summaryrefslogtreecommitdiff
path: root/arch/s390
AgeCommit message (Collapse)Author
2016-06-20s390/mm: remember the int code for the last gmap faultDavid Hildenbrand
For nested virtualization, we want to know if we are handling a protection exception, because these can directly be forwarded to the guest without additional checks. Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2016-06-20s390/mm: limit number of real-space gmap shadowsDavid Hildenbrand
We have no known user of real-space designation and only support it to be architecture compliant. Gmap shadows with real-space designation are never unshadowed automatically, as there is nothing to protect for the top level table. So let's simply limit the number of such shadows to one by removing existing ones on creation of another one. Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2016-06-20s390/mm: support real-space for gmap shadowsDavid Hildenbrand
We can easily support real-space designation just like EDAT1 and EDAT2. So guest2 can provide for guest3 an asce with the real-space control being set. We simply have to allocate the biggest page table possible and fake all levels. There is no protection to consider. If we exceed guest memory, vsie code will inject an addressing exception (via program intercept). In the future, we could limit the fake table level to the gmap page table. As the top level page table can never go away, such gmap shadows will never get unshadowed, we'll have to come up with another way to limit the number of kept gmap shadows. Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2016-06-20s390/mm: push rte protection down to shadow pteDavid Hildenbrand
Just like we already do with ste protection, let's take rte protection into account. This way, the host pte doesn't have to be mapped writable. Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2016-06-20s390/mm: support EDAT2 for gmap shadowsDavid Hildenbrand
If the guest is enabled for EDAT2, we can easily create shadows for guest2 -> guest3 provided tables that make use of EDAT2. If guest2 references a 2GB page, this memory looks consecutive for guest2, but it does not have to be so for us. Therefore we have to create fake segment and page tables. This works just like EDAT1 support, so page tables are removed when the parent table (r3t table entry) is changed. We don't hve to care about: - ACCF-Validity Control in RTTE - Access-Control Bits in RTTE - Fetch-Protection Bit in RTTE - Common-Region Bit in RTTE Just like for EDAT1, all bits might be dropped and there is no guaranteed that they are active. Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2016-06-20s390/mm: support EDAT1 for gmap shadowsDavid Hildenbrand
If the guest is enabled for EDAT1, we can easily create shadows for guest2 -> guest3 provided tables that make use of EDAT1. If guest2 references a 1MB page, this memory looks consecutive for guest2, but it might not be so for us. Therefore we have to create fake page tables. We can easily add that to our existing infrastructure. The invalidation mechanism will make sure that fake page tables are removed when the parent table (sgt table entry) is changed. As EDAT1 also introduced protection on all page table levels, we have to also shadow these correctly. We don't have to care about: - ACCF-Validity Control in STE - Access-Control Bits in STE - Fetch-Protection Bit in STE - Common-Segment Bit in STE As all bits might be dropped and there is no guaranteed that they are active ("unpredictable whether the CPU uses these bits", "may be used"). Without using EDAT1 in the shadow ourselfes (STE-format control == 0), simply shadowing these bits would not be enough. They would be ignored. Please note that we are using the "fake" flag to make this look consistent with further changes (EDAT2, real-space designation support) and don't let the shadow functions handle fc=1 stes. In the future, with huge pages in the host, gmap_shadow_pgt() could simply try to map a huge host page if "fake" is set to one and indicate via return value that no lower fake tables / shadow ptes are required. Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2016-06-20s390/mm: prepare for EDAT1/EDAT2 support in gmap shadowDavid Hildenbrand
In preparation for EDAT1/EDAT2 support for gmap shadows, we have to store the requested edat level in the gmap shadow. The edat level used during shadow translation is a property of the gmap shadow. Depending on that level, the gmap shadow will look differently for the same guest tables. We have to store it internally in order to support it later. Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2016-06-20s390/mm: push ste protection down to shadow pteDavid Hildenbrand
If a guest ste is read-only, it doesn't make sense to force the ptes in as writable in the host. If the source page is read-only in the host, it won't have to be made writable. Please note that if the source page is not available, it will still be faulted in writable. This can be changed internally later on. If ste protection is removed, underlying shadow tables are also removed, therefore this change does not affect the guest. Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2016-06-20s390/mm: take ipte_lock during shadow faultsDavid Hildenbrand
Let's take the ipte_lock while working on guest 2 provided page table, just like the other gaccess functions. Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2016-06-20s390/mm: protection exceptions are corrrectly shadowedDavid Hildenbrand
As gmap shadows contains correct protection permissions, protection exceptons can directly be forwarded to guest 3. If we would encounter a protection exception while faulting, the next guest 3 run will automatically handle that for us. Keep the dat_protection logic in place, as it will be helpful later. Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2016-06-20s390/mm: take the mmap_sem in kvm_s390_shadow_fault()David Hildenbrand
Instead of doing it in the caller, let's just take the mmap_sem in kvm_s390_shadow_fault(). By taking it as read, we allow parallel faulting on shadow page tables, gmap shadow code is prepared for that. Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2016-06-20s390/mm: fix races on gmap_shadow creationDavid Hildenbrand
Before any thread is allowed to use a gmap_shadow, it has to be fully initialized. However, for invalidation to work properly, we have to register the new gmap_shadow before we protect the parent gmap table. Because locking is tricky, and we have to avoid duplicate gmaps, let's introduce an initialized field, that signalizes other threads if that gmap_shadow can already be used or if they have to retry. Let's properly return errors using ERR_PTR() instead of simply returning NULL, so a caller can properly react on the error. Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2016-06-20s390/mm: avoid races on region/segment/page table shadowingDavid Hildenbrand
We have to unlock sg->guest_table_lock in order to call gmap_protect_rmap(). If we sleep just before that call, another VCPU might pick up that shadowed page table (while it is not protected yet) and use it. In order to avoid these races, we have to introduce a third state - "origin set but still invalid" for an entry. This way, we can avoid another thread already using the entry before the table is fully protected. As soon as everything is set up, we can clear the invalid bit - if we had no race with the unshadowing code. Suggested-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2016-06-20s390/mm: shadow pages with real guest requested protectionDavid Hildenbrand
We really want to avoid manually handling protection for nested virtualization. By shadowing pages with the protection the guest asked us for, the SIE can handle most protection-related actions for us (e.g. special handling for MVPG) and we can directly forward protection exceptions to the guest. PTEs will now always be shadowed with the correct _PAGE_PROTECT flag. Unshadowing will take care of any guest changes to the parent PTE and any host changes to the host PTE. If the host PTE doesn't have the fitting access rights or is not available, we have to fix it up. Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2016-06-20s390/mm: flush tlb of shadows in all situationsDavid Hildenbrand
For now, the tlb of shadow gmap is only flushed when the parent is removed, not when it is removed upfront. Therefore other shadow gmaps can reuse the tables without the tlb getting flushed. Fix this by simply flushing the tlb 1. Before the shadow tables are removed (analogouos to other unshadow functions) 2. When the gmap is freed and therefore the top level pages are freed. Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2016-06-20s390/mm: add kvm shadow fault functionMartin Schwidefsky
This patch introduces function kvm_s390_shadow_fault() used to resolve a fault on a shadow gmap. This function will do validity checking and build up the shadow page table hierarchy in order to fault in the requested page into the shadow page table structure. If an exception occurs while shadowing, guest 2 has to be notified about it using either an exception or a program interrupt intercept. If concurrent unshadowing occurres, this function will simply return with -EAGAIN and the caller has to retry. Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2016-06-20s390/mm: add shadow gmap supportMartin Schwidefsky
For a nested KVM guest the outer KVM host needs to create shadow page tables for the nested guest. This patch adds the basic support to the guest address space (gmap) code. For each guest address space the inner KVM host creates, the first outer KVM host needs to create shadow page tables. The address space is identified by the ASCE loaded into the control register 1 at the time the inner SIE instruction for the second nested KVM guest is executed. The outer KVM host creates the shadow tables starting with the table identified by the ASCE on a on-demand basis. The outer KVM host will get repeated faults for all the shadow tables needed to run the second KVM guest. While a shadow page table for the second KVM guest is active the access to the origin region, segment and page tables needs to be restricted for the first KVM guest. For region and segment and page tables the first KVM guest may read the memory, but write attempt has to lead to an unshadow. This is done using the page invalid and read-only bits in the page table of the first KVM guest. If the first guest re-accesses one of the origin pages of a shadow, it gets a fault and the affected parts of the shadow page table hierarchy needs to be removed again. PGSTE tables don't have to be shadowed, as all interpretation assist can't deal with the invalid bits in the shadow pte being set differently than the original ones provided by the first KVM guest. Many bug fixes and improvements by David Hildenbrand. Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2016-06-20s390/mm: add reference counter to gmap structureMartin Schwidefsky
Let's use a reference counter mechanism to control the lifetime of gmap structures. This will be needed for further changes related to gmap shadows. Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2016-06-20s390/mm: extended gmap pte notifierMartin Schwidefsky
The current gmap pte notifier forces a pte into to a read-write state. If the pte is invalidated the gmap notifier is called to inform KVM that the mapping will go away. Extend this approach to allow read-write, read-only and no-access as possible target states and call the pte notifier for any change to the pte. This mechanism is used to temporarily set specific access rights for a pte without doing the heavy work of a true mprotect call. Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2016-06-20s390/mm: use RCU for gmap notifier list and the per-mm gmap listMartin Schwidefsky
The gmap notifier list and the gmap list in the mm_struct change rarely. Use RCU to optimize the reader of these lists. Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2016-06-20s390/kvm: page table invalidation notifierMartin Schwidefsky
Pass an address range to the page table invalidation notifier for KVM. This allows to notify changes that affect a larger virtual memory area, e.g. for 1MB pages. Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2016-06-16s390/cpum_cf: use perf software context for hardware countersHendrik Brueckner
On s390, there are two different hardware PMUs for counting and sampling. Previously, both PMUs have shared the perf_hw_context which is not correct and, recently, results in this warning: ------------[ cut here ]------------ WARNING: CPU: 5 PID: 1 at kernel/events/core.c:8485 perf_pmu_register+0x420/0x428 Modules linked in: CPU: 5 PID: 1 Comm: swapper/0 Not tainted 4.7.0-rc1+ #2 task: 00000009c5240000 ti: 00000009c5234000 task.ti: 00000009c5234000 Krnl PSW : 0704c00180000000 0000000000220c50 (perf_pmu_register+0x420/0x428) R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:0 PM:0 RI:0 EA:3 Krnl GPRS: ffffffffffffffff 0000000000b15ac6 0000000000000000 00000009cb440000 000000000022087a 0000000000000000 0000000000b78fa0 0000000000000000 0000000000a9aa90 0000000000000084 0000000000000005 000000000088a97a 0000000000000004 0000000000749dd0 000000000022087a 00000009c5237cc0 Krnl Code: 0000000000220c44: a7f4ff54 brc 15,220aec 0000000000220c48: 92011000 mvi 0(%r1),1 #0000000000220c4c: a7f40001 brc 15,220c4e >0000000000220c50: a7f4ff12 brc 15,220a74 0000000000220c54: 0707 bcr 0,%r7 0000000000220c56: 0707 bcr 0,%r7 0000000000220c58: ebdff0800024 stmg %r13,%r15,128(%r15) 0000000000220c5e: a7f13fe0 tmll %r15,16352 Call Trace: ([<000000000022087a>] perf_pmu_register+0x4a/0x428) ([<0000000000b2c25c>] init_cpum_sampling_pmu+0x14c/0x1f8) ([<0000000000100248>] do_one_initcall+0x48/0x140) ([<0000000000b25d26>] kernel_init_freeable+0x1e6/0x2a0) ([<000000000072bda4>] kernel_init+0x24/0x138) ([<000000000073495e>] kernel_thread_starter+0x6/0xc) ([<0000000000734958>] kernel_thread_starter+0x0/0xc) Last Breaking-Event-Address: [<0000000000220c4c>] perf_pmu_register+0x41c/0x428 ---[ end trace 0c6ef9f5b771ad97 ]--- Using the perf_sw_context is an option because the cpum_cf PMU does not use interrupts. To make this more clear, initialize the capabilities in the PMU structure. Signed-off-by: Hendrik Brueckner <brueckner@linux.vnet.ibm.com> Suggested-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-06-16locking/atomic: Remove linux/atomic.h:atomic_fetch_or()Peter Zijlstra
Since all architectures have this implemented now natively, remove this dead code. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-arch@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-16locking/atomic, arch/s390: Implement atomic{,64}_fetch_{add,sub,and,or,xor}()Peter Zijlstra
Implement FETCH-OP atomic primitives, these are very similar to the existing OP-RETURN primitives we already have, except they return the value of the atomic variable _before_ modification. This is especially useful for irreversible operations -- such as bitops (because it becomes impossible to reconstruct the state prior to modification). Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-arch@vger.kernel.org Cc: linux-kernel@vger.kernel.org Cc: linux-s390@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-16KVM: s390: use kvm->created_vcpusPaolo Bonzini
The new created_vcpus field avoids possible races between enabling capabilities and creating VCPUs. Acked-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-06-15s390: remove math emulation codeHeiko Carstens
The last in-kernel user is gone so we can finally remove this code. Reviewed-by: Hendrik Brueckner <brueckner@linux.vnet.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-06-15s390: calculate loops_per_jiffies with fp instructionsHeiko Carstens
Implement calculation of loops_per_jiffies with fp instructions which are available on all 64 bit machines. To save and restore floating point register context use the new vx support functions. Reviewed-by: Hendrik Brueckner <brueckner@linux.vnet.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-06-15s390: Updated kernel config filesHendrik Brueckner
Signed-off-by: Hendrik Brueckner <brueckner@linux.vnet.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-06-15s390/crc32-vx: add crypto API module for optimized CRC-32 algorithmsHendrik Brueckner
Add a crypto API module to access the vector extension based CRC-32 implementations. Users can request the optimized implementation through the shash crypto API interface. Signed-off-by: Hendrik Brueckner <brueckner@linux.vnet.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-06-15Merge tag 'kvm-s390-next-4.8-1' of ↵Paolo Bonzini
git://git.kernel.org/pub/scm/linux/kernel/git/kvms390/linux into HEAD KVM: s390: Features and fixes for 4.8 part1 Four bigger things: 1. The implementation of the STHYI opcode in the kernel. This is used in libraries like qclib [1] to provide enough information for a capacity and usage based software licence pricing. The STHYI content is defined by the related z/VM documentation [2]. Its data can be composed by accessing several other interfaces provided by LPAR or the machine. This information is partially sensitive or root-only so the kernel does the necessary filtering. 2. Preparation for nested virtualization (VSIE). KVM should query the proper sclp interfaces for the availability of some features before using it. In the past we have been sloppy and simply assumed that several features are available. With this we should be able to handle most cases of a missing feature. 3. CPU model interfaces extended by some additional features that are not covered by a facility bit in STFLE. For example all the crypto instructions of the coprocessor provide a query function. As reality tends to be more complex (e.g. export regulations might block some algorithms) we have to provide additional interfaces to query or set these non-stfle features. 4. Several fixes and changes detected and fixed when doing 1-3. All features change base s390 code. All relevant patches have an ACK from the s390 or component maintainers. The next pull request for 4.8 (part2) will contain the implementation of VSIE. [1] http://www.ibm.com/developerworks/linux/linux390/qclib.html [2] https://www.ibm.com/support/knowledgecenter/SSB27U_6.3.0/com.ibm.zvm.v630.hcpb4/hcpb4sth.htm
2016-06-14s390/ptrace: run seccomp after ptraceKees Cook
Close the hole where ptrace can change a syscall out from under seccomp. Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: linux-s390@vger.kernel.org
2016-06-14seccomp: Add a seccomp_data parameter secure_computing()Andy Lutomirski
Currently, if arch code wants to supply seccomp_data directly to seccomp (which is generally much faster than having seccomp do it using the syscall_get_xyz() API), it has to use the two-phase seccomp hooks. Add it to the easy hooks, too. Cc: linux-arch@vger.kernel.org Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org>
2016-06-14s390/crc32-vx: use vector instructions to optimize CRC-32 computationHendrik Brueckner
Use vector instructions to optimize the computation of CRC-32 checksums. An optimized version is provided for CRC-32 (IEEE 802.3 Ethernet) in normal and bitreflected domain, as well as, for bitreflected CRC-32C (Castagnoli). Signed-off-by: Hendrik Brueckner <brueckner@linux.vnet.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-06-14s390/vx: add support functions for in-kernel FPU useHendrik Brueckner
Introduce the kernel_fpu_begin() and kernel_fpu_end() function to enclose any in-kernel use of FPU instructions and registers. In enclosed sections, you can perform floating-point or vector (SIMD) computations. The functions take care of saving and restoring FPU register contents and controls. For usage details, see the guidelines in arch/s390/include/asm/fpu/api.h Signed-off-by: Hendrik Brueckner <brueckner@linux.vnet.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-06-14s390/mm: fix compile for PAGE_DEFAULT_KEY != 0Heiko Carstens
The usual problem for code that is ifdef'ed out is that it doesn't compile after a while. That's also the case for the storage key initialisation code, if it would be used (set PAGE_DEFAULT_KEY to something not zero): ./arch/s390/include/asm/page.h: In function 'storage_key_init_range': ./arch/s390/include/asm/page.h:36:2: error: implicit declaration of function '__storage_key_init_range' Since the code itself has been useful for debugging purposes several times, remove the ifdefs and make sure the code gets compiler coverage. The cost for this is eight bytes. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-06-14locking/spinlock, arch: Update and fix spin_unlock_wait() implementationsPeter Zijlstra
This patch updates/fixes all spin_unlock_wait() implementations. The update is in semantics; where it previously was only a control dependency, we now upgrade to a full load-acquire to match the store-release from the spin_unlock() we waited on. This ensures that when spin_unlock_wait() returns, we're guaranteed to observe the full critical section we waited on. This fixes a number of spin_unlock_wait() users that (not unreasonably) rely on this. I also fixed a number of ticket lock versions to only wait on the current lock holder, instead of for a full unlock, as this is sufficient. Furthermore; again for ticket locks; I added an smp_rmb() in between the initial ticket load and the spin loop testing the current value because I could not convince myself the address dependency is sufficient, esp. if the loads are of different sizes. I'm more than happy to remove this smp_rmb() again if people are certain the address dependency does indeed work as expected. Note: PPC32 will be fixed independently Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: chris@zankel.net Cc: cmetcalf@mellanox.com Cc: davem@davemloft.net Cc: dhowells@redhat.com Cc: james.hogan@imgtec.com Cc: jejb@parisc-linux.org Cc: linux@armlinux.org.uk Cc: mpe@ellerman.id.au Cc: ralf@linux-mips.org Cc: realmz6@gmail.com Cc: rkuo@codeaurora.org Cc: rth@twiddle.net Cc: schwidefsky@de.ibm.com Cc: tony.luck@intel.com Cc: vgupta@synopsys.com Cc: ysato@users.sourceforge.jp Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-14KVM: S390: Fix typoAndrea Gelmini
Signed-off-by: Andrea Gelmini <andrea.gelmini@gelma.net> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-06-13s390/topology: remove z10 special handlingHeiko Carstens
I don't have a z10 to test this anymore, so I have no idea if the code works at all or even crashes. I can try to emulate, but it is just guess work. Nor do we know if the z10 special handling is performance wise still better than the generic handling. There have been a lot of changes to the scheduler. Therefore let's play safe and remove the special handling. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-06-13s390/topology: add drawer scheduling domain levelHeiko Carstens
The z13 machine added a fourth level to the cpu topology information. The new top level is called drawer. A drawer contains two books, which used to be the top level. Adding this additional scheduling domain did show performance improvements for some workloads of up to 8%, while there don't seem to be any workloads impacted in a negative way. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-06-13s390/ipl: rename diagnose enumsHeiko Carstens
Rename DIAG308_IPL and DIAG308_DUMP to DIAG308_LOAD_CLEAR and DIAG308_LOAD_NORMAL_DUMP to better reflect the associated IPL functions. Suggested-by: Cornelia Huck <cornelia.huck@de.ibm.com> Suggested-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Acked-by: Michael Holzheu <holzheu@linux.vnet.ibm.com> Reviewed-by: Peter Oberparleiter <oberpar@linux.vnet.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-06-13s390/ipl: use load normal for LPAR re-iplHeiko Carstens
Avoid clearing memory for CCW-type re-ipl within a logical partition. This can save a significant amount of time if a logical partition contains a lot of memory. On the other hand we still clear memory if running within a second level hypervisor, since the hypervisor can simply free all memory that was used for the guest. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Acked-by: Christian Borntraeger <borntraeger@de.ibm.com> Acked-by: Michael Holzheu <holzheu@linux.vnet.ibm.com> Reviewed-by: Peter Oberparleiter <oberpar@linux.vnet.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-06-13s390: avoid extable collisionsHeiko Carstens
We have some inline assemblies where the extable entry points to a label at the end of an inline assembly which is not followed by an instruction. On the other hand we have also inline assemblies where the extable entry points to the first instruction of an inline assembly. If a first type inline asm (extable point to empty label at the end) would be directly followed by a second type inline asm (extable points to first instruction) then we would have two different extable entries that point to the same instruction but would have a different target address. This can lead to quite random behaviour, depending on sorting order. I verified that we currently do not have such collisions within the kernel. However to avoid such subtle bugs add a couple of nop instructions to those inline assemblies which contain an extable that points to an empty label. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-06-13s390/uaccess: use __builtin_expect for get_user/put_userHeiko Carstens
We always expect that get_user and put_user return with zero. Give the compiler a hint so it can slightly optimize the code and avoid branches. This is the same what x86 got with commit a76cf66e948a ("x86/uaccess: Tell the compiler that uaccess is unlikely to fault"). Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-06-13s390/uaccess: fix whitespace damageHeiko Carstens
Fix some whitespace damage that was introduced by me with a query-replace when removing 31 bit support. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-06-13s390/pci: ensure to not cross a dma segment boundarySebastian Ott
When we use the iommu_area_alloc helper to get dma addresses we specify the boundary_size parameter but not the offset (called shift in this context). As long as the offset (start_dma) is a multiple of the boundary we're ok (on current machines start_dma always seems to be 4GB). Don't leave this to chance and specify the offset for iommu_area_alloc. Signed-off-by: Sebastian Ott <sebott@linux.vnet.ibm.com> Reviewed-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-06-13s390/pci: ensure page aligned dma start addressSebastian Ott
We don't have an architectural guarantee on the value of the dma offset but rely on it to be at least page aligned. Enforce page alignemt of start_dma. Signed-off-by: Sebastian Ott <sebott@linux.vnet.ibm.com> Reviewed-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-06-13s390: use SPARSE_IRQSebastian Ott
Use dynamically allocated irq descriptors on s390 which allows us to get rid of the s390 specific config option PCI_NR_MSI and exploit more MSI interrupts. Also the size of the kernel image is reduced by 131K (using performance_defconfig). Signed-off-by: Sebastian Ott <sebott@linux.vnet.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-06-13s390: use __section macro everywhereHeiko Carstens
Small cleanup patch to use the shorter __section macro everywhere. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-06-13s390: add proper __ro_after_init supportHeiko Carstens
On s390 __ro_after_init is currently mapped to __read_mostly which means that data marked as __ro_after_init will not be protected. Reason for this is that the common code __ro_after_init implementation is x86 centric: the ro_after_init data section was added to rodata, since x86 enables write protection to kernel text and rodata very late. On s390 we have write protection for these sections enabled with the initial page tables. So adding the ro_after_init data section to rodata does not work on s390. In order to make __ro_after_init work properly on s390 move the ro_after_init data, right behind rodata. Unlike the rodata section it will be marked read-only later after all init calls happened. This s390 specific implementation adds new __start_ro_after_init and __end_ro_after_init labels. Everything in between will be marked read-only after the init calls happened. In addition to the __ro_after_init data move also the exception table there, since from a practical point of view it fits the __ro_after_init requirements. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-06-13s390/mm: simplify the TLB flushing codeMartin Schwidefsky
ptep_flush_lazy and pmdp_flush_lazy use mm->context.attach_count to decide between a lazy TLB flush vs an immediate TLB flush. The field contains two 16-bit counters, the number of CPUs that have the mm attached and can create TLB entries for it and the number of CPUs in the middle of a page table update. The __tlb_flush_asce, ptep_flush_direct and pmdp_flush_direct functions use the attach counter and a mask check with mm_cpumask(mm) to decide between a local flush local of the current CPU and a global flush. For all these functions the decision between lazy vs immediate and local vs global TLB flush can be based on CPU masks. There are two masks: the mm->context.cpu_attach_mask with the CPUs that are actively using the mm, and the mm_cpumask(mm) with the CPUs that have used the mm since the last full flush. The decision between lazy vs immediate flush is based on the mm->context.cpu_attach_mask, to decide between local vs global flush the mm_cpumask(mm) is used. With this patch all checks will use the CPU masks, the old counter mm->context.attach_count with its two 16-bit values is turned into a single counter mm->context.flush_count that keeps track of the number of CPUs with incomplete page table updates. The sole user of this counter is finish_arch_post_lock_switch() which waits for the end of all page table updates. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>