Age | Commit message (Collapse) | Author |
|
git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
Pull s390 updates from Alexander Gordeev:
- Fix the style of protected key API driver source: use x-mas tree for
all local variable declarations
- Rework protected key API driver to not use the struct pkey_protkey
and pkey_clrkey anymore. Both structures have a fixed size buffer,
but with the support of ECC protected key these buffers are not big
enough. Use dynamic buffers internally and transparently for
userspace
- Add support for a new 'non CCA clear key token' with ECC clear keys
supported: ECC P256, ECC P384, ECC P521, ECC ED25519 and ECC ED448.
This makes it possible to derive a protected key from the ECC clear
key input via PKEY_KBLOB2PROTK3 ioctl, while currently the only way
to derive is via PCKMO instruction
- The s390 PMU of PAI crypto and extension 1 NNPA counters use atomic_t
for reference counting. Replace this with the proper data type
refcount_t
- Select ARCH_SUPPORTS_INT128, but limit this to clang for now, since
gcc generates inefficient code, which may lead to stack overflows
- Replace one-element array with flexible-array member in struct
vfio_ccw_parent and refactor the rest of the code accordingly. Also,
prefer struct_size() over sizeof() open- coded versions
- Introduce OS_INFO_FLAGS_ENTRY pointing to a flags field and
OS_INFO_FLAG_REIPL_CLEAR flag that informs a dumper whether the
system memory should be cleared or not once dumped
- Fix a hang when a user attempts to remove a VFIO-AP mediated device
attached to a guest: add VFIO_DEVICE_GET_IRQ_INFO and
VFIO_DEVICE_SET_IRQS IOCTLs and wire up the VFIO bus driver callback
to request a release of the device
- Fix calculation for R_390_GOTENT relocations for modules
- Allow any user space process with CAP_PERFMON capability read and
display the CPU Measurement facility counter sets
- Rework large statically-defined per-CPU cpu_cf_events data structure
and replace it with dynamically allocated structures created when a
perf_event_open() system call is invoked or /dev/hwctr device is
accessed
* tag 's390-6.5-1' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux:
s390/cpum_cf: rework PER_CPU_DEFINE of struct cpu_cf_events
s390/cpum_cf: open access to hwctr device for CAP_PERFMON privileged process
s390/module: fix rela calculation for R_390_GOTENT
s390/vfio-ap: wire in the vfio_device_ops request callback
s390/vfio-ap: realize the VFIO_DEVICE_SET_IRQS ioctl
s390/vfio-ap: realize the VFIO_DEVICE_GET_IRQ_INFO ioctl
s390/pkey: add support for ecc clear key
s390/pkey: do not use struct pkey_protkey
s390/pkey: introduce reverse x-mas trees
s390/zcore: conditionally clear memory on reipl
s390/ipl: add REIPL_CLEAR flag to os_info
vfio/ccw: use struct_size() helper
vfio/ccw: replace one-element array with flexible-array member
s390: select ARCH_SUPPORTS_INT128
s390/pai_ext: replace atomic_t with refcount_t
s390/pai_crypto: replace atomic_t with refcount_t
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Ingo Molnar:
- Introduce cmpxchg128() -- aka. the demise of cmpxchg_double()
The cmpxchg128() family of functions is basically & functionally the
same as cmpxchg_double(), but with a saner interface.
Instead of a 6-parameter horror that forced u128 - u64/u64-halves
layout details on the interface and exposed users to complexity,
fragility & bugs, use a natural 3-parameter interface with u128
types.
- Restructure the generated atomic headers, and add kerneldoc comments
for all of the generic atomic{,64,_long}_t operations.
The generated definitions are much cleaner now, and come with
documentation.
- Implement lock_set_cmp_fn() on lockdep, for defining an ordering when
taking multiple locks of the same type.
This gets rid of one use of lockdep_set_novalidate_class() in the
bcache code.
- Fix raw_cpu_generic_try_cmpxchg() bug due to an unintended variable
shadowing generating garbage code on Clang on certain ARM builds.
* tag 'locking-core-2023-06-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (43 commits)
locking/atomic: scripts: fix ${atomic}_dec_if_positive() kerneldoc
percpu: Fix self-assignment of __old in raw_cpu_generic_try_cmpxchg()
locking/atomic: treewide: delete arch_atomic_*() kerneldoc
locking/atomic: docs: Add atomic operations to the driver basic API documentation
locking/atomic: scripts: generate kerneldoc comments
docs: scripts: kernel-doc: accept bitwise negation like ~@var
locking/atomic: scripts: simplify raw_atomic*() definitions
locking/atomic: scripts: simplify raw_atomic_long*() definitions
locking/atomic: scripts: split pfx/name/sfx/order
locking/atomic: scripts: restructure fallback ifdeffery
locking/atomic: scripts: build raw_atomic_long*() directly
locking/atomic: treewide: use raw_atomic*_<op>()
locking/atomic: scripts: add trivial raw_atomic*_<op>()
locking/atomic: scripts: factor out order template generation
locking/atomic: scripts: remove leftover "${mult}"
locking/atomic: scripts: remove bogus order parameter
locking/atomic: xtensa: add preprocessor symbols
locking/atomic: x86: add preprocessor symbols
locking/atomic: sparc: add preprocessor symbols
locking/atomic: sh: add preprocessor symbols
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
"Scheduler SMP load-balancer improvements:
- Avoid unnecessary migrations within SMT domains on hybrid systems.
Problem:
On hybrid CPU systems, (processors with a mixture of
higher-frequency SMT cores and lower-frequency non-SMT cores),
under the old code lower-priority CPUs pulled tasks from the
higher-priority cores if more than one SMT sibling was busy -
resulting in many unnecessary task migrations.
Solution:
The new code improves the load balancer to recognize SMT cores
with more than one busy sibling and allows lower-priority CPUs
to pull tasks, which avoids superfluous migrations and lets
lower-priority cores inspect all SMT siblings for the busiest
queue.
- Implement the 'runnable boosting' feature in the EAS balancer:
consider CPU contention in frequency, EAS max util & load-balance
busiest CPU selection.
This improves CPU utilization for certain workloads, while leaves
other key workloads unchanged.
Scheduler infrastructure improvements:
- Rewrite the scheduler topology setup code by consolidating it into
the build_sched_topology() helper function and building it
dynamically on the fly.
- Resolve the local_clock() vs. noinstr complications by rewriting
the code: provide separate sched_clock_noinstr() and
local_clock_noinstr() functions to be used in instrumentation code,
and make sure it is all instrumentation-safe.
Fixes:
- Fix a kthread_park() race with wait_woken()
- Fix misc wait_task_inactive() bugs unearthed by the -rt merge:
- Fix UP PREEMPT bug by unifying the SMP and UP implementations
- Fix task_struct::saved_state handling
- Fix various rq clock update bugs, unearthed by turning on the rq
clock debugging code.
- Fix the PSI WINDOW_MIN_US trigger limit, which was easy to trigger
by creating enough cgroups, by removing the warnign and restricting
window size triggers to PSI file write-permission or
CAP_SYS_RESOURCE.
- Propagate SMT flags in the topology when removing degenerate domain
- Fix grub_reclaim() calculation bug in the deadline scheduler code
- Avoid resetting the min update period when it is unnecessary, in
psi_trigger_destroy().
- Don't balance a task to its current running CPU in load_balance(),
which was possible on certain NUMA topologies with overlapping
groups.
- Fix the sched-debug printing of rq->nr_uninterruptible
Cleanups:
- Address various -Wmissing-prototype warnings, as a preparation to
(maybe) enable this warning in the future.
- Remove unused code
- Mark more functions __init
- Fix shadow-variable warnings"
* tag 'sched-core-2023-06-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (50 commits)
sched/core: Avoid multiple calling update_rq_clock() in __cfsb_csd_unthrottle()
sched/core: Avoid double calling update_rq_clock() in __balance_push_cpu_stop()
sched/core: Fixed missing rq clock update before calling set_rq_offline()
sched/deadline: Update GRUB description in the documentation
sched/deadline: Fix bandwidth reclaim equation in GRUB
sched/wait: Fix a kthread_park race with wait_woken()
sched/topology: Mark set_sched_topology() __init
sched/fair: Rename variable cpu_util eff_util
arm64/arch_timer: Fix MMIO byteswap
sched/fair, cpufreq: Introduce 'runnable boosting'
sched/fair: Refactor CPU utilization functions
cpuidle: Use local_clock_noinstr()
sched/clock: Provide local_clock_noinstr()
x86/tsc: Provide sched_clock_noinstr()
clocksource: hyper-v: Provide noinstr sched_clock()
clocksource: hyper-v: Adjust hv_read_tsc_page_tsc() to avoid special casing U64_MAX
x86/vdso: Fix gettimeofday masking
math64: Always inline u128 version of mul_u64_u64_shr()
s390/time: Provide sched_clock_noinstr()
loongarch: Provide noinstr sched_clock_read()
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
Pull s390 updates from Alexander Gordeev:
- Use correct type for size of memory allocated for ELF core header on
kernel crash.
- Fix insecure W+X mapping warning when KASAN shadow memory range is
not aligned on page boundary.
- Avoid allocation of short by one page KASAN shadow memory when the
original memory range is less than (PAGE_SIZE << 3).
- Fix virtual vs physical address confusion in physical memory
enumerator. It is not a real issue, since virtual and physical
addresses are currently the same.
- Set CONFIG_NET_TC_SKB_EXT=y in s390 config files as it is required
for offloading TC as well as bridges on switchdev capable ConnectX
devices.
* tag 's390-6.4-4' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux:
s390/defconfigs: set CONFIG_NET_TC_SKB_EXT=y
s390/boot: fix physmem_info virtual vs physical address confusion
s390/kasan: avoid short by one page shadow memory
s390/kasan: fix insecure W+X mapping warning
s390/crash: use the correct type for memory allocation
|
|
Struct cpu_cf_events is a large data structure and is statically defined
for each possible CPU. Rework this and replace it by dynamically
allocated data structures created when a perf_event_open() system call
is invoked or an access via character device /dev/hwctr takes place.
It is replaced by an array of pointers to all possible CPUs and
reference counting. The array of pointers is allocated when the first
event is created. For each online CPU an event is installed on, a struct
cpu_cf_events is allocated and a pointer to struct cpu_cf_events is
stored in the array:
CPU 0 1 2 3 ... N
+---+---+---+---+---+---+
cpu_cf_root::cpucf--> | * | | | |...| |
+-|-+---+---+---+---+---+
|
|
\|/
+-------------+
|cpu_cf_events|
| |
+-------------+
With this approach the large data structure is only allocated when
an event is actually installed and used.
Also implement proper reference counting for allocation and removal.
During interrupt processing make sure the pointer to cpu_cf_events
is valid. The interrupt handler is shared and might be called when
no event is active.
This requires checking for a valid pointer to struct cpu_cf_events.
When the pointer to the per-cpu cpu_cf_events is NULL, simply return.
Signed-off-by: Thomas Richter <tmricht@linux.ibm.com>
Acked-by: Sumanth Korikkar <sumanthk@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
The device /dev/hwctr was introduced to access complete
CPU Measurement facility counter sets via an ioctl system call.
The access the to device is limited to privileged processes
running as root or superuser. The capability CAP_SYS_ADMIN
is required. The device permissions are read/write for the
device owner root. There is no need for this restriction.
Make the device access permission read/write for all and
reduce the capabilities to CAP_PERFMON.
Any user space program with the CAP_PERFMON capability assigned to it
can now read and display the CPU Measurement facility counter sets.
For more details on perf tool usage and security, see linux
documentation in Documentation/admin-guide/perf-security.rst.
Signed-off-by: Thomas Richter <tmricht@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
During module load, module layout allocation occurs by initially
allowing the architecture to frob the sections. This is performed via
module_frob_arch_sections().
However, the size of each module memory types like text,data,rodata etc
are updated correctly only after layout_sections().
After calculation of required module memory sizes for each types,
move_module() is responsible for allocating the module memory for each
type from modules vaddr range.
Considering the sequence above, module_frob_arch_sections() updates the
module mod_arch_specific got_offset before module memory text type size
is fully updated in layout_sections(). Hence mod_arch_specific
got_offset points to currently zero.
As per s390 ABI,
R_390_GOTENT : (G + O + A - P) >> 1
where
G=me->mem[MOD_TEXT].base+me->arch.got_offset
O=info->got_offset
A=rela->r_addend
P=loc
fix R_390_GOTENT calculation in apply_rela().
Note: currently this doesn't break anything because me->arch.got_offset
is zero. However, reordering of functions in the future could break it.
Signed-off-by: Sumanth Korikkar <sumanthk@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
get_elfcorehdr_size() returns a size_t, so there is no real point to
store it in a u32.
Turn 'alloc_size' into a size_t.
Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Link: https://lore.kernel.org/r/0756118c9058338f3040edb91971d0bfd100027b.1686688212.git.christophe.jaillet@wanadoo.fr
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
In rare transient cases, not yet made possible, pte_offset_map() and
pte_offset_map_lock() may not find a page table: handle appropriately.
Add comment on mm's contract with s390 above __zap_zero_pages(),
and fix old comment there: must be called after THP was disabled.
Link: https://lkml.kernel.org/r/3ff29363-336a-9733-12a1-5c31a45c8aeb@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Alexandre Ghiti <alexghiti@rivosinc.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Claudio Imbrenda <imbrenda@linux.ibm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: John David Anglin <dave.anglin@bell.net>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Update the query struct such that secret-UVC related
information can be parsed.
Add sysfs files for these new values.
'supp_add_secret_req_ver' notes the supported versions for the
Add Secret UVC. Bit 0 indicates that version 0x100 is supported,
bit 1 indicates 0x200, and so on.
'supp_add_secret_pcf' notes the supported plaintext flags for
the Add Secret UVC.
'supp_secret_types' notes the supported types of secrets.
Bit 0 indicates secret type 1, bit 1 indicates type 2, and so on.
'max_secrets' notes the maximum amount of secrets the secret store can
store per pv guest.
Signed-off-by: Steffen Eiden <seiden@linux.ibm.com>
Reviewed-by: Janosch Frank <frankja@linux.ibm.com>
Link: https://lore.kernel.org/r/20230615100533.3996107-8-seiden@linux.ibm.com
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
Message-Id: <20230615100533.3996107-8-seiden@linux.ibm.com>
|
|
Replace scnprintf(page, PAGE_SIZE, ...) with the page size aware
sysfs_emit(buf, ...) which adds some sanity checks.
Signed-off-by: Steffen Eiden <seiden@linux.ibm.com>
Reviewed-by: Janosch Frank <frankja@linux.ibm.com>
Link: https://lore.kernel.org/r/20230615100533.3996107-7-seiden@linux.ibm.com
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
Message-Id: <20230615100533.3996107-7-seiden@linux.ibm.com>
|
|
KVM needs the struct's values to be able to provide PV support.
The uvdevice is currently guest only and will need the struct's values
for call support checking and potential future expansions.
As uv.c is only compiled with CONFIG_PGSTE or
CONFIG_PROTECTED_VIRTUALIZATION_GUEST we don't need a second check in
the code. Users of uv_info will need to fence for these two config
options for the time being.
Signed-off-by: Steffen Eiden <seiden@linux.ibm.com>
Reviewed-by: Janosch Frank <frankja@linux.ibm.com>
Link: https://lore.kernel.org/r/20230615100533.3996107-2-seiden@linux.ibm.com
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
Message-Id: <20230615100533.3996107-2-seiden@linux.ibm.com>
|
|
The init/main.c file contains some extern declarations for functions
defined in architecture code, and it defines some other functions that are
called from architecture code with a custom prototype. Both of those
result in warnings with 'make W=1':
init/calibrate.c:261:37: error: no previous prototype for 'calibrate_delay_is_known' [-Werror=missing-prototypes]
init/main.c:790:20: error: no previous prototype for 'mem_encrypt_init' [-Werror=missing-prototypes]
init/main.c:792:20: error: no previous prototype for 'poking_init' [-Werror=missing-prototypes]
arch/arm64/kernel/irq.c:122:13: error: no previous prototype for 'init_IRQ' [-Werror=missing-prototypes]
arch/arm64/kernel/time.c:55:13: error: no previous prototype for 'time_init' [-Werror=missing-prototypes]
arch/x86/kernel/process.c:935:13: error: no previous prototype for 'arch_post_acpi_subsys_init' [-Werror=missing-prototypes]
init/calibrate.c:261:37: error: no previous prototype for 'calibrate_delay_is_known' [-Werror=missing-prototypes]
kernel/fork.c:991:20: error: no previous prototype for 'arch_task_cache_init' [-Werror=missing-prototypes]
Add prototypes for all of these in include/linux/init.h or another
appropriate header, and remove the duplicate declarations from
architecture specific code.
[sfr@canb.auug.org.au: declare time_init_early()]
Link: https://lkml.kernel.org/r/20230519124311.5167221c@canb.auug.org.au
Link: https://lkml.kernel.org/r/20230517131102.934196-12-arnd@kernel.org
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Eric Paris <eparis@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Moore <paul@paul-moore.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rafael@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
cachestat is previously only wired in for x86 (and architectures using
the generic unistd.h table):
https://lore.kernel.org/lkml/20230503013608.2431726-1-nphamcs@gmail.com/
This patch wires cachestat in for all the other architectures.
[nphamcs@gmail.com: wire up cachestat for arm64]
Link: https://lkml.kernel.org/r/20230511092843.3896327-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20230510195806.2902878-1-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Tested-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k]
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Heiko Carstens <hca@linux.ibm.com> [s390]
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Chris Zankel <chris@zankel.net>
Cc: David S. Miller <davem@davemloft.net>
Cc: Helge Deller <deller@gmx.de>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Richard Henderson <richard.henderson@linaro.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
With the intent to provide local_clock_noinstr(), a variant of
local_clock() that's safe to be called from noinstr code (with the
assumption that any such code will already be non-preemptible),
prepare for things by providing a noinstr sched_clock_noinstr()
function.
Specifically, preempt_enable_*() calls out to schedule(), which upsets
noinstr validation efforts.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Tested-by: Michael Kelley <mikelley@microsoft.com> # Hyper-V
Link: https://lore.kernel.org/r/20230519102715.570170436@infradead.org
|
|
Now that there is a cross arch u128 and cmpxchg128(), use those
instead of the custom CDSG helper.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20230531132324.058821078@infradead.org
|
|
Introduce new OS_INFO_FLAGS_ENTRY to os_info pointing to the field
with bit flags.
Add OS_INFO_FLAGS_ENTRY upon dump_reipl shutdown action processing and
set OS_INFO_FLAG_REIPL_CLEAR flag indicating 'clear' sysfs attribute has
been set on the panicked system for specified ipl type. This flag can be
used to inform the dumper whether LOAD_CLEAR or LOAD_NORMAL diag308
subcode to be used for ipl after dumping the memory.
Signed-off-by: Mikhail Zaslonko <zaslonko@linux.ibm.com>
Acked-by: Alexander Gordeev <agordeev@linux.ibm.com>
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
Pull s390 fixes from Alexander Gordeev:
- Add check whether the required facilities are installed before using
the s390-specific ChaCha20 implementation
- Key blobs for s390 protected key interface IOCTLs commands
PKEY_VERIFYKEY2 and PKEY_VERIFYKEY3 may contain clear key material.
Zeroize copies of these keys in kernel memory after creating
protected keys
- Set CONFIG_INIT_STACK_NONE=y in defconfigs to avoid extra overhead of
initializing all stack variables by default
- Make sure that when a new channel-path is enabled all subchannels are
evaluated: with and without any devices connected on it
- When SMT thread CPUs are added to CPU topology masks the nr_cpu_ids
limit is not checked and could be exceeded. Respect the nr_cpu_ids
limit and avoid a warning when CONFIG_DEBUG_PER_CPU_MAPS is set
- The pointer to IPL Parameter Information Block is stored in the
absolute lowcore as a virtual address. Save it as the physical
address for later use by dump tools
- Fix a Queued Direct I/O (QDIO) problem on z/VM guests using QIOASSIST
with dedicated (pass through) QDIO-based devices such as FCP, real
OSA or HiperSockets
- s390's struct statfs and struct statfs64 contain padding, which
field-by-field copying does not set. Initialize the respective
structures with zeros before filling them and copying to userspace
- Grow s390 compat_statfs64, statfs and statfs64 structures f_spare
array member to cover padding and simplify things
- Remove obsolete SCHED_BOOK and SCHED_DRAWER configs
- Remove unneeded S390_CCW_IOMMU and S390_AP_IOM configs
* tag 's390-6.4-2' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux:
s390/iommu: get rid of S390_CCW_IOMMU and S390_AP_IOMMU
s390/Kconfig: remove obsolete configs SCHED_{BOOK,DRAWER}
s390/uapi: cover statfs padding by growing f_spare
statfs: enforce statfs[64] structure initialization
s390/qdio: fix do_sqbs() inline assembly constraint
s390/ipl: fix IPIB virtual vs physical address confusion
s390/topology: honour nr_cpu_ids when adding CPUs
s390/cio: include subchannels without devices also for evaluation
s390/defconfigs: set CONFIG_INIT_STACK_NONE=y
s390/pkey: zeroize key blobs
s390/crypto: use vector instructions only if available for ChaCha20
|
|
These functions are already marked as NOKPROBE to prevent recursion and
we have the same reason to blacklist them if rethook is used with fprobe,
since they are beyond the recursion-free region ftrace can guard.
Link: https://lore.kernel.org/all/20230517034510.15639-5-zegao@tencent.com/
Fixes: f3a112c0c40d ("x86,rethook,kprobes: Replace kretprobe with rethook on x86")
Signed-off-by: Ze Gao <zegao@tencent.com>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Cc: stable@vger.kernel.org
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
|
|
The pointer to IPL Parameter Information Block is stored
in the absolute lowcore for later use by dump tools. That
pointer is a virtual address, though it should be physical
instead.
Note, this does not fix a real issue, since virtual and
physical addresses are currently the same.
Suggested-by: Heiko Carstens <hca@linux.ibm.com>
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
When SMT thread CPUs are added to CPU masks the nr_cpu_ids
limit is not checked and could be exceeded. This leads to
a warning for example if CONFIG_DEBUG_PER_CPU_MAPS is set
and the command line parameter nr_cpus is set to 1.
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
The s390 PMU of PAI extension 1 NNPA counters uses atomic_t for
reference counting. Replace this with the proper data type
refcount_t.
No functional change.
Signed-off-by: Thomas Richter <tmricht@linux.ibm.com>
Acked-by: Sumanth Korikkar <sumanthk@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
The s390 PMU of PAI crypto counters uses atomic_t for reference
counting. Replace this with the proper data type refcount_t.
No functional change.
Signed-off-by: Thomas Richter <tmricht@linux.ibm.com>
Acked-by: Sumanth Korikkar <sumanthk@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
https://git.kernel.org/pub/scm/linux/kernel/git/kvms390/linux into HEAD
For 6.4
|
|
Fix a potential race in gmap_make_secure() and remove the last user of
follow_page() without FOLL_GET.
The old code is locking something it doesn't have a reference to, and
as explained by Jason and David in this discussion:
https://lore.kernel.org/linux-mm/Y9J4P%2FRNvY1Ztn0Q@nvidia.com/
it can lead to all kind of bad things, including the page getting
unmapped (MADV_DONTNEED), freed, reallocated as a larger folio and the
unlock_page() would target the wrong bit.
There is also another race with the FOLL_WRITE, which could race
between the follow_page() and the get_locked_pte().
The main point is to remove the last use of follow_page() without
FOLL_GET or FOLL_PIN, removing the races can be considered a nice
bonus.
Link: https://lore.kernel.org/linux-mm/Y9J4P%2FRNvY1Ztn0Q@nvidia.com/
Suggested-by: Jason Gunthorpe <jgg@nvidia.com>
Fixes: 214d9bbcd3a6 ("s390/mm: provide memory management functions for protected KVM guests")
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Message-Id: <20230428092753.27913-2-imbrenda@linux.ibm.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
Pull s390 updates from Vasily Gorbik:
- Add support for stackleak feature. Also allow specifying
architecture-specific stackleak poison function to enable faster
implementation. On s390, the mvc-based implementation helps decrease
typical overhead from a factor of 3 to just 25%
- Convert all assembler files to use SYM* style macros, deprecating the
ENTRY() macro and other annotations. Select ARCH_USE_SYM_ANNOTATIONS
- Improve KASLR to also randomize module and special amode31 code base
load addresses
- Rework decompressor memory tracking to support memory holes and
improve error handling
- Add support for protected virtualization AP binding
- Add support for set_direct_map() calls
- Implement set_memory_rox() and noexec module_alloc()
- Remove obsolete overriding of mem*() functions for KASAN
- Rework kexec/kdump to avoid using nodat_stack to call purgatory
- Convert the rest of the s390 code to use flexible-array member
instead of a zero-length array
- Clean up uaccess inline asm
- Enable ARCH_HAS_MEMBARRIER_SYNC_CORE
- Convert to using CONFIG_FUNCTION_ALIGNMENT and enable
DEBUG_FORCE_FUNCTION_ALIGN_64B
- Resolve last_break in userspace fault reports
- Simplify one-level sysctl registration
- Clean up branch prediction handling
- Rework CPU counter facility to retrieve available counter sets just
once
- Other various small fixes and improvements all over the code
* tag 's390-6.4-1' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (118 commits)
s390/stackleak: provide fast __stackleak_poison() implementation
stackleak: allow to specify arch specific stackleak poison function
s390: select ARCH_USE_SYM_ANNOTATIONS
s390/mm: use VM_FLUSH_RESET_PERMS in module_alloc()
s390: wire up memfd_secret system call
s390/mm: enable ARCH_HAS_SET_DIRECT_MAP
s390/mm: use BIT macro to generate SET_MEMORY bit masks
s390/relocate_kernel: adjust indentation
s390/relocate_kernel: use SYM* macros instead of ENTRY(), etc.
s390/entry: use SYM* macros instead of ENTRY(), etc.
s390/purgatory: use SYM* macros instead of ENTRY(), etc.
s390/kprobes: use SYM* macros instead of ENTRY(), etc.
s390/reipl: use SYM* macros instead of ENTRY(), etc.
s390/head64: use SYM* macros instead of ENTRY(), etc.
s390/earlypgm: use SYM* macros instead of ENTRY(), etc.
s390/mcount: use SYM* macros instead of ENTRY(), etc.
s390/crc32le: use SYM* macros instead of ENTRY(), etc.
s390/crc32be: use SYM* macros instead of ENTRY(), etc.
s390/crypto,chacha: use SYM* macros instead of ENTRY(), etc.
s390/amode31: use SYM* macros instead of ENTRY(), etc.
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull SMP cross-CPU function-call updates from Ingo Molnar:
- Remove diagnostics and adjust config for CSD lock diagnostics
- Add a generic IPI-sending tracepoint, as currently there's no easy
way to instrument IPI origins: it's arch dependent and for some major
architectures it's not even consistently available.
* tag 'smp-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
trace,smp: Trace all smp_function_call*() invocations
trace: Add trace_ipi_send_cpu()
sched, smp: Trace smp callback causing an IPI
smp: reword smp call IPI comment
treewide: Trace IPIs sent via smp_send_reschedule()
irq_work: Trace self-IPIs sent via arch_irq_work_raise()
smp: Trace IPIs sent via arch_send_call_function_ipi_mask()
sched, smp: Trace IPIs sent via send_call_function_single_ipi()
trace: Add trace_ipi_send_cpumask()
kernel/smp: Make csdlock_debug= resettable
locking/csd_lock: Remove per-CPU data indirection from CSD lock debugging
locking/csd_lock: Remove added data from CSD lock debugging
locking/csd_lock: Add Kconfig option for csd_debug default
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull objtool updates from Ingo Molnar:
- Mark arch_cpu_idle_dead() __noreturn, make all architectures &
drivers that did this inconsistently follow this new, common
convention, and fix all the fallout that objtool can now detect
statically
- Fix/improve the ORC unwinder becoming unreliable due to
UNWIND_HINT_EMPTY ambiguity, split it into UNWIND_HINT_END_OF_STACK
and UNWIND_HINT_UNDEFINED to resolve it
- Fix noinstr violations in the KCSAN code and the lkdtm/stackleak code
- Generate ORC data for __pfx code
- Add more __noreturn annotations to various kernel startup/shutdown
and panic functions
- Misc improvements & fixes
* tag 'objtool-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (52 commits)
x86/hyperv: Mark hv_ghcb_terminate() as noreturn
scsi: message: fusion: Mark mpt_halt_firmware() __noreturn
x86/cpu: Mark {hlt,resume}_play_dead() __noreturn
btrfs: Mark btrfs_assertfail() __noreturn
objtool: Include weak functions in global_noreturns check
cpu: Mark nmi_panic_self_stop() __noreturn
cpu: Mark panic_smp_self_stop() __noreturn
arm64/cpu: Mark cpu_park_loop() and friends __noreturn
x86/head: Mark *_start_kernel() __noreturn
init: Mark start_kernel() __noreturn
init: Mark [arch_call_]rest_init() __noreturn
objtool: Generate ORC data for __pfx code
x86/linkage: Fix padding for typed functions
objtool: Separate prefix code from stack validation code
objtool: Remove superfluous dead_end_function() check
objtool: Add symbol iteration helpers
objtool: Add WARN_INSN()
scripts/objdump-func: Support multiple functions
context_tracking: Fix KCSAN noinstr violation
objtool: Add stackleak instrumentation to uaccess safe list
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux
Pull module updates from Luis Chamberlain:
"The summary of the changes for this pull requests is:
- Song Liu's new struct module_memory replacement
- Nick Alcock's MODULE_LICENSE() removal for non-modules
- My cleanups and enhancements to reduce the areas where we vmalloc
module memory for duplicates, and the respective debug code which
proves the remaining vmalloc pressure comes from userspace.
Most of the changes have been in linux-next for quite some time except
the minor fixes I made to check if a module was already loaded prior
to allocating the final module memory with vmalloc and the respective
debug code it introduces to help clarify the issue. Although the
functional change is small it is rather safe as it can only *help*
reduce vmalloc space for duplicates and is confirmed to fix a bootup
issue with over 400 CPUs with KASAN enabled. I don't expect stable
kernels to pick up that fix as the cleanups would have also had to
have been picked up. Folks on larger CPU systems with modules will
want to just upgrade if vmalloc space has been an issue on bootup.
Given the size of this request, here's some more elaborate details:
The functional change change in this pull request is the very first
patch from Song Liu which replaces the 'struct module_layout' with a
new 'struct module_memory'. The old data structure tried to put
together all types of supported module memory types in one data
structure, the new one abstracts the differences in memory types in a
module to allow each one to provide their own set of details. This
paves the way in the future so we can deal with them in a cleaner way.
If you look at changes they also provide a nice cleanup of how we
handle these different memory areas in a module. This change has been
in linux-next since before the merge window opened for v6.3 so to
provide more than a full kernel cycle of testing. It's a good thing as
quite a bit of fixes have been found for it.
Jason Baron then made dynamic debug a first class citizen module user
by using module notifier callbacks to allocate / remove module
specific dynamic debug information.
Nick Alcock has done quite a bit of work cross-tree to remove module
license tags from things which cannot possibly be module at my request
so to:
a) help him with his longer term tooling goals which require a
deterministic evaluation if a piece a symbol code could ever be
part of a module or not. But quite recently it is has been made
clear that tooling is not the only one that would benefit.
Disambiguating symbols also helps efforts such as live patching,
kprobes and BPF, but for other reasons and R&D on this area is
active with no clear solution in sight.
b) help us inch closer to the now generally accepted long term goal
of automating all the MODULE_LICENSE() tags from SPDX license tags
In so far as a) is concerned, although module license tags are a no-op
for non-modules, tools which would want create a mapping of possible
modules can only rely on the module license tag after the commit
8b41fc4454e ("kbuild: create modules.builtin without
Makefile.modbuiltin or tristate.conf").
Nick has been working on this *for years* and AFAICT I was the only
one to suggest two alternatives to this approach for tooling. The
complexity in one of my suggested approaches lies in that we'd need a
possible-obj-m and a could-be-module which would check if the object
being built is part of any kconfig build which could ever lead to it
being part of a module, and if so define a new define
-DPOSSIBLE_MODULE [0].
A more obvious yet theoretical approach I've suggested would be to
have a tristate in kconfig imply the same new -DPOSSIBLE_MODULE as
well but that means getting kconfig symbol names mapping to modules
always, and I don't think that's the case today. I am not aware of
Nick or anyone exploring either of these options. Quite recently Josh
Poimboeuf has pointed out that live patching, kprobes and BPF would
benefit from resolving some part of the disambiguation as well but for
other reasons. The function granularity KASLR (fgkaslr) patches were
mentioned but Joe Lawrence has clarified this effort has been dropped
with no clear solution in sight [1].
In the meantime removing module license tags from code which could
never be modules is welcomed for both objectives mentioned above. Some
developers have also welcomed these changes as it has helped clarify
when a module was never possible and they forgot to clean this up, and
so you'll see quite a bit of Nick's patches in other pull requests for
this merge window. I just picked up the stragglers after rc3. LWN has
good coverage on the motivation behind this work [2] and the typical
cross-tree issues he ran into along the way. The only concrete blocker
issue he ran into was that we should not remove the MODULE_LICENSE()
tags from files which have no SPDX tags yet, even if they can never be
modules. Nick ended up giving up on his efforts due to having to do
this vetting and backlash he ran into from folks who really did *not
understand* the core of the issue nor were providing any alternative /
guidance. I've gone through his changes and dropped the patches which
dropped the module license tags where an SPDX license tag was missing,
it only consisted of 11 drivers. To see if a pull request deals with a
file which lacks SPDX tags you can just use:
./scripts/spdxcheck.py -f \
$(git diff --name-only commid-id | xargs echo)
You'll see a core module file in this pull request for the above, but
that's not related to his changes. WE just need to add the SPDX
license tag for the kernel/module/kmod.c file in the future but it
demonstrates the effectiveness of the script.
Most of Nick's changes were spread out through different trees, and I
just picked up the slack after rc3 for the last kernel was out. Those
changes have been in linux-next for over two weeks.
The cleanups, debug code I added and final fix I added for modules
were motivated by David Hildenbrand's report of boot failing on a
systems with over 400 CPUs when KASAN was enabled due to running out
of virtual memory space. Although the functional change only consists
of 3 lines in the patch "module: avoid allocation if module is already
present and ready", proving that this was the best we can do on the
modules side took quite a bit of effort and new debug code.
The initial cleanups I did on the modules side of things has been in
linux-next since around rc3 of the last kernel, the actual final fix
for and debug code however have only been in linux-next for about a
week or so but I think it is worth getting that code in for this merge
window as it does help fix / prove / evaluate the issues reported with
larger number of CPUs. Userspace is not yet fixed as it is taking a
bit of time for folks to understand the crux of the issue and find a
proper resolution. Worst come to worst, I have a kludge-of-concept [3]
of how to make kernel_read*() calls for modules unique / converge
them, but I'm currently inclined to just see if userspace can fix this
instead"
Link: https://lore.kernel.org/all/Y/kXDqW+7d71C4wz@bombadil.infradead.org/ [0]
Link: https://lkml.kernel.org/r/025f2151-ce7c-5630-9b90-98742c97ac65@redhat.com [1]
Link: https://lwn.net/Articles/927569/ [2]
Link: https://lkml.kernel.org/r/20230414052840.1994456-3-mcgrof@kernel.org [3]
* tag 'modules-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux: (121 commits)
module: add debugging auto-load duplicate module support
module: stats: fix invalid_mod_bytes typo
module: remove use of uninitialized variable len
module: fix building stats for 32-bit targets
module: stats: include uapi/linux/module.h
module: avoid allocation if module is already present and ready
module: add debug stats to help identify memory pressure
module: extract patient module check into helper
modules/kmod: replace implementation with a semaphore
Change DEFINE_SEMAPHORE() to take a number argument
module: fix kmemleak annotations for non init ELF sections
module: Ignore L0 and rename is_arm_mapping_symbol()
module: Move is_arm_mapping_symbol() to module_symbol.h
module: Sync code of is_arm_mapping_symbol()
scripts/gdb: use mem instead of core_layout to get the module address
interconnect: remove module-related code
interconnect: remove MODULE_LICENSE in non-modules
zswap: remove MODULE_LICENSE in non-modules
zpool: remove MODULE_LICENSE in non-modules
x86/mm/dump_pagetables: remove MODULE_LICENSE in non-modules
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core updates from Greg KH:
"Here is the large set of driver core changes for 6.4-rc1.
Once again, a busy development cycle, with lots of changes happening
in the driver core in the quest to be able to move "struct bus" and
"struct class" into read-only memory, a task now complete with these
changes.
This will make the future rust interactions with the driver core more
"provably correct" as well as providing more obvious lifetime rules
for all busses and classes in the kernel.
The changes required for this did touch many individual classes and
busses as many callbacks were changed to take const * parameters
instead. All of these changes have been submitted to the various
subsystem maintainers, giving them plenty of time to review, and most
of them actually did so.
Other than those changes, included in here are a small set of other
things:
- kobject logging improvements
- cacheinfo improvements and updates
- obligatory fw_devlink updates and fixes
- documentation updates
- device property cleanups and const * changes
- firwmare loader dependency fixes.
All of these have been in linux-next for a while with no reported
problems"
* tag 'driver-core-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (120 commits)
device property: make device_property functions take const device *
driver core: update comments in device_rename()
driver core: Don't require dynamic_debug for initcall_debug probe timing
firmware_loader: rework crypto dependencies
firmware_loader: Strip off \n from customized path
zram: fix up permission for the hot_add sysfs file
cacheinfo: Add use_arch[|_cache]_info field/function
arch_topology: Remove early cacheinfo error message if -ENOENT
cacheinfo: Check cache properties are present in DT
cacheinfo: Check sib_leaf in cache_leaves_are_shared()
cacheinfo: Allow early level detection when DT/ACPI info is missing/broken
cacheinfo: Add arm64 early level initializer implementation
cacheinfo: Add arch specific early level initializer
tty: make tty_class a static const structure
driver core: class: remove struct class_interface * from callbacks
driver core: class: mark the struct class in struct class_interface constant
driver core: class: make class_register() take a const *
driver core: class: mark class_release() as taking a const *
driver core: remove incorrect comment for device_create*
MIPS: vpe-cmp: remove module owner pointer from struct class usage.
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"ACPI:
- Improve error reporting when failing to manage SDEI on AGDI device
removal
Assembly routines:
- Improve register constraints so that the compiler can make use of
the zero register instead of moving an immediate #0 into a GPR
- Allow the compiler to allocate the registers used for CAS
instructions
CPU features and system registers:
- Cleanups to the way in which CPU features are identified from the
ID register fields
- Extend system register definition generation to handle Enum types
when defining shared register fields
- Generate definitions for new _EL2 registers and add new fields for
ID_AA64PFR1_EL1
- Allow SVE to be disabled separately from SME on the kernel
command-line
Tracing:
- Support for "direct calls" in ftrace, which enables BPF tracing for
arm64
Kdump:
- Don't bother unmapping the crashkernel from the linear mapping,
which then allows us to use huge (block) mappings and reduce TLB
pressure when a crashkernel is loaded.
Memory management:
- Try again to remove data cache invalidation from the coherent DMA
allocation path
- Simplify the fixmap code by mapping at page granularity
- Allow the kfence pool to be allocated early, preventing the rest of
the linear mapping from being forced to page granularity
Perf and PMU:
- Move CPU PMU code out to drivers/perf/ where it can be reused by
the 32-bit ARM architecture when running on ARMv8 CPUs
- Fix race between CPU PMU probing and pKVM host de-privilege
- Add support for Apple M2 CPU PMU
- Adjust the generic PERF_COUNT_HW_BRANCH_INSTRUCTIONS event
dynamically, depending on what the CPU actually supports
- Minor fixes and cleanups to system PMU drivers
Stack tracing:
- Use the XPACLRI instruction to strip PAC from pointers, rather than
rolling our own function in C
- Remove redundant PAC removal for toolchains that handle this in
their builtins
- Make backtracing more resilient in the face of instrumentation
Miscellaneous:
- Fix single-step with KGDB
- Remove harmless warning when 'nokaslr' is passed on the kernel
command-line
- Minor fixes and cleanups across the board"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (72 commits)
KVM: arm64: Ensure CPU PMU probes before pKVM host de-privilege
arm64: kexec: include reboot.h
arm64: delete dead code in this_cpu_set_vectors()
arm64/cpufeature: Use helper macro to specify ID register for capabilites
drivers/perf: hisi: add NULL check for name
drivers/perf: hisi: Remove redundant initialized of pmu->name
arm64/cpufeature: Consistently use symbolic constants for min_field_value
arm64/cpufeature: Pull out helper for CPUID register definitions
arm64/sysreg: Convert HFGITR_EL2 to automatic generation
ACPI: AGDI: Improve error reporting for problems during .remove()
arm64: kernel: Fix kernel warning when nokaslr is passed to commandline
perf/arm-cmn: Fix port detection for CMN-700
arm64: kgdb: Set PSTATE.SS to 1 to re-enable single-step
arm64: move PAC masks to <asm/pointer_auth.h>
arm64: use XPACLRI to strip PAC
arm64: avoid redundant PAC stripping in __builtin_return_address()
arm64/sme: Fix some comments of ARM SME
arm64/signal: Alloc tpidr2 sigframe after checking system_supports_tpidr2()
arm64/signal: Use system_supports_tpidr2() to check TPIDR2
arm64/idreg: Don't disable SME when disabling SVE
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timers and timekeeping updates from Thomas Gleixner:
- Improve the VDSO build time checks to cover all dynamic relocations
VDSO does not allow dynamic relocations, but the build time check is
incomplete and fragile.
It's based on architectures specifying the relocation types to search
for and does not handle R_*_NONE relocation entries correctly.
R_*_NONE relocations are injected by some GNU ld variants if they
fail to determine the exact .rel[a]/dyn_size to cover trailing zeros.
R_*_NONE relocations must be ignored by dynamic loaders, so they
should be ignored in the build time check too.
Remove the architecture specific relocation types to check for and
validate strictly that no other relocations than R_*_NONE end up in
the VSDO .so file.
- Prefer signal delivery to the current thread for
CLOCK_PROCESS_CPUTIME_ID based posix-timers
Such timers prefer to deliver the signal to the main thread of a
process even if the context in which the timer expires is the current
task. This has the downside that it might wake up an idle thread.
As there is no requirement or guarantee that the signal has to be
delivered to the main thread, avoid this by preferring the current
task if it is part of the thread group which shares sighand.
This not only avoids waking idle threads, it also distributes the
signal delivery in case of multiple timers firing in the context of
different threads close to each other better.
- Align the tick period properly (again)
For a long time the tick was starting at CLOCK_MONOTONIC zero, which
allowed users space applications to either align with the tick or to
place a periodic computation so that it does not interfere with the
tick. The alignement of the tick period was more by chance than by
intention as the tick is set up before a high resolution clocksource
is installed, i.e. timekeeping is still tick based and the tick
period advances from there.
The early enablement of sched_clock() broke this alignement as the
time accumulated by sched_clock() is taken into account when
timekeeping is initialized. So the base value now(CLOCK_MONOTONIC) is
not longer a multiple of tick periods, which breaks applications
which relied on that behaviour.
Cure this by aligning the tick starting point to the next multiple of
tick periods, i.e 1000ms/CONFIG_HZ.
- A set of NOHZ fixes and enhancements:
* Cure the concurrent writer race for idle and IO sleeptime
statistics
The statitic values which are exposed via /proc/stat are updated
from the CPU local idle exit and remotely by cpufreq, but that
happens without any form of serialization. As a consequence
sleeptimes can be accounted twice or worse.
Prevent this by restricting the accumulation writeback to the CPU
local idle exit and let the remote access compute the accumulated
value.
* Protect idle/iowait sleep time with a sequence count
Reading idle/iowait sleep time, e.g. from /proc/stat, can race
with idle exit updates. As a consequence the readout may result
in random and potentially going backwards values.
Protect this by a sequence count, which fixes the idle time
statistics issue, but cannot fix the iowait time problem because
iowait time accounting races with remote wake ups decrementing
the remote runqueues nr_iowait counter. The latter is impossible
to fix, so the only way to deal with that is to document it
properly and to remove the assertion in the selftest which
triggers occasionally due to that.
* Restructure struct tick_sched for better cache layout
* Some small cleanups and a better cache layout for struct
tick_sched
- Implement the missing timer_wait_running() callback for POSIX CPU
timers
For unknown reason the introduction of the timer_wait_running()
callback missed to fixup posix CPU timers, which went unnoticed for
almost four years.
While initially only targeted to prevent livelocks between a timer
deletion and the timer expiry function on PREEMPT_RT enabled kernels,
it turned out that fixing this for mainline is not as trivial as just
implementing a stub similar to the hrtimer/timer callbacks.
The reason is that for CONFIG_POSIX_CPU_TIMERS_TASK_WORK enabled
systems there is a livelock issue independent of RT.
CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y moves the expiry of POSIX CPU
timers out from hard interrupt context to task work, which is handled
before returning to user space or to a VM. The expiry mechanism moves
the expired timers to a stack local list head with sighand lock held.
Once sighand is dropped the task can be preempted and a task which
wants to delete a timer will spin-wait until the expiry task is
scheduled back in. In the worst case this will end up in a livelock
when the preempting task and the expiry task are pinned on the same
CPU.
The timer wheel has a timer_wait_running() mechanism for RT, which
uses a per CPU timer-base expiry lock which is held by the expiry
code and the task waiting for the timer function to complete blocks
on that lock.
This does not work in the same way for posix CPU timers as there is
no timer base and expiry for process wide timers can run on any task
belonging to that process, but the concept of waiting on an expiry
lock can be used too in a slightly different way.
Add a per task mutex to struct posix_cputimers_work, let the expiry
task hold it accross the expiry function and let the deleting task
which waits for the expiry to complete block on the mutex.
In the non-contended case this results in an extra
mutex_lock()/unlock() pair on both sides.
This avoids spin-waiting on a task which is scheduled out, prevents
the livelock and cures the problem for RT and !RT systems
* tag 'timers-core-2023-04-24' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
posix-cpu-timers: Implement the missing timer_wait_running callback
selftests/proc: Assert clock_gettime(CLOCK_BOOTTIME) VS /proc/uptime monotonicity
selftests/proc: Remove idle time monotonicity assertions
MAINTAINERS: Remove stale email address
timers/nohz: Remove middle-function __tick_nohz_idle_stop_tick()
timers/nohz: Add a comment about broken iowait counter update race
timers/nohz: Protect idle/iowait sleep time under seqcount
timers/nohz: Only ever update sleeptime from idle exit
timers/nohz: Restructure and reshuffle struct tick_sched
tick/common: Align tick period with the HZ tick.
selftests/timers/posix_timers: Test delivery of signals across threads
posix-timers: Prefer delivery of signals to the current thread
vdso: Improve cmd_vdso_check to check all dynamic relocations
|
|
Make use of the set_direct_map() calls for module allocations.
In particular:
- All changes to read-only permissions in kernel VA mappings are also
applied to the direct mapping. Note that execute permissions are
intentionally not applied to the direct mapping in order to make
sure that all allocated pages within the direct mapping stay
non-executable
- module_alloc() passes the VM_FLUSH_RESET_PERMS to __vmalloc_node_range()
to make sure that all implicit permission changes made to the direct
mapping are reset when the allocated vm area is freed again
Side effects: the direct mapping will be fragmented depending on how many
vm areas with VM_FLUSH_RESET_PERMS and/or explicit page permission changes
are allocated and freed again.
For example, just after boot of a system the direct mapping statistics look
like:
$cat /proc/meminfo
...
DirectMap4k: 111628 kB
DirectMap1M: 16665600 kB
DirectMap2G: 0 kB
Acked-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
|
|
s390 supports ARCH_HAS_SET_DIRECT_MAP, therefore wire up the
memfd_secret system call, which depends on it.
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
|
|
relocate_kernel.S seems to be the only assembler file which doesn't
follow the standard way of indentation. Adjust this for the sake of
consistency.
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
|
|
Consistently use the SYM* family of macros instead of the
deprecated ENTRY(), ENDPROC(), etc. family of macros.
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
|
|
Consistently use the SYM* family of macros instead of the
deprecated ENTRY(), ENDPROC(), etc. family of macros.
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
|
|
Consistently use the SYM* family of macros instead of the
deprecated ENTRY(), ENDPROC(), etc. family of macros.
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
|
|
Consistently use the SYM* family of macros instead of the
deprecated ENTRY(), ENDPROC(), etc. family of macros.
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
|
|
Consistently use the SYM* family of macros instead of the
deprecated ENTRY(), ENDPROC(), etc. family of macros.
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
|
|
Consistently use the SYM* family of macros instead of the
deprecated ENTRY(), ENDPROC(), etc. family of macros.
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
|
|
Consistently use the SYM* family of macros instead of the
deprecated ENTRY(), ENDPROC(), etc. family of macros.
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
|
|
Consistently use the SYM* family of macros instead of the
deprecated ENTRY(), ENDPROC(), etc. family of macros.
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
|
|
To allow calling of DAT-off code from kernel the stack needs
to be switched to nodat_stack (or other stack mapped as 1:1).
Before call_nodat() macro was introduced that was necessary
to provide the very same memory address for STNSM and STOSM
instructions. If the kernel would stay on a random stack
(e.g. a virtually mapped one) then a virtual address provided
for STNSM instruction could differ from the physical address
needed for the corresponding STOSM instruction.
After call_nodat() macro is introduced the kernel stack does
not need to be mapped 1:1 anymore, since the macro stores the
physical memory address of return PSW in a register before
entering DAT-off mode. This way the return LPSWE instruction
is able to pick the correct memory location and restore the
DAT-on mode. That however might fail in case the 16-byte return
PSW happened to cross page boundary: PSW mask and PSW address
could end up in two separate non-contiguous physical pages.
Align the return PSW on 16-byte boundary so it always fits
into a single physical page. As result any stack (including
the virtually mapped one) could be used for calling DAT-off
code and prior switching to nodat_stack becomes unnecessary.
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
|
|
Calling kdump kernel is a two-step process that involves
invocation of the purgatory code: first time - to verify
the new kernel checksum and second time - to call the new
kernel itself.
The purgatory code operates on real addresses and does not
expect any memory protection. Therefore, before the purgatory
code is entered the DAT mode is always turned off. However,
it is only restored upon return from the new kernel checksum
verification. In case the purgatory was called to start the
new kernel and failed the control is returned to the old
kernel, but the DAT mode continues staying off.
The new kernel start failure is unlikely and leads to the
disabled wait state anyway. Still that poses a risk, since
the kernel code in general is not DAT-off safe and even
calling the disabled_wait() function might crash.
Introduce call_nodat() macro that allows entering DAT-off
mode, calling an arbitrary function and restoring DAT mode
back on. Switch all invocations of DAT-off code to that
macro and avoid the above described scenario altogether.
Name the call_nodat() macro in small letters after the
already existing call_on_stack() and put it to the same
header file.
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
[hca@linux.ibm.com: some small modifications to call_nodat() macro]
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
|
|
Fix virtual vs physical address confusion (which currently are the same).
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
|
|
Avoid unnecessary run-time and compile-time type
conversions of do_start_kdump() function return
value and parameter.
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
|
|
The kernel code is not guaranteed DAT-off mode safe.
Turn the DAT mode off immediately before entering the
purgatory.
Further, to avoid subtle side effects reset the system
immediately before turning DAT mode off while making
all necessary preparations in advance.
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
|
|
Remove function validate_ctr_auth() and replace this very small
function by its body.
No functional change.
Signed-off-by: Thomas Richter <tmricht@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Acked-by: Sumanth Korikkar <sumanthk@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
|
|
Function validate_ctr_version() first parameter is a pointer to
a large structure, but only member hw_perf_event::config is used.
Supply this structure member value in the function invocation.
No functional change.
Signed-off-by: Thomas Richter <tmricht@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Acked-by: Sumanth Korikkar <sumanthk@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
|