scatterlist with memory pages and DMA addresses (sgl entry),
as well as the number of scatterlist entries: CPU pages (orig_nents entry)
and DMA mapped pages (nents entry).
It turned out that it was a common mistake to misuse nents and orig_nents
entries, calling DMA-mapping functions with a wrong number of entries or
ignoring the number of mapped entries returned by the dma_map_sg()
function.
To avoid such issues, lets use a common dma-mapping wrappers operating
directly on the struct sg_table objects and use scatterlist page
iterators where possible. This, almost always, hides references to the
nents and orig_nents entries, making the code robust, easier to follow
and copy/paste safe.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Qiang Yu <yuq825@gmail.com>
|
|
The Documentation/DMA-API-HOWTO.txt states that the dma_map_sg() function
returns the number of the created entries in the DMA address space.
However the subsequent calls to the dma_sync_sg_for_{device,cpu}() and
dma_unmap_sg must be called with the original number of the entries
passed to the dma_map_sg().
struct sg_table is a common structure used for describing a non-contiguous
memory buffer, used commonly in the DRM and graphics subsystems. It
consists of a scatterlist with memory pages and DMA addresses (sgl entry),
as well as the number of scatterlist entries: CPU pages (orig_nents entry)
and DMA mapped pages (nents entry).
It turned out that it was a common mistake to misuse nents and orig_nents
entries, calling DMA-mapping functions with a wrong number of entries or
ignoring the number of mapped entries returned by the dma_map_sg()
function.
This driver creatively uses sg_table->orig_nents to store the size of the
allocated scatterlist and ignores the number of the entries returned by
dma_map_sg function. The sg_table->orig_nents is (mis)used to properly
free the (over)allocated scatterlist.
This patch only introduces the common DMA-mapping wrappers operating
directly on the struct sg_table objects to the dmabuf related functions,
so the other drivers, which might share buffers with i915 could rely on
the properly set nents and orig_nents values.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Reviewed-by: Michael J. Ruhl <michael.j.ruhl@intel.com>
|
|
The Documentation/DMA-API-HOWTO.txt states that the dma_map_sg() function
returns the number of the created entries in the DMA address space.
However the subsequent calls to the dma_sync_sg_for_{device,cpu}() and
dma_unmap_sg must be called with the original number of the entries
passed to the dma_map_sg().
struct sg_table is a common structure used for describing a non-contiguous
memory buffer, used commonly in the DRM and graphics subsystems. It
consists of a scatterlist with memory pages and DMA addresses (sgl entry),
as well as the number of scatterlist entries: CPU pages (orig_nents entry)
and DMA mapped pages (nents entry).
It turned out that it was a common mistake to misuse nents and orig_nents
entries, calling DMA-mapping functions with a wrong number of entries or
ignoring the number of mapped entries returned by the dma_map_sg()
function.
To avoid such issues, lets use a common dma-mapping wrappers operating
directly on the struct sg_table objects and use scatterlist page
iterators where possible. This, almost always, hides references to the
nents and orig_nents entries, making the code robust, easier to follow
and copy/paste safe.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Andrzej Hajda <a.hajda@samsung.com>
Acked-by : Inki Dae <inki.dae@samsung.com>
|
|
Use common helper for checking the contiguity of the imported dma-buf.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Andrzej Hajda <a.hajda@samsung.com>
Acked-by : Inki Dae <inki.dae@samsung.com>
|
|
The Documentation/DMA-API-HOWTO.txt states that the dma_map_sg() function
returns the number of the created entries in the DMA address space.
However the subsequent calls to the dma_sync_sg_for_{device,cpu}() and
dma_unmap_sg must be called with the original number of the entries
passed to the dma_map_sg().
struct sg_table is a common structure used for describing a non-contiguous
memory buffer, used commonly in the DRM and graphics subsystems. It
consists of a scatterlist with memory pages and DMA addresses (sgl entry),
as well as the number of scatterlist entries: CPU pages (orig_nents entry)
and DMA mapped pages (nents entry).
It turned out that it was a common mistake to misuse nents and orig_nents
entries, calling DMA-mapping functions with a wrong number of entries or
ignoring the number of mapped entries returned by the dma_map_sg()
function.
To avoid such issues, lets use a common dma-mapping wrappers operating
directly on the struct sg_table objects and use scatterlist page
iterators where possible. This, almost always, hides references to the
nents and orig_nents entries, making the code robust, easier to follow
and copy/paste safe.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Acked-by: Lucas Stach <l.stach@pengutronix.de>
|
|
The Documentation/DMA-API-HOWTO.txt states that the dma_map_sg() function
returns the number of the created entries in the DMA address space.
However the subsequent calls to the dma_sync_sg_for_{device,cpu}() and
dma_unmap_sg must be called with the original number of the entries
passed to the dma_map_sg().
struct sg_table is a common structure used for describing a non-contiguous
memory buffer, used commonly in the DRM and graphics subsystems. It
consists of a scatterlist with memory pages and DMA addresses (sgl entry),
as well as the number of scatterlist entries: CPU pages (orig_nents entry)
and DMA mapped pages (nents entry).
It turned out that it was a common mistake to misuse nents and orig_nents
entries, calling DMA-mapping functions with a wrong number of entries or
ignoring the number of mapped entries returned by the dma_map_sg()
function.
To avoid such issues, lets use a common dma-mapping wrappers operating
directly on the struct sg_table objects and use scatterlist page
iterators where possible. This, almost always, hides references to the
nents and orig_nents entries, making the code robust, easier to follow
and copy/paste safe.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
|
|
The Documentation/DMA-API-HOWTO.txt states that the dma_map_sg() function
returns the number of the created entries in the DMA address space.
However the subsequent calls to the dma_sync_sg_for_{device,cpu}() and
dma_unmap_sg must be called with the original number of the entries
passed to the dma_map_sg().
struct sg_table is a common structure used for describing a non-contiguous
memory buffer, used commonly in the DRM and graphics subsystems. It
consists of a scatterlist with memory pages and DMA addresses (sgl entry),
as well as the number of scatterlist entries: CPU pages (orig_nents entry)
and DMA mapped pages (nents entry).
It turned out that it was a common mistake to misuse nents and orig_nents
entries, calling DMA-mapping functions with a wrong number of entries or
ignoring the number of mapped entries returned by the dma_map_sg()
function.
To avoid such issues, lets use a common dma-mapping wrappers operating
directly on the struct sg_table objects and use scatterlist page
iterators where possible. This, almost always, hides references to the
nents and orig_nents entries, making the code robust, easier to follow
and copy/paste safe.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Andrzej Hajda <a.hajda@samsung.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
|
|
Replace the current hand-crafted code for extracting pages and DMA
addresses from the given scatterlist by the much more robust
code based on the generic scatterlist iterators and recently
introduced sg_table-based wrappers. The resulting code is simple and
easy to understand, so the comment describing the old code is no
longer needed.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Andrzej Hajda <a.hajda@samsung.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
|
|
It is a common operation done by DRM drivers to check the contiguity
of the DMA-mapped buffer described by a scatterlist in the
sg_table object. Let's add a common helper for this operation.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Andrzej Hajda <a.hajda@samsung.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Pull crypto fix from Herbert Xu:
"This fixes a regression in padata"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6:
padata: fix possible padata_works_lock deadlock
|
|
The string was incorrectly defined before from least to most specific,
swap the compatible strings accordingly.
Fixes: ff73917d38a6 ("ARM64: dts: Add QSPI Device Tree node for NS2")
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
|
|
The string was incorrectly defined before from least to most
specific, swap the compatible strings accordingly.
Fixes: 1c8f40650723 ("ARM: dts: BCM5301X: convert to iProc QSPI")
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
|
|
The string was incorrectly defined before from least to most
specific, swap the compatible strings accordingly.
Fixes: 329f98c1974e ("ARM: dts: NSP: Add QSPI nodes to NSPI and bcm958625k DTSes")
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
|
|
The string was incorrectly defined before from least to most specific,
swap the compatible strings accordingly.
Fixes: b9099ec754b5 ("ARM: dts: Add Broadcom Hurricane 2 DTS include file")
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
|
|
The binding is currently incorrectly defining the compatible strings
from least specifice to most specific instead of the converse. Re-order
them from most specific (left) to least specific (right) and fix the
examples as well.
Fixes: 5fc78f4c842a ("spi: Broadcom BRCMSTB, NSP, NS2 SoC bindings")
Reviewed-by: Rob Herring <robh@kernel.org>
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
|
|
Pull NFS client bugfixes from Trond Myklebust:
- Fix an NFS/RDMA resource leak
- Fix the error handling during delegation recall
- NFSv4.0 needs to return the delegation on a zero-stateid SETATTR
- Stop printk reading past end of string
* tag 'nfs-for-5.9-2' of git://git.linux-nfs.org/projects/trondmy/linux-nfs:
SUNRPC: stop printk reading past end of string
NFS: Zero-stateid SETATTR should first return delegation
NFSv4.1 handle ERR_DELAY error reclaiming locking state on delegation recall
xprtrdma: Release in-flight MRs on disconnect
|
|
Currently we allocate rx buffers in a single contiguous buffers for
headers (iser and iscsi) and data trailer. This means that most likely the
data starting offset is aligned to 76 bytes (size of both headers).
This worked fine for years, but at some point this broke, resulting in
data corruptions in isert when a command comes with immediate data and the
underlying backend device assumes 512 bytes buffer alignment.
We assume a hard-requirement for all direct I/O buffers to be 512 bytes
aligned. To fix this, we should avoid passing unaligned buffers for I/O.
Instead, we allocate our recv buffers with some extra space such that we
can have the data portion align to 512 byte boundary. This also means that
we cannot reference headers or data using structure but rather
accessors (as they may move based on alignment). Also, get rid of the
wrong __packed annotation from iser_rx_desc as this has only harmful
effects (not aligned to anything).
This affects the rx descriptors for iscsi login and data plane.
Fixes: 3d75ca0adef4 ("block: introduce multi-page bvec helpers")
Link: https://lore.kernel.org/r/20200904195039.31687-1-sagi@grimberg.me
Reported-by: Stephen Rust <srust@blockbridge.com>
Tested-by: Doug Dumitru <doug@dumitru.com>
Signed-off-by: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
|
|
The device .release function was not being set during the device
initialization. This was leading to the below warning, in error cases when
put_srv was called before device_add was called.
Warning:
Device '(null)' does not have a release() function, it is broken and must
be fixed. See Documentation/kobject.txt.
So, set the device .release function during device initialization in the
__alloc_srv() function.
Fixes: baa5b28b7a47 ("RDMA/rtrs-srv: Replace device_register with device_initialize and device_add")
Link: https://lore.kernel.org/r/20200907102216.104041-1-haris.iqbal@cloud.ionos.com
Signed-off-by: Md Haris Iqbal <haris.iqbal@cloud.ionos.com>
Reviewed-by: Leon Romanovsky <leonro@nvidia.com>
Acked-by: Jack Wang <jinpu.wang@cloud.ionos.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
|
|
drivers/infiniband/hw/bnxt_re/main.c:1012:25:
warning: variable ‘qplib_ctx’ set but not used [-Wunused-but-set-variable]
Fixes: f86b31c6a28f ("RDMA/bnxt_re: Static NQ depth allocation")
Link: https://lore.kernel.org/r/20200905121624.32776-1-yuehaibing@huawei.com
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Reviewed-by: Leon Romanovsky <leonro@nvidia.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
|