summaryrefslogtreecommitdiff
path: root/arch/arm64/include
AgeCommit message (Collapse)Author
2024-03-07Merge branch kvm-arm64/vfio-normal-nc into kvmarm/nextOliver Upton
* kvm-arm64/vfio-normal-nc: : Normal-NC support for vfio-pci @ stage-2, courtesy of Ankit Agrawal : : KVM's policy to date has been that any and all MMIO mapping at stage-2 : is treated as Device-nGnRE. This is primarily done due to concerns of : the guest triggering uncontainable failures in the system if they manage : to tickle the device / memory system the wrong way, though this is : unnecessarily restrictive for devices that can be reasoned as 'safe'. : : Unsurprisingly, the Device-* mapping can really hurt the performance of : assigned devices that can handle Gathering, and can be an outright : correctness issue if the guest driver does unaligned accesses. : : Rather than opening the floodgates to the full ecosystem of devices that : can be exposed to VMs, take the conservative approach and allow PCI : devices to be mapped as Normal-NC since it has been determined to be : 'safe'. vfio: Convey kvm that the vfio-pci device is wc safe KVM: arm64: Set io memory s2 pte as normalnc for vfio pci device mm: Introduce new flag to indicate wc safe KVM: arm64: Introduce new flag for non-cacheable IO memory Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-03-07Merge branch kvm-arm64/vm-configuration into kvmarm/nextOliver Upton
* kvm-arm64/vm-configuration: (29 commits) : VM configuration enforcement, courtesy of Marc Zyngier : : Userspace has gained the ability to control the features visible : through the ID registers, yet KVM didn't take this into account as the : effective feature set when determing trap / emulation behavior. This : series adds: : : - Mechanism for testing the presence of a particular CPU feature in the : guest's ID registers : : - Infrastructure for computing the effective value of VNCR-backed : registers, taking into account the RES0 / RES1 bits for a particular : VM configuration : : - Implementation of 'fine-grained UNDEF' controls that shadow the FGT : register definitions. KVM: arm64: Don't initialize idreg debugfs w/ preemption disabled KVM: arm64: Fail the idreg iterator if idregs aren't initialized KVM: arm64: Make build-time check of RES0/RES1 bits optional KVM: arm64: Add debugfs file for guest's ID registers KVM: arm64: Snapshot all non-zero RES0/RES1 sysreg fields for later checking KVM: arm64: Make FEAT_MOPS UNDEF if not advertised to the guest KVM: arm64: Make AMU sysreg UNDEF if FEAT_AMU is not advertised to the guest KVM: arm64: Make PIR{,E0}_EL1 UNDEF if S1PIE is not advertised to the guest KVM: arm64: Make TLBI OS/Range UNDEF if not advertised to the guest KVM: arm64: Streamline save/restore of HFG[RW]TR_EL2 KVM: arm64: Move existing feature disabling over to FGU infrastructure KVM: arm64: Propagate and handle Fine-Grained UNDEF bits KVM: arm64: Add Fine-Grained UNDEF tracking information KVM: arm64: Rename __check_nv_sr_forward() to triage_sysreg_trap() KVM: arm64: Use the xarray as the primary sysreg/sysinsn walker KVM: arm64: Register AArch64 system register entries with the sysreg xarray KVM: arm64: Always populate the trap configuration xarray KVM: arm64: nv: Move system instructions to their own sys_reg_desc array KVM: arm64: Drop the requirement for XARRAY_MULTI KVM: arm64: nv: Turn encoding ranges into discrete XArray stores ... Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-03-07Merge branch kvm-arm64/misc into kvmarm/nextOliver Upton
* kvm-arm64/misc: : Miscellaneous updates : : - Fix handling of features w/ nonzero safe values in set_id_regs : selftest : : - Cleanup the unused kern_hyp_va() asm macro : : - Differentiate nVHE and hVHE in boot-time message : : - Several selftests cleanups : : - Drop bogus return value from kvm_arch_create_vm_debugfs() : : - Make save/restore of SPE and TRBE control registers affect EL1 state : in hVHE mode : : - Typos KVM: arm64: Fix TRFCR_EL1/PMSCR_EL1 access in hVHE mode KVM: selftests: aarch64: Remove unused functions from vpmu test KVM: arm64: Fix typos KVM: Get rid of return value from kvm_arch_create_vm_debugfs() KVM: selftests: Print timer ctl register in ISTATUS assertion KVM: selftests: Fix GUEST_PRINTF() format warnings in ARM code KVM: arm64: removed unused kern_hyp_va asm macro KVM: arm64: add comments to __kern_hyp_va KVM: arm64: print Hyp mode KVM: arm64: selftests: Handle feature fields with nonzero minimum value correctly Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-03-06arch: simplify architecture specific page size configurationArnd Bergmann
arc, arm64, parisc and powerpc all have their own Kconfig symbols in place of the common CONFIG_PAGE_SIZE_4KB symbols. Change these so the common symbols are the ones that are actually used, while leaving the arhcitecture specific ones as the user visible place for configuring it, to avoid breaking user configs. Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu> (powerpc32) Acked-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Helge Deller <deller@gmx.de> # parisc Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2024-03-04hyperv-tlfs: Change prefix of generic HV_REGISTER_* MSRs to HV_MSR_*Nuno Das Neves
The HV_REGISTER_ are used as arguments to hv_set/get_register(), which delegate to arch-specific mechanisms for getting/setting synthetic Hyper-V MSRs. On arm64, HV_REGISTER_ defines are synthetic VP registers accessed via the get/set vp registers hypercalls. The naming matches the TLFS document, although these register names are not specific to arm64. However, on x86 the prefix HV_REGISTER_ indicates Hyper-V MSRs accessed via rdmsrl()/wrmsrl(). This is not consistent with the TLFS doc, where HV_REGISTER_ is *only* used for used for VP register names used by the get/set register hypercalls. To fix this inconsistency and prevent future confusion, change the arch-generic aliases used by callers of hv_set/get_register() to have the prefix HV_MSR_ instead of HV_REGISTER_. Use the prefix HV_X64_MSR_ for the x86-only Hyper-V MSRs. On x86, the generic HV_MSR_'s point to the corresponding HV_X64_MSR_. Move the arm64 HV_REGISTER_* defines to the asm-generic hyperv-tlfs.h, since these are not specific to arm64. On arm64, the generic HV_MSR_'s point to the corresponding HV_REGISTER_. While at it, rename hv_get/set_registers() and related functions to hv_get/set_msr(), hv_get/set_nested_msr(), etc. These are only used for Hyper-V MSRs and this naming makes that clear. Signed-off-by: Nuno Das Neves <nunodasneves@linux.microsoft.com> Reviewed-by: Wei Liu <wei.liu@kernel.org> Reviewed-by: Michael Kelley <mhklinux@outlook.com> Link: https://lore.kernel.org/r/1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com Signed-off-by: Wei Liu <wei.liu@kernel.org> Message-ID: <1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com>
2024-03-02Merge tag 'for-netdev' of ↵Jakub Kicinski
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next Daniel Borkmann says: ==================== pull-request: bpf-next 2024-02-29 We've added 119 non-merge commits during the last 32 day(s) which contain a total of 150 files changed, 3589 insertions(+), 995 deletions(-). The main changes are: 1) Extend the BPF verifier to enable static subprog calls in spin lock critical sections, from Kumar Kartikeya Dwivedi. 2) Fix confusing and incorrect inference of PTR_TO_CTX argument type in BPF global subprogs, from Andrii Nakryiko. 3) Larger batch of riscv BPF JIT improvements and enabling inlining of the bpf_kptr_xchg() for RV64, from Pu Lehui. 4) Allow skeleton users to change the values of the fields in struct_ops maps at runtime, from Kui-Feng Lee. 5) Extend the verifier's capabilities of tracking scalars when they are spilled to stack, especially when the spill or fill is narrowing, from Maxim Mikityanskiy & Eduard Zingerman. 6) Various BPF selftest improvements to fix errors under gcc BPF backend, from Jose E. Marchesi. 7) Avoid module loading failure when the module trying to register a struct_ops has its BTF section stripped, from Geliang Tang. 8) Annotate all kfuncs in .BTF_ids section which eventually allows for automatic kfunc prototype generation from bpftool, from Daniel Xu. 9) Several updates to the instruction-set.rst IETF standardization document, from Dave Thaler. 10) Shrink the size of struct bpf_map resp. bpf_array, from Alexei Starovoitov. 11) Initial small subset of BPF verifier prepwork for sleepable bpf_timer, from Benjamin Tissoires. 12) Fix bpftool to be more portable to musl libc by using POSIX's basename(), from Arnaldo Carvalho de Melo. 13) Add libbpf support to gcc in CORE macro definitions, from Cupertino Miranda. 14) Remove a duplicate type check in perf_event_bpf_event, from Florian Lehner. 15) Fix bpf_spin_{un,}lock BPF helpers to actually annotate them with notrace correctly, from Yonghong Song. 16) Replace the deprecated bpf_lpm_trie_key 0-length array with flexible array to fix build warnings, from Kees Cook. 17) Fix resolve_btfids cross-compilation to non host-native endianness, from Viktor Malik. * tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (119 commits) selftests/bpf: Test if shadow types work correctly. bpftool: Add an example for struct_ops map and shadow type. bpftool: Generated shadow variables for struct_ops maps. libbpf: Convert st_ops->data to shadow type. libbpf: Set btf_value_type_id of struct bpf_map for struct_ops. bpf: Replace bpf_lpm_trie_key 0-length array with flexible array bpf, arm64: use bpf_prog_pack for memory management arm64: patching: implement text_poke API bpf, arm64: support exceptions arm64: stacktrace: Implement arch_bpf_stack_walk() for the BPF JIT bpf: add is_async_callback_calling_insn() helper bpf: introduce in_sleepable() helper bpf: allow more maps in sleepable bpf programs selftests/bpf: Test case for lacking CFI stub functions. bpf: Check cfi_stubs before registering a struct_ops type. bpf: Clarify batch lookup/lookup_and_delete semantics bpf, docs: specify which BPF_ABS and BPF_IND fields were zero bpf, docs: Fix typos in instruction-set.rst selftests/bpf: update tcp_custom_syncookie to use scalar packet offset bpf: Shrink size of struct bpf_map/bpf_array. ... ==================== Link: https://lore.kernel.org/r/20240301001625.8800-1-daniel@iogearbox.net Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2024-03-01arm64: Remove enable_daif macroJinjie Ruan
Since commit bb8e93a287a5 ("arm64: entry: convert SError handlers to C"), the enable_daif assembler macro is no longer used anywhere, so remove it. Signed-off-by: Jinjie Ruan <ruanjinjie@huawei.com> Reviewed-by: Mark Brown <broonie@kernel.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20240229132802.1682026-2-ruanjinjie@huawei.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2024-03-01arm64/hw_breakpoint: Directly use ESR_ELx_WNR for an watchpoint exceptionAnshuman Khandual
Let's use existing ISS encoding for an watchpoint exception i.e ESR_ELx_WNR This represents an instruction's either writing to or reading from a memory location during an watchpoint exception. While here this drops non-standard macro AARCH64_ESR_ACCESS_MASK. Cc: Will Deacon <will@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: linux-arm-kernel@lists.infradead.org Cc: linux-kernel@vger.kernel.org Reviewed-by: Mark Brown <broonie@kernel.org> Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20240229083431.356578-1-anshuman.khandual@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2024-03-01arm64/mm: Use generic __pud_free() helper in pud_free() implementationArd Biesheuvel
Commit 0dd4f60a2c76 ("arm64: mm: Add support for folding PUDs at runtime") implements specialized PUD alloc/free helpers to allow the decision whether or not to fold PUDs to be made at runtime when the number of paging levels is 4 or higher. Its implementation of pud_free() is based on the generic version that existed when the patch was first written, but in the meantime, the freeing of a PUD has become a bit more involved, and so instead of simply freeing the page, we should invoke the generic __pud_free() that encapsulates whatever needs doing at this point. This fixes a reported warning emitted by the page flags self-diagnostics. Reported-by: Ryan Roberts <ryan.roberts@arm.com> Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Tested-by: Ryan Roberts <ryan.roberts@arm.com> Link: https://lore.kernel.org/r/20240301104046.1234309-5-ardb+git@google.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2024-02-28arm64: patching: implement text_poke APIPuranjay Mohan
The text_poke API is used to implement functions like memcpy() and memset() for instruction memory (RO+X). The implementation is similar to the x86 version. This will be used by the BPF JIT to write and modify BPF programs. There could be more users of this in the future. Signed-off-by: Puranjay Mohan <puranjay12@gmail.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Link: https://lore.kernel.org/r/20240228141824.119877-2-puranjay12@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-02-28arm64: remove unnecessary ifdefs around is_compat_task()Leonardo Bras
Currently some parts of the codebase will test for CONFIG_COMPAT before testing is_compat_task(). is_compat_task() is a inlined function only present on CONFIG_COMPAT. On the other hand, for !CONFIG_COMPAT, we have in linux/compat.h: #define is_compat_task() (0) Since we have this define available in every usage of is_compat_task() for !CONFIG_COMPAT, it's unnecessary to keep the ifdefs, since the compiler is smart enough to optimize-out those snippets on CONFIG_COMPAT=n This requires some regset code as well as a few other defines to be made available on !CONFIG_COMPAT, so some symbols can get resolved before getting optimized-out. Signed-off-by: Leonardo Bras <leobras@redhat.com> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Link: https://lore.kernel.org/r/20240109034651.478462-2-leobras@redhat.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2024-02-27KVM: arm64: Don't initialize idreg debugfs w/ preemption disabledOliver Upton
Testing KVM with DEBUG_ATOMIC_SLEEP enabled doesn't get far before hitting the first splat: BUG: sleeping function called from invalid context at kernel/locking/rwsem.c:1578 in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 13062, name: vgic_lpi_stress preempt_count: 1, expected: 0 2 locks held by vgic_lpi_stress/13062: #0: ffff080084553240 (&vcpu->mutex){+.+.}-{3:3}, at: kvm_vcpu_ioctl+0xc0/0x13f0 #1: ffff800080485f08 (&kvm->arch.config_lock){+.+.}-{3:3}, at: kvm_arch_vcpu_ioctl+0xd60/0x1788 CPU: 19 PID: 13062 Comm: vgic_lpi_stress Tainted: G W O 6.8.0-dbg-DEV #1 Call trace: dump_backtrace+0xf8/0x148 show_stack+0x20/0x38 dump_stack_lvl+0xb4/0xf8 dump_stack+0x18/0x40 __might_resched+0x248/0x2a0 __might_sleep+0x50/0x88 down_write+0x30/0x150 start_creating+0x90/0x1a0 __debugfs_create_file+0x5c/0x1b0 debugfs_create_file+0x34/0x48 kvm_reset_sys_regs+0x120/0x1e8 kvm_reset_vcpu+0x148/0x270 kvm_arch_vcpu_ioctl+0xddc/0x1788 kvm_vcpu_ioctl+0xb6c/0x13f0 __arm64_sys_ioctl+0x98/0xd8 invoke_syscall+0x48/0x108 el0_svc_common+0xb4/0xf0 do_el0_svc+0x24/0x38 el0_svc+0x54/0x128 el0t_64_sync_handler+0x68/0xc0 el0t_64_sync+0x1a8/0x1b0 kvm_reset_vcpu() disables preemption as it needs to unload vCPU state from the CPU to twiddle with it, which subsequently explodes when taking the parent inode's rwsem while creating the idreg debugfs file. Fix it by moving the initialization to kvm_arch_create_vm_debugfs(). Fixes: 891766581dea ("KVM: arm64: Add debugfs file for guest's ID registers") Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240227094115.1723330-3-oliver.upton@linux.dev Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-24KVM: arm64: Introduce new flag for non-cacheable IO memoryAnkit Agrawal
Currently, KVM for ARM64 maps at stage 2 memory that is considered device (i.e. it is not RAM) with DEVICE_nGnRE memory attributes; this setting overrides (as per the ARM architecture [1]) any device MMIO mapping present at stage 1, resulting in a set-up whereby a guest operating system cannot determine device MMIO mapping memory attributes on its own but it is always overridden by the KVM stage 2 default. This set-up does not allow guest operating systems to select device memory attributes independently from KVM stage-2 mappings (refer to [1], "Combining stage 1 and stage 2 memory type attributes"), which turns out to be an issue in that guest operating systems (e.g. Linux) may request to map devices MMIO regions with memory attributes that guarantee better performance (e.g. gathering attribute - that for some devices can generate larger PCIe memory writes TLPs) and specific operations (e.g. unaligned transactions) such as the NormalNC memory type. The default device stage 2 mapping was chosen in KVM for ARM64 since it was considered safer (i.e. it would not allow guests to trigger uncontained failures ultimately crashing the machine) but this turned out to be asynchronous (SError) defeating the purpose. Failures containability is a property of the platform and is independent from the memory type used for MMIO device memory mappings. Actually, DEVICE_nGnRE memory type is even more problematic than Normal-NC memory type in terms of faults containability in that e.g. aborts triggered on DEVICE_nGnRE loads cannot be made, architecturally, synchronous (i.e. that would imply that the processor should issue at most 1 load transaction at a time - it cannot pipeline them - otherwise the synchronous abort semantics would break the no-speculation attribute attached to DEVICE_XXX memory). This means that regardless of the combined stage1+stage2 mappings a platform is safe if and only if device transactions cannot trigger uncontained failures and that in turn relies on platform capabilities and the device type being assigned (i.e. PCIe AER/DPC error containment and RAS architecture[3]); therefore the default KVM device stage 2 memory attributes play no role in making device assignment safer for a given platform (if the platform design adheres to design guidelines outlined in [3]) and therefore can be relaxed. For all these reasons, relax the KVM stage 2 device memory attributes from DEVICE_nGnRE to Normal-NC. The NormalNC was chosen over a different Normal memory type default at stage-2 (e.g. Normal Write-through) to avoid cache allocation/snooping. Relaxing S2 KVM device MMIO mappings to Normal-NC is not expected to trigger any issue on guest device reclaim use cases either (i.e. device MMIO unmap followed by a device reset) at least for PCIe devices, in that in PCIe a device reset is architected and carried out through PCI config space transactions that are naturally ordered with respect to MMIO transactions according to the PCI ordering rules. Having Normal-NC S2 default puts guests in control (thanks to stage1+stage2 combined memory attributes rules [1]) of device MMIO regions memory mappings, according to the rules described in [1] and summarized here ([(S1) - stage1], [(S2) - stage 2]): S1 | S2 | Result NORMAL-WB | NORMAL-NC | NORMAL-NC NORMAL-WT | NORMAL-NC | NORMAL-NC NORMAL-NC | NORMAL-NC | NORMAL-NC DEVICE<attr> | NORMAL-NC | DEVICE<attr> It is worth noting that currently, to map devices MMIO space to user space in a device pass-through use case the VFIO framework applies memory attributes derived from pgprot_noncached() settings applied to VMAs, which result in device-nGnRnE memory attributes for the stage-1 VMM mappings. This means that a userspace mapping for device MMIO space carried out with the current VFIO framework and a guest OS mapping for the same MMIO space may result in a mismatched alias as described in [2]. Defaulting KVM device stage-2 mappings to Normal-NC attributes does not change anything in this respect, in that the mismatched aliases would only affect (refer to [2] for a detailed explanation) ordering between the userspace and GuestOS mappings resulting stream of transactions (i.e. it does not cause loss of property for either stream of transactions on its own), which is harmless given that the userspace and GuestOS access to the device is carried out through independent transactions streams. A Normal-NC flag is not present today. So add a new kvm_pgtable_prot (KVM_PGTABLE_PROT_NORMAL_NC) flag for it, along with its corresponding PTE value 0x5 (0b101) determined from [1]. Lastly, adapt the stage2 PTE property setter function (stage2_set_prot_attr) to handle the NormalNC attribute. The entire discussion leading to this patch series may be followed through the following links. Link: https://lore.kernel.org/all/20230907181459.18145-3-ankita@nvidia.com Link: https://lore.kernel.org/r/20231205033015.10044-1-ankita@nvidia.com [1] section D8.5.5 - DDI0487J_a_a-profile_architecture_reference_manual.pdf [2] section B2.8 - DDI0487J_a_a-profile_architecture_reference_manual.pdf [3] sections 1.7.7.3/1.8.5.2/appendix C - DEN0029H_SBSA_7.1.pdf Suggested-by: Jason Gunthorpe <jgg@nvidia.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Will Deacon <will@kernel.org> Reviewed-by: Marc Zyngier <maz@kernel.org> Signed-off-by: Ankit Agrawal <ankita@nvidia.com> Link: https://lore.kernel.org/r/20240224150546.368-2-ankita@nvidia.com Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-24KVM: arm64: Fix typosBjorn Helgaas
Fix typos, most reported by "codespell arch/arm64". Only touches comments, no code changes. Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> Cc: James Morse <james.morse@arm.com> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Zenghui Yu <yuzenghui@huawei.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Cc: linux-arm-kernel@lists.infradead.org Cc: kvmarm@lists.linux.dev Reviewed-by: Zenghui Yu <yuzenghui@huawei.com> Reviewed-by: Randy Dunlap <rdunlap@infradead.org> Link: https://lore.kernel.org/r/20240103231605.1801364-6-helgaas@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-23arm64, crash: wrap crash dumping code into crash related ifdefsBaoquan He
Now crash codes under kernel/ folder has been split out from kexec code, crash dumping can be separated from kexec reboot in config items on arm64 with some adjustments. Here wrap up crash dumping codes with CONFIG_CRASH_DUMP ifdeffery. [bhe@redhat.com: fix building error in generic codes] Link: https://lkml.kernel.org/r/20240129135033.157195-2-bhe@redhat.com Link: https://lkml.kernel.org/r/20240124051254.67105-8-bhe@redhat.com Signed-off-by: Baoquan He <bhe@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Hari Bathini <hbathini@linux.ibm.com> Cc: Pingfan Liu <piliu@redhat.com> Cc: Klara Modin <klarasmodin@gmail.com> Cc: Michael Kelley <mhklinux@outlook.com> Cc: Nathan Chancellor <nathan@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Yang Li <yang.lee@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23kexec: split crashkernel reservation code out from crash_core.cBaoquan He
Patch series "Split crash out from kexec and clean up related config items", v3. Motivation: ============= Previously, LKP reported a building error. When investigating, it can't be resolved reasonablly with the present messy kdump config items. https://lore.kernel.org/oe-kbuild-all/202312182200.Ka7MzifQ-lkp@intel.com/ The kdump (crash dumping) related config items could causes confusions: Firstly, CRASH_CORE enables codes including - crashkernel reservation; - elfcorehdr updating; - vmcoreinfo exporting; - crash hotplug handling; Now fadump of powerpc, kcore dynamic debugging and kdump all selects CRASH_CORE, while fadump - fadump needs crashkernel parsing, vmcoreinfo exporting, and accessing global variable 'elfcorehdr_addr'; - kcore only needs vmcoreinfo exporting; - kdump needs all of the current kernel/crash_core.c. So only enabling PROC_CORE or FA_DUMP will enable CRASH_CORE, this mislead people that we enable crash dumping, actual it's not. Secondly, It's not reasonable to allow KEXEC_CORE select CRASH_CORE. Because KEXEC_CORE enables codes which allocate control pages, copy kexec/kdump segments, and prepare for switching. These codes are shared by both kexec reboot and kdump. We could want kexec reboot, but disable kdump. In that case, CRASH_CORE should not be selected. -------------------- CONFIG_CRASH_CORE=y CONFIG_KEXEC_CORE=y CONFIG_KEXEC=y CONFIG_KEXEC_FILE=y --------------------- Thirdly, It's not reasonable to allow CRASH_DUMP select KEXEC_CORE. That could make KEXEC_CORE, CRASH_DUMP are enabled independently from KEXEC or KEXEC_FILE. However, w/o KEXEC or KEXEC_FILE, the KEXEC_CORE code built in doesn't make any sense because no kernel loading or switching will happen to utilize the KEXEC_CORE code. --------------------- CONFIG_CRASH_CORE=y CONFIG_KEXEC_CORE=y CONFIG_CRASH_DUMP=y --------------------- In this case, what is worse, on arch sh and arm, KEXEC relies on MMU, while CRASH_DUMP can still be enabled when !MMU, then compiling error is seen as the lkp test robot reported in above link. ------arch/sh/Kconfig------ config ARCH_SUPPORTS_KEXEC def_bool MMU config ARCH_SUPPORTS_CRASH_DUMP def_bool BROKEN_ON_SMP --------------------------- Changes: =========== 1, split out crash_reserve.c from crash_core.c; 2, split out vmcore_infoc. from crash_core.c; 3, move crash related codes in kexec_core.c into crash_core.c; 4, remove dependency of FA_DUMP on CRASH_DUMP; 5, clean up kdump related config items; 6, wrap up crash codes in crash related ifdefs on all 8 arch-es which support crash dumping, except of ppc; Achievement: =========== With above changes, I can rearrange the config item logic as below (the right item depends on or is selected by the left item): PROC_KCORE -----------> VMCORE_INFO |----------> VMCORE_INFO FA_DUMP----| |----------> CRASH_RESERVE ---->VMCORE_INFO / |---->CRASH_RESERVE KEXEC --| /| |--> KEXEC_CORE--> CRASH_DUMP-->/-|---->PROC_VMCORE KEXEC_FILE --| \ | \---->CRASH_HOTPLUG KEXEC --| |--> KEXEC_CORE (for kexec reboot only) KEXEC_FILE --| Test ======== On all 8 architectures, including x86_64, arm64, s390x, sh, arm, mips, riscv, loongarch, I did below three cases of config item setting and building all passed. Take configs on x86_64 as exampmle here: (1) Both CONFIG_KEXEC and KEXEC_FILE is unset, then all kexec/kdump items are unset automatically: # Kexec and crash features # CONFIG_KEXEC is not set # CONFIG_KEXEC_FILE is not set # end of Kexec and crash features (2) set CONFIG_KEXEC_FILE and 'make olddefconfig': --------------- # Kexec and crash features CONFIG_CRASH_RESERVE=y CONFIG_VMCORE_INFO=y CONFIG_KEXEC_CORE=y CONFIG_KEXEC_FILE=y CONFIG_CRASH_DUMP=y CONFIG_CRASH_HOTPLUG=y CONFIG_CRASH_MAX_MEMORY_RANGES=8192 # end of Kexec and crash features --------------- (3) unset CONFIG_CRASH_DUMP in case 2 and execute 'make olddefconfig': ------------------------ # Kexec and crash features CONFIG_KEXEC_CORE=y CONFIG_KEXEC_FILE=y # end of Kexec and crash features ------------------------ Note: For ppc, it needs investigation to make clear how to split out crash code in arch folder. Hope Hari and Pingfan can help have a look, see if it's doable. Now, I make it either have both kexec and crash enabled, or disable both of them altogether. This patch (of 14): Both kdump and fa_dump of ppc rely on crashkernel reservation. Move the relevant codes into separate files: crash_reserve.c, include/linux/crash_reserve.h. And also add config item CRASH_RESERVE to control its enabling of the codes. And update config items which has relationship with crashkernel reservation. And also change ifdeffery from CONFIG_CRASH_CORE to CONFIG_CRASH_RESERVE when those scopes are only crashkernel reservation related. And also rename arch/XXX/include/asm/{crash_core.h => crash_reserve.h} on arm64, x86 and risc-v because those architectures' crash_core.h is only related to crashkernel reservation. [akpm@linux-foundation.org: s/CRASH_RESEERVE/CRASH_RESERVE/, per Klara Modin] Link: https://lkml.kernel.org/r/20240124051254.67105-1-bhe@redhat.com Link: https://lkml.kernel.org/r/20240124051254.67105-2-bhe@redhat.com Signed-off-by: Baoquan He <bhe@redhat.com> Acked-by: Hari Bathini <hbathini@linux.ibm.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Pingfan Liu <piliu@redhat.com> Cc: Klara Modin <klarasmodin@gmail.com> Cc: Michael Kelley <mhklinux@outlook.com> Cc: Nathan Chancellor <nathan@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Yang Li <yang.lee@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23Merge tag 'arm64-fixes' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 fixes from Will Deacon: "A simple fix to a definition in the CXL PMU driver, a couple of patches to restore SME control registers on the resume path (since Arm's fast model now clears them) and a revert for our jump label asm constraints after Geert noticed they broke the build with GCC 5.5. There was then the ensuing discussion about raising the minimum GCC (and corresponding binutils) versions at [1], but for now we'll keep things working as they were until that goes ahead. - Revert fix to jump label asm constraints, as it regresses the build with some GCC 5.5 toolchains. - Restore SME control registers when resuming from suspend - Fix incorrect filter definition in CXL PMU driver" * tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: arm64/sme: Restore SMCR_EL1.EZT0 on exit from suspend arm64/sme: Restore SME registers on exit from suspend Revert "arm64: jump_label: use constraints "Si" instead of "i"" perf: CXL: fix CPMU filter value mask length
2024-02-22arm64/mm: automatically fold contpte mappingsRyan Roberts
There are situations where a change to a single PTE could cause the contpte block in which it resides to become foldable (i.e. could be repainted with the contiguous bit). Such situations arise, for example, when user space temporarily changes protections, via mprotect, for individual pages, such can be the case for certain garbage collectors. We would like to detect when such a PTE change occurs. However this can be expensive due to the amount of checking required. Therefore only perform the checks when an indiviual PTE is modified via mprotect (ptep_modify_prot_commit() -> set_pte_at() -> set_ptes(nr=1)) and only when we are setting the final PTE in a contpte-aligned block. Link: https://lkml.kernel.org/r/20240215103205.2607016-19-ryan.roberts@arm.com Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Barry Song <21cnbao@gmail.com> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Morse <james.morse@arm.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22arm64/mm: __always_inline to improve fork() perfRyan Roberts
As set_ptes() and wrprotect_ptes() become a bit more complex, the compiler may choose not to inline them. But this is critical for fork() performance. So mark the functions, along with contpte_try_unfold() which is called by them, as __always_inline. This is worth ~1% on the fork() microbenchmark with order-0 folios (the common case). Link: https://lkml.kernel.org/r/20240215103205.2607016-18-ryan.roberts@arm.com Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Barry Song <21cnbao@gmail.com> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Morse <james.morse@arm.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22arm64/mm: implement pte_batch_hint()Ryan Roberts
When core code iterates over a range of ptes and calls ptep_get() for each of them, if the range happens to cover contpte mappings, the number of pte reads becomes amplified by a factor of the number of PTEs in a contpte block. This is because for each call to ptep_get(), the implementation must read all of the ptes in the contpte block to which it belongs to gather the access and dirty bits. This causes a hotspot for fork(), as well as operations that unmap memory such as munmap(), exit and madvise(MADV_DONTNEED). Fortunately we can fix this by implementing pte_batch_hint() which allows their iterators to skip getting the contpte tail ptes when gathering the batch of ptes to operate on. This results in the number of PTE reads returning to 1 per pte. Link: https://lkml.kernel.org/r/20240215103205.2607016-17-ryan.roberts@arm.com Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: David Hildenbrand <david@redhat.com> Tested-by: John Hubbard <jhubbard@nvidia.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Barry Song <21cnbao@gmail.com> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Morse <james.morse@arm.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22arm64/mm: implement new [get_and_]clear_full_ptes() batch APIsRyan Roberts
Optimize the contpte implementation to fix some of the exit/munmap/dontneed performance regression introduced by the initial contpte commit. Subsequent patches will solve it entirely. During exit(), munmap() or madvise(MADV_DONTNEED), mappings must be cleared. Previously this was done 1 PTE at a time. But the core-mm supports batched clear via the new [get_and_]clear_full_ptes() APIs. So let's implement those APIs and for fully covered contpte mappings, we no longer need to unfold the contpte. This significantly reduces unfolding operations, reducing the number of tlbis that must be issued. Link: https://lkml.kernel.org/r/20240215103205.2607016-15-ryan.roberts@arm.com Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Tested-by: John Hubbard <jhubbard@nvidia.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Barry Song <21cnbao@gmail.com> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Morse <james.morse@arm.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22arm64/mm: implement new wrprotect_ptes() batch APIRyan Roberts
Optimize the contpte implementation to fix some of the fork performance regression introduced by the initial contpte commit. Subsequent patches will solve it entirely. During fork(), any private memory in the parent must be write-protected. Previously this was done 1 PTE at a time. But the core-mm supports batched wrprotect via the new wrprotect_ptes() API. So let's implement that API and for fully covered contpte mappings, we no longer need to unfold the contpte. This has 2 benefits: - reduced unfolding, reduces the number of tlbis that must be issued. - The memory remains contpte-mapped ("folded") in the parent, so it continues to benefit from the more efficient use of the TLB after the fork. The optimization to wrprotect a whole contpte block without unfolding is possible thanks to the tightening of the Arm ARM in respect to the definition and behaviour when 'Misprogramming the Contiguous bit'. See section D21194 at https://developer.arm.com/documentation/102105/ja-07/ Link: https://lkml.kernel.org/r/20240215103205.2607016-14-ryan.roberts@arm.com Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Tested-by: John Hubbard <jhubbard@nvidia.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Barry Song <21cnbao@gmail.com> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Morse <james.morse@arm.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22arm64/mm: wire up PTE_CONT for user mappingsRyan Roberts
With the ptep API sufficiently refactored, we can now introduce a new "contpte" API layer, which transparently manages the PTE_CONT bit for user mappings. In this initial implementation, only suitable batches of PTEs, set via set_ptes(), are mapped with the PTE_CONT bit. Any subsequent modification of individual PTEs will cause an "unfold" operation to repaint the contpte block as individual PTEs before performing the requested operation. While, a modification of a single PTE could cause the block of PTEs to which it belongs to become eligible for "folding" into a contpte entry, "folding" is not performed in this initial implementation due to the costs of checking the requirements are met. Due to this, contpte mappings will degrade back to normal pte mappings over time if/when protections are changed. This will be solved in a future patch. Since a contpte block only has a single access and dirty bit, the semantic here changes slightly; when getting a pte (e.g. ptep_get()) that is part of a contpte mapping, the access and dirty information are pulled from the block (so all ptes in the block return the same access/dirty info). When changing the access/dirty info on a pte (e.g. ptep_set_access_flags()) that is part of a contpte mapping, this change will affect the whole contpte block. This is works fine in practice since we guarantee that only a single folio is mapped by a contpte block, and the core-mm tracks access/dirty information per folio. In order for the public functions, which used to be pure inline, to continue to be callable by modules, export all the contpte_* symbols that are now called by those public inline functions. The feature is enabled/disabled with the ARM64_CONTPTE Kconfig parameter at build time. It defaults to enabled as long as its dependency, TRANSPARENT_HUGEPAGE is also enabled. The core-mm depends upon TRANSPARENT_HUGEPAGE to be able to allocate large folios, so if its not enabled, then there is no chance of meeting the physical contiguity requirement for contpte mappings. Link: https://lkml.kernel.org/r/20240215103205.2607016-13-ryan.roberts@arm.com Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Acked-by: Ard Biesheuvel <ardb@kernel.org> Tested-by: John Hubbard <jhubbard@nvidia.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Barry Song <21cnbao@gmail.com> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Morse <james.morse@arm.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22arm64/mm: dplit __flush_tlb_range() to elide trailing DSBRyan Roberts
Split __flush_tlb_range() into __flush_tlb_range_nosync() + __flush_tlb_range(), in the same way as the existing flush_tlb_page() arrangement. This allows calling __flush_tlb_range_nosync() to elide the trailing DSB. Forthcoming "contpte" code will take advantage of this when clearing the young bit from a contiguous range of ptes. Ordering between dsb and mmu_notifier_arch_invalidate_secondary_tlbs() has changed, but now aligns with the ordering of __flush_tlb_page(). It has been discussed that __flush_tlb_page() may be wrong though. Regardless, both will be resolved separately if needed. Link: https://lkml.kernel.org/r/20240215103205.2607016-12-ryan.roberts@arm.com Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Reviewed-by: David Hildenbrand <david@redhat.com> Tested-by: John Hubbard <jhubbard@nvidia.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Barry Song <21cnbao@gmail.com> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Morse <james.morse@arm.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22arm64/mm: new ptep layer to manage contig bitRyan Roberts
Create a new layer for the in-table PTE manipulation APIs. For now, The existing API is prefixed with double underscore to become the arch-private API and the public API is just a simple wrapper that calls the private API. The public API implementation will subsequently be used to transparently manipulate the contiguous bit where appropriate. But since there are already some contig-aware users (e.g. hugetlb, kernel mapper), we must first ensure those users use the private API directly so that the future contig-bit manipulations in the public API do not interfere with those existing uses. The following APIs are treated this way: - ptep_get - set_pte - set_ptes - pte_clear - ptep_get_and_clear - ptep_test_and_clear_young - ptep_clear_flush_young - ptep_set_wrprotect - ptep_set_access_flags Link: https://lkml.kernel.org/r/20240215103205.2607016-11-ryan.roberts@arm.com Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Tested-by: John Hubbard <jhubbard@nvidia.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Barry Song <21cnbao@gmail.com> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Morse <james.morse@arm.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22arm64/mm: convert set_pte_at() to set_ptes(..., 1)Ryan Roberts
Since set_ptes() was introduced, set_pte_at() has been implemented as a generic macro around set_ptes(..., 1). So this change should continue to generate the same code. However, making this change prepares us for the transparent contpte support. It means we can reroute set_ptes() to __set_ptes(). Since set_pte_at() is a generic macro, there will be no equivalent __set_pte_at() to reroute to. Note that a couple of calls to set_pte_at() remain in the arch code. This is intentional, since those call sites are acting on behalf of core-mm and should continue to call into the public set_ptes() rather than the arch-private __set_ptes(). Link: https://lkml.kernel.org/r/20240215103205.2607016-9-ryan.roberts@arm.com Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Tested-by: John Hubbard <jhubbard@nvidia.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Barry Song <21cnbao@gmail.com> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Morse <james.morse@arm.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22arm64/mm: convert READ_ONCE(*ptep) to ptep_get(ptep)Ryan Roberts
There are a number of places in the arch code that read a pte by using the READ_ONCE() macro. Refactor these call sites to instead use the ptep_get() helper, which itself is a READ_ONCE(). Generated code should be the same. This will benefit us when we shortly introduce the transparent contpte support. In this case, ptep_get() will become more complex so we now have all the code abstracted through it. Link: https://lkml.kernel.org/r/20240215103205.2607016-8-ryan.roberts@arm.com Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Tested-by: John Hubbard <jhubbard@nvidia.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Barry Song <21cnbao@gmail.com> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Morse <james.morse@arm.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22arm64/mm: convert pte_next_pfn() to pte_advance_pfn()Ryan Roberts
Core-mm needs to be able to advance the pfn by an arbitrary amount, so override the new pte_advance_pfn() API to do so. Link: https://lkml.kernel.org/r/20240215103205.2607016-5-ryan.roberts@arm.com Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Acked-by: David Hildenbrand <david@redhat.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Barry Song <21cnbao@gmail.com> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Morse <james.morse@arm.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22arm64/sve: Document that __SVE_VQ_MAX is much larger than neededMark Brown
__SVE_VQ_MAX is defined without comment as 512 but the actual architectural maximum is 16, a substantial difference which might not be obvious to readers especially given the several different units used for specifying vector sizes in various contexts and the fact that it's often used via macros. In an effort to minimise surprises for users who might assume the value is the architectural maximum and use it to do things like size allocations add a comment noting the difference, and add a note for SVE_VQ_MAX to aid discoverability. Signed-off-by: Mark Brown <broonie@kernel.org> Acked-by: Dave Martin <Dave.Martin@arm.com> Link: https://lore.kernel.org/r/20240209-arm64-sve-vl-max-comment-v2-1-111b283469ee@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2024-02-22arm64/mm: make set_ptes() robust when OAs cross 48-bit boundaryRyan Roberts
Patch series "mm/memory: optimize fork() with PTE-mapped THP", v3. Now that the rmap overhaul[1] is upstream that provides a clean interface for rmap batching, let's implement PTE batching during fork when processing PTE-mapped THPs. This series is partially based on Ryan's previous work[2] to implement cont-pte support on arm64, but its a complete rewrite based on [1] to optimize all architectures independent of any such PTE bits, and to use the new rmap batching functions that simplify the code and prepare for further rmap accounting changes. We collect consecutive PTEs that map consecutive pages of the same large folio, making sure that the other PTE bits are compatible, and (a) adjust the refcount only once per batch, (b) call rmap handling functions only once per batch and (c) perform batch PTE setting/updates. While this series should be beneficial for adding cont-pte support on ARM64[2], it's one of the requirements for maintaining a total mapcount[3] for large folios with minimal added overhead and further changes[4] that build up on top of the total mapcount. Independent of all that, this series results in a speedup during fork with PTE-mapped THP, which is the default with THPs that are smaller than a PMD (for example, 16KiB to 1024KiB mTHPs for anonymous memory[5]). On an Intel Xeon Silver 4210R CPU, fork'ing with 1GiB of PTE-mapped folios of the same size (stddev < 1%) results in the following runtimes for fork() (shorter is better): Folio Size | v6.8-rc1 | New | Change ------------------------------------------ 4KiB | 0.014328 | 0.014035 | - 2% 16KiB | 0.014263 | 0.01196 | -16% 32KiB | 0.014334 | 0.01094 | -24% 64KiB | 0.014046 | 0.010444 | -26% 128KiB | 0.014011 | 0.010063 | -28% 256KiB | 0.013993 | 0.009938 | -29% 512KiB | 0.013983 | 0.00985 | -30% 1024KiB | 0.013986 | 0.00982 | -30% 2048KiB | 0.014305 | 0.010076 | -30% Note that these numbers are even better than the ones from v1 (verified over multiple reboots), even though there were only minimal code changes. Well, I removed a pte_mkclean() call for anon folios, maybe that also plays a role. But my experience is that fork() is extremely sensitive to code size, inlining, ... so I suspect we'll see on other architectures rather a change of -20% instead of -30%, and it will be easy to "lose" some of that speedup in the future by subtle code changes. Next up is PTE batching when unmapping. Only tested on x86-64. Compile-tested on most other architectures. [1] https://lkml.kernel.org/r/20231220224504.646757-1-david@redhat.com [2] https://lkml.kernel.org/r/20231218105100.172635-1-ryan.roberts@arm.com [3] https://lkml.kernel.org/r/20230809083256.699513-1-david@redhat.com [4] https://lkml.kernel.org/r/20231124132626.235350-1-david@redhat.com [5] https://lkml.kernel.org/r/20231207161211.2374093-1-ryan.roberts@arm.com This patch (of 15): Since the high bits [51:48] of an OA are not stored contiguously in the PTE, there is a theoretical bug in set_ptes(), which just adds PAGE_SIZE to the pte to get the pte with the next pfn. This works until the pfn crosses the 48-bit boundary, at which point we overflow into the upper attributes. Of course one could argue (and Matthew Wilcox has :) that we will never see a folio cross this boundary because we only allow naturally aligned power-of-2 allocation, so this would require a half-petabyte folio. So its only a theoretical bug. But its better that the code is robust regardless. I've implemented pte_next_pfn() as part of the fix, which is an opt-in core-mm interface. So that is now available to the core-mm, which will be needed shortly to support forthcoming fork()-batching optimizations. Link: https://lkml.kernel.org/r/20240129124649.189745-1-david@redhat.com Link: https://lkml.kernel.org/r/20240125173534.1659317-1-ryan.roberts@arm.com Link: https://lkml.kernel.org/r/20240129124649.189745-2-david@redhat.com Fixes: 4a169d61c2ed ("arm64: implement the new page table range API") Closes: https://lore.kernel.org/linux-mm/fdaeb9a5-d890-499a-92c8-d171df43ad01@arm.com/ Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: David Hildenbrand <david@redhat.com> Tested-by: Ryan Roberts <ryan.roberts@arm.com> Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Aneesh Kumar K.V <aneesh.kumar@kernel.org> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: David S. Miller <davem@davemloft.net> Cc: Dinh Nguyen <dinguyen@kernel.org> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Naveen N. Rao <naveen.n.rao@linux.ibm.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Russell King (Oracle) <linux@armlinux.org.uk> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will@kernel.org> Cc: Alexandre Ghiti <alexghiti@rivosinc.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22arm64, powerpc, riscv, s390, x86: ptdump: refactor CONFIG_DEBUG_WXChristophe Leroy
All architectures using the core ptdump functionality also implement CONFIG_DEBUG_WX, and they all do it more or less the same way, with a function called debug_checkwx() that is called by mark_rodata_ro(), which is a substitute to ptdump_check_wx() when CONFIG_DEBUG_WX is set and a no-op otherwise. Refactor by centrally defining debug_checkwx() in linux/ptdump.h and call debug_checkwx() immediately after calling mark_rodata_ro() instead of calling it at the end of every mark_rodata_ro(). On x86_32, mark_rodata_ro() first checks __supported_pte_mask has _PAGE_NX before calling debug_checkwx(). Now the check is inside the callee ptdump_walk_pgd_level_checkwx(). On powerpc_64, mark_rodata_ro() bails out early before calling ptdump_check_wx() when the MMU doesn't have KERNEL_RO feature. The check is now also done in ptdump_check_wx() as it is called outside mark_rodata_ro(). Link: https://lkml.kernel.org/r/a59b102d7964261d31ead0316a9f18628e4e7a8e.1706610398.git.christophe.leroy@csgroup.eu Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: "Aneesh Kumar K.V (IBM)" <aneesh.kumar@kernel.org> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Greg KH <greg@kroah.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Kees Cook <keescook@chromium.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Phong Tran <tranmanphong@gmail.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Steven Price <steven.price@arm.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-20arm64: kretprobes: acquire the regs via a BRK exceptionMark Rutland
On arm64, kprobes always take an exception and so create a struct pt_regs through the usual exception entry logic. Similarly kretprobes taskes and exception for function entry, but for function returns it uses a trampoline which attempts to create a struct pt_regs without taking an exception. This is problematic for a few reasons, including: 1) The kretprobes trampoline neither saves nor restores all of the portions of PSTATE. Before invoking the handler it saves a number of portions of PSTATE, and after returning from the handler it restores NZCV before returning to the original return address provided by the handler. 2) The kretprobe trampoline constructs the PSTATE value piecemeal from special purpose registers as it cannot read all of PSTATE atomically without taking an exception. This is somewhat fragile, and it's not possible to reliably recover PSTATE information which only exists on some physical CPUs (e.g. when SSBS support is mismatched). Today the kretprobes trampoline does not record: - BTYPE - SSBS - ALLINT - SS - PAN - UAO - DIT - TCO ... and this will only get worse with future architecture extensions which add more PSTATE bits. 3) The kretprobes trampoline doesn't store portions of struct pt_regs (e.g. the PMR value when using pseudo-NMIs). Due to this, helpers which operate on a struct pt_regs, such as interrupts_enabled(), may not work correctly. 4) The function entry and function exit handlers run in different contexts. The entry handler will always be run in a debug exception context (which is currently treated as an NMI), but the return will be treated as whatever context the instrumented function was executed in. The differences between these contexts are liable to cause problems (e.g. as the two can be differently interruptible or preemptible, adversely affecting synchronization between the handlers). 5) As the kretprobes trampoline runs in the same context as the code being probed, it is subject to the same single-stepping context, which may not be desirable if this is being driven by the kprobes handlers. Overall, this is fragile, painful to maintain, and gets in the way of supporting other things (e.g. RELIABLE_STACKTRACE, FEAT_NMI). This patch addresses these issues by replacing the kretprobes trampoline with a `BRK` instruction, and using an exception boundary to acquire and restore the regs, in the same way as the regular kprobes trampoline. Ive tested this atop v6.8-rc3: | KTAP version 1 | 1..1 | KTAP version 1 | # Subtest: kprobes_test | # module: test_kprobes | 1..7 | ok 1 test_kprobe | ok 2 test_kprobes | ok 3 test_kprobe_missed | ok 4 test_kretprobe | ok 5 test_kretprobes | ok 6 test_stacktrace_on_kretprobe | ok 7 test_stacktrace_on_nested_kretprobe | # kprobes_test: pass:7 fail:0 skip:0 total:7 | # Totals: pass:7 fail:0 skip:0 total:7 | ok 1 kprobes_test Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Florent Revest <revest@chromium.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Link: https://lore.kernel.org/r/20240208145916.2004154-1-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2024-02-20arm64: Move do_notify_resume() to entry-common.cMark Rutland
Currently do_notify_resume() lives in arch/arm64/kernel/signal.c, but it would make more sense for it to live in entry-common.c as it handles more than signals, and is coupled with the rest of the return-to-userspace sequence (e.g. with unusual DAIF masking that matches the exception return requirements). Move do_notify_resume() to entry-common.c. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Mark Brown <broonie@kernel.org> Cc: Will Deacon <will@kernel.org> Reviewed-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20240206123848.1696480-3-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Itaru Kitayama <itaru.kitayama@linux.dev>
2024-02-20arm64: io: permit offset addressingMark Rutland
Currently our IO accessors all use register addressing without offsets, but we could safely use offset addressing (without writeback) to simplify and optimize the generated code. To function correctly under a hypervisor which emulates IO accesses, we must ensure that any faulting/trapped IO access results in an ESR_ELx value with ESR_ELX.ISS.ISV=1 and with the tranfer register described in ESR_ELx.ISS.SRT. This means that we can only use loads/stores of a single general purpose register (or the zero register), and must avoid writeback addressing modes. However, we can use immediate offset addressing modes, as these still provide ESR_ELX.ISS.ISV=1 and a valid ESR_ELx.ISS.SRT when those accesses fault at Stage-2. Currently we only use register addressing without offsets. We use the "r" constraint to place the address into a register, and manually generate the register addressing by surrounding the resulting register operand with square braces, e.g. | static __always_inline void __raw_writeq(u64 val, volatile void __iomem *addr) | { | asm volatile("str %x0, [%1]" : : "rZ" (val), "r" (addr)); | } Due to this, sequences of adjacent accesses need to generate addresses using separate instructions. For example, the following code: | void writeq_zero_8_times(void *ptr) | { | writeq_relaxed(0, ptr + 8 * 0); | writeq_relaxed(0, ptr + 8 * 1); | writeq_relaxed(0, ptr + 8 * 2); | writeq_relaxed(0, ptr + 8 * 3); | writeq_relaxed(0, ptr + 8 * 4); | writeq_relaxed(0, ptr + 8 * 5); | writeq_relaxed(0, ptr + 8 * 6); | writeq_relaxed(0, ptr + 8 * 7); | } ... is compiled to: | <writeq_zero_8_times>: | str xzr, [x0] | add x1, x0, #0x8 | str xzr, [x1] | add x1, x0, #0x10 | str xzr, [x1] | add x1, x0, #0x18 | str xzr, [x1] | add x1, x0, #0x20 | str xzr, [x1] | add x1, x0, #0x28 | str xzr, [x1] | add x1, x0, #0x30 | str xzr, [x1] | add x0, x0, #0x38 | str xzr, [x0] | ret As described above, we could safely use immediate offset addressing, which would allow the ADDs to be folded into the address generation for the STRs, resulting in simpler and smaller generated assembly. We can do this by using the "o" constraint to allow the compiler to generate offset addressing (without writeback) for a memory operand, e.g. | static __always_inline void __raw_writeq(u64 val, volatile void __iomem *addr) | { | volatile u64 __iomem *ptr = addr; | asm volatile("str %x0, %1" : : "rZ" (val), "o" (*ptr)); | } ... which results in the earlier code sequence being compiled to: | <writeq_zero_8_times>: | str xzr, [x0] | str xzr, [x0, #8] | str xzr, [x0, #16] | str xzr, [x0, #24] | str xzr, [x0, #32] | str xzr, [x0, #40] | str xzr, [x0, #48] | str xzr, [x0, #56] | ret As Will notes at: https://lore.kernel.org/linux-arm-kernel/20240117160528.GA3398@willie-the-truck/ ... some compilers struggle with a plain "o" constraint, so it's preferable to use "Qo", where the additional "Q" constraint permits using non-offset register addressing. This patch modifies our IO write accessors to use "Qo" constraints, resulting in the better code generation described above. The IO read accessors are left as-is because ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE requires that non-offset register addressing is used, as the LDAR instruction does not support offset addressing. When compiling v6.8-rc1 defconfig with GCC 13.2.0, this saves ~4KiB of text: | [mark@lakrids:~/src/linux]% ls -al vmlinux-* | -rwxr-xr-x 1 mark mark 153960576 Jan 23 12:01 vmlinux-after | -rwxr-xr-x 1 mark mark 153862192 Jan 23 11:57 vmlinux-before | | [mark@lakrids:~/src/linux]% size vmlinux-before vmlinux-after | text data bss dec hex filename | 26708921 16690350 622736 44022007 29fb8f7 vmlinux-before | 26704761 16690414 622736 44017911 29fa8f7 vmlinux-after ... though due to internal alignment of sections, this has no impact on the size of the resulting Image: | [mark@lakrids:~/src/linux]% ls -al Image-* | -rw-r--r-- 1 mark mark 43590144 Jan 23 12:01 Image-after | -rw-r--r-- 1 mark mark 43590144 Jan 23 11:57 Image-before Aside from the better code generation, there should be no functional change as a result of this patch. I have lightly tested this patch, including booting under KVM (where some devices such as PL011 are emulated). Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Will Deacon <will@kernel.org> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Acked-by: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20240124111259.874975-1-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2024-02-20arm64/sme: Restore SME registers on exit from suspendMark Brown
The fields in SMCR_EL1 and SMPRI_EL1 reset to an architecturally UNKNOWN value. Since we do not otherwise manage the traps configured in this register at runtime we need to reconfigure them after a suspend in case nothing else was kind enough to preserve them for us. The vector length will be restored as part of restoring the SME state for the next SME using task. Fixes: a1f4ccd25cc2 ("arm64/sme: Provide Kconfig for SME") Reported-by: Jackson Cooper-Driver <Jackson.Cooper-Driver@arm.com> Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20240213-arm64-sme-resume-v3-1-17e05e493471@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2024-02-20Revert "arm64: jump_label: use constraints "Si" instead of "i""Will Deacon
This reverts commit f9daab0ad01cf9d165dbbbf106ca4e61d06e7fe8. Geert reports that his particular GCC 5.5 vintage toolchain fails to build an arm64 defconfig because of this change: | arch/arm64/include/asm/jump_label.h:25:2: error: invalid 'asm': | invalid operand | asm goto( ^ Aopparently, this is something we claim to support, so let's revert back to the old jump label constraint for now while discussions about raising the minimum GCC version are ongoing. Reported-by: Geert Uytterhoeven <geert@linux-m68k.org> Link: https://lore.kernel.org/r/CAMuHMdX+6fnAf8Hm6EqYJPAjrrLO9T7c=Gu3S8V_pqjSDowJ6g@mail.gmail.com Signed-off-by: Will Deacon <will@kernel.org>
2024-02-19KVM: arm64: Add debugfs file for guest's ID registersMarc Zyngier
Debugging ID register setup can be a complicated affair. Give the kernel hacker a way to dump that state in an easy to parse way. Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240214131827.2856277-27-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-19KVM: arm64: Make FEAT_MOPS UNDEF if not advertised to the guestMarc Zyngier
We unconditionally enable FEAT_MOPS, which is obviously wrong. So let's only do that when it is advertised to the guest. Which means we need to rely on a per-vcpu HCRX_EL2 shadow register. Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Joey Gouly <joey.gouly@arm.com> Link: https://lore.kernel.org/r/20240214131827.2856277-25-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-19KVM: arm64: Move existing feature disabling over to FGU infrastructureMarc Zyngier
We already trap a bunch of existing features for the purpose of disabling them (MAIR2, POR, ACCDATA, SME...). Let's move them over to our brand new FGU infrastructure. Reviewed-by: Joey Gouly <joey.gouly@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240214131827.2856277-20-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-19KVM: arm64: Add Fine-Grained UNDEF tracking informationMarc Zyngier
In order to efficiently handle system register access being disabled, and this resulting in an UNDEF exception being injected, we introduce the (slightly dubious) concept of Fine-Grained UNDEF, modeled after the architectural Fine-Grained Traps. For each FGT group, we keep a 64 bit word that has the exact same bit assignment as the corresponding FGT register, where a 1 indicates that trapping this register should result in an UNDEF exception being reinjected. So far, nothing populates this information, nor sets the corresponding trap bits. Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240214131827.2856277-18-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-19KVM: arm64: Rename __check_nv_sr_forward() to triage_sysreg_trap()Marc Zyngier
__check_nv_sr_forward() is not specific to NV anymore, and does a lot more. Rename it to triage_sysreg_trap(), making it plain that its role is to handle where an exception is to be handled. Reviewed-by: Joey Gouly <joey.gouly@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240214131827.2856277-17-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-19KVM: arm64: Use the xarray as the primary sysreg/sysinsn walkerMarc Zyngier
Since we always start sysreg/sysinsn handling by searching the xarray, use it as the source of the index in the correct sys_reg_desc array. This allows some cleanup, such as moving the handling of unknown sysregs in a single location. Reviewed-by: Joey Gouly <joey.gouly@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240214131827.2856277-16-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-19KVM: arm64: Register AArch64 system register entries with the sysreg xarrayMarc Zyngier
In order to reduce the number of lookups that we have to perform when handling a sysreg, register each AArch64 sysreg descriptor with the global xarray. The index of the descriptor is stored as a 10 bit field in the data word. Subsequent patches will retrieve and use the stored index. Reviewed-by: Joey Gouly <joey.gouly@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240214131827.2856277-15-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-19KVM: arm64: nv: Add sanitising to VNCR-backed sysregsMarc Zyngier
VNCR-backed "registers" are actually only memory. Which means that there is zero control over what the guest can write, and that it is the hypervisor's job to actually sanitise the content of the backing store. Yeah, this is fun. In order to preserve some form of sanity, add a repainting mechanism that makes use of a per-VM set of RES0/RES1 masks, one pair per VNCR register. These masks get applied on access to the backing store via __vcpu_sys_reg(), ensuring that the state that is consumed by KVM is correct. So far, nothing populates these masks, but stay tuned. Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Joey Gouly <joey.gouly@arm.com> Link: https://lore.kernel.org/r/20240214131827.2856277-4-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-19KVM: arm64: Add feature checking helpersMarc Zyngier
In order to make it easier to check whether a particular feature is exposed to a guest, add a new set of helpers, with kvm_has_feat() being the most useful. Let's start making use of them in the PMU code (courtesy of Oliver). Follow-up changes will introduce additional use patterns. Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Co-developed--by: Oliver Upton <oliver.upton@linux.dev> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240214131827.2856277-3-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-19arm64: mm: Make PUD folding check in set_pud() a runtime checkArd Biesheuvel
When set_pud() is called on a 4-level paging build config that runs with 3 levels at runtime (which happens with 16k page size builds with support for LPA2), the updated entry is in fact a PGD in swapper_pg_dir[], and this is mapped read-only after boot. So in this case, the existing check needs to be performed as well, even though __PAGETABLE_PUD_FOLDED is not #define'd. So replace the #ifdef with a call to pgtable_l4_enabled(). Cc: Will Deacon <will@kernel.org> Cc: Marc Zyngier <maz@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20240216235944.3677178-2-ardb+git@google.com Reviewed-by: Itaru Kitayama <itaru.kitayama@fujitsu.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2024-02-16Merge tag 'arm64-fixes' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 fixes from Will Deacon: "It's a little busier than normal, but it's still not a lot of code and things seem fairly quiet in general: - Fix allocation failure during SVE coredumps - Fix handling of SVE context on signal delivery - Enable Neoverse N2 CPU errata workarounds for Microsoft's "Azure Cobalt 100" clone - Work around CMN PMU erratum in AmpereOneX implementation - Fix typo in CXL PMU event definition - Fix jump label asm constraints" * tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: arm64/sve: Lower the maximum allocation for the SVE ptrace regset arm64: Subscribe Microsoft Azure Cobalt 100 to ARM Neoverse N2 errata perf/arm-cmn: Workaround AmpereOneX errata AC04_MESH_1 (incorrect child count) arm64: jump_label: use constraints "Si" instead of "i" arm64: fix typo in comments perf: CXL: fix mismatched cpmu event opcode arm64/signal: Don't assume that TIF_SVE means we saved SVE state
2024-02-16arm64: mm: add support for WXN memory translation attributeArd Biesheuvel
The AArch64 virtual memory system supports a global WXN control, which can be enabled to make all writable mappings implicitly no-exec. This is a useful hardening feature, as it prevents mistakes in managing page table permissions from being exploited to attack the system. When enabled at EL1, the restrictions apply to both EL1 and EL0. EL1 is completely under our control, and has been cleaned up to allow WXN to be enabled from boot onwards. EL0 is not under our control, but given that widely deployed security features such as selinux or PaX already limit the ability of user space to create mappings that are writable and executable at the same time, the impact of enabling this for EL0 is expected to be limited. (For this reason, common user space libraries that have a legitimate need for manipulating executable code already carry fallbacks such as [0].) If enabled at compile time, the feature can still be disabled at boot if needed, by passing arm64.nowxn on the kernel command line. [0] https://github.com/libffi/libffi/blob/master/src/closures.c#L440 Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20240214122845.2033971-88-ardb+git@google.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2024-02-16arm64: mm: Add support for folding PUDs at runtimeArd Biesheuvel
In order to support LPA2 on 16k pages in a way that permits non-LPA2 systems to run the same kernel image, we have to be able to fall back to at most 48 bits of virtual addressing. Falling back to 48 bits would result in a level 0 with only 2 entries, which is suboptimal in terms of TLB utilization. So instead, let's fall back to 47 bits in that case. This means we need to be able to fold PUDs dynamically, similar to how we fold P4Ds for 48 bit virtual addressing on LPA2 with 4k pages. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20240214122845.2033971-81-ardb+git@google.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2024-02-16arm64: mm: Add 5 level paging support to fixmap and swapper handlingArd Biesheuvel
Add support for using 5 levels of paging in the fixmap, as well as in the kernel page table handling code which uses fixmaps internally. This also handles the case where a 5 level build runs on hardware that only supports 4 levels of paging. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20240214122845.2033971-79-ardb+git@google.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>