Age | Commit message (Collapse) | Author |
|
Add a synchronize_rcu() after clearing the posted interrupt wakeup handler
to ensure all readers, i.e. in-flight IRQ handlers, see the new handler
before returning to the caller. If the caller is an exiting module and
is unregistering its handler, failure to wait could result in the IRQ
handler jumping into an unloaded module.
The registration path doesn't require synchronization, as it's the
caller's responsibility to not generate interrupts it cares about until
after its handler is registered.
Fixes: f6b3c72c2366 ("x86/irq: Define a global vector for VT-d Posted-Interrupts")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211009001107.3936588-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Currently AMD/Hygon do not populate l2c_id, this means that for SMT
enabled systems they report an L2 per thread. This is ofcourse not
true but was harmless so far.
However, since commit: 66558b730f25 ("sched: Add cluster scheduler
level for x86") the scheduler topology setup requires:
SMT <= L2 <= LLC
Which leads to noisy warnings and possibly weird behaviour on affected
chips.
Therefore change the topology generation such that if l2c_id is not
populated it follows the SMT topology, thereby satisfying the
constraint.
Fixes: 66558b730f25 ("sched: Add cluster scheduler level for x86")
Reported-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Tom Lendacky <thomas.lendacky@amd.com>
|
|
For bare-metal SGX on real hardware, the hardware provides guarantees
SGX state at reboot. For instance, all pages start out uninitialized.
The vepc driver provides a similar guarantee today for freshly-opened
vepc instances, but guests such as Windows expect all pages to be in
uninitialized state on startup, including after every guest reboot.
Some userspace implementations of virtual SGX would rather avoid having
to close and reopen the /dev/sgx_vepc file descriptor and re-mmap the
virtual EPC. For example, they could sandbox themselves after the guest
starts and forbid further calls to open(), in order to mitigate exploits
from untrusted guests.
Therefore, add a ioctl that does this with EREMOVE. Userspace can
invoke the ioctl to bring its vEPC pages back to uninitialized state.
There is a possibility that some pages fail to be removed if they are
SECS pages, and the child and SECS pages could be in separate vEPC
regions. Therefore, the ioctl returns the number of EREMOVE failures,
telling userspace to try the ioctl again after it's done with all
vEPC regions. A more verbose description of the correct usage and
the possible error conditions is documented in sgx.rst.
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lkml.kernel.org/r/20211021201155.1523989-3-pbonzini@redhat.com
|
|
For bare-metal SGX on real hardware, the hardware provides guarantees
SGX state at reboot. For instance, all pages start out uninitialized.
The vepc driver provides a similar guarantee today for freshly-opened
vepc instances, but guests such as Windows expect all pages to be in
uninitialized state on startup, including after every guest reboot.
One way to do this is to simply close and reopen the /dev/sgx_vepc file
descriptor and re-mmap the virtual EPC. However, this is problematic
because it prevents sandboxing the userspace (for example forbidding
open() after the guest starts; this is doable with heavy use of SCM_RIGHTS
file descriptor passing).
In order to implement this, we will need a ioctl that performs
EREMOVE on all pages mapped by a /dev/sgx_vepc file descriptor:
other possibilities, such as closing and reopening the device,
are racy.
Start the implementation by creating a separate function with just
the __eremove wrapper.
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lkml.kernel.org/r/20211021201155.1523989-2-pbonzini@redhat.com
|
|
The microcode loader has been looping through __start_builtin_fw down to
__end_builtin_fw to look for possibly built-in firmware for microcode
updates.
Now that the firmware loader code has exported an API for looping
through the kernel's built-in firmware section, use it and drop the x86
implementation in favor.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Link: https://lore.kernel.org/r/20211021155843.1969401-4-mcgrof@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Now that everything is mopped up, move all the helpers and prototypes into
the core header. They are not required by the outside.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211014230739.514095101@linutronix.de
|
|
xfeatures_mask_fpstate() is no longer valid when dynamically enabled
features come into play.
Rework restore_regs_from_fpstate() so it takes a constant mask which will
then be applied against the maximum feature set so that the restore
operation brings all features which are not in the xsave buffer xfeature
bitmap into init state.
This ensures that if the previous task used a dynamically enabled feature
that the task which restores has all unused components properly initialized.
Cleanup the last user of xfeatures_mask_fpstate() as well and remove it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211014230739.461348278@linutronix.de
|
|
Use the new fpu_user_cfg to retrieve the information instead of
xfeatures_mask_uabi() which will be no longer correct when dynamically
enabled features become available.
Using fpu_user_cfg is appropriate when setting XCOMP_BV in the
init_fpstate since it has space allocated for "max_features". But,
normal fpstates might only have space for default xfeatures. Since
XRSTOR* derives the format of the XSAVE buffer from XCOMP_BV, this can
lead to XRSTOR reading out of bounds.
So when copying actively used fpstate, simply read the XCOMP_BV features
bits directly out of the fpstate instead.
This correction courtesy of Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211014230739.408879849@linutronix.de
|
|
Currently, Linux probes for X86_BUG_NULL_SEL unconditionally which
makes it unsafe to migrate in a virtualised environment as the
properties across the migration pool might differ.
To be specific, the case which goes wrong is:
1. Zen1 (or earlier) and Zen2 (or later) in a migration pool
2. Linux boots on Zen2, probes and finds the absence of X86_BUG_NULL_SEL
3. Linux is then migrated to Zen1
Linux is now running on a X86_BUG_NULL_SEL-impacted CPU while believing
that the bug is fixed.
The only way to address the problem is to fully trust the "no longer
affected" CPUID bit when virtualised, because in the above case it would
be clear deliberately to indicate the fact "you might migrate to
somewhere which has this behaviour".
Zen3 adds the NullSelectorClearsBase CPUID bit to indicate that loading
a NULL segment selector zeroes the base and limit fields, as well as
just attributes. Zen2 also has this behaviour but doesn't have the NSCB
bit.
[ bp: Minor touchups. ]
Signed-off-by: Jane Malalane <jane.malalane@citrix.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
CC: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20211021104744.24126-1-jane.malalane@citrix.com
|
|
Move the feature mask storage to the kernel and user config
structs. Default and maximum feature set are the same for now.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211014230739.352041752@linutronix.de
|
|
Use the new kernel and user space config storage to store and retrieve the
XSTATE buffer sizes. The default and the maximum size are the same for now,
but will change when support for dynamically enabled features is added.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211014230739.296830097@linutronix.de
|
|
The size calculations are partially unreadable gunk. Clean them up.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211014230739.241223689@linutronix.de
|
|
Clean the function up before making changes.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211014230739.184014242@linutronix.de
|
|
Provide a struct to store information about the maximum supported and the
default feature set and buffer sizes for both user and kernel space.
This allows quick retrieval of this information for the upcoming support
for dynamically enabled features.
[ bp: Add vertical spacing between the struct members. ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211014230739.126107370@linutronix.de
|
|
When code running on the VC2 stack causes a nested VC exception, the
handler will not handle it as expected but goes again into the error
path.
The result is that the panic() call happening when the VC exception
was raised in an invalid context is called recursively. Fix this by
checking the interrupted stack too and only call panic if it is not
the VC2 stack.
[ bp: Fixup comment. ]
Fixes: 0786138c78e79 ("x86/sev-es: Add a Runtime #VC Exception Handler")
Reported-by: Xinyang Ge <xing@microsoft.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021080833.30875-3-joro@8bytes.org
|
|
The value of STACK_TYPE_EXCEPTION_LAST points to the last _valid_
exception stack. Reflect that in the check done in the
vc_switch_off_ist() function.
Fixes: a13644f3a53de ("x86/entry/64: Add entry code for #VC handler")
Reported-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021080833.30875-2-joro@8bytes.org
|
|
DM&P devices were not being properly identified, which resulted in
unneeded Spectre/Meltdown mitigations being applied.
The manufacturer states that these devices execute always in-order and
don't support either speculative execution or branch prediction, so
they are not vulnerable to this class of attack. [1]
This is something I've personally tested by a simple timing analysis
on my Vortex86MX CPU, and can confirm it is true.
Add identification for some devices that lack the CPUID product name
call, so they appear properly on /proc/cpuinfo.
¹https://www.ssv-embedded.de/doks/infos/DMP_Ann_180108_Meltdown.pdf
[ bp: Massage commit message. ]
Signed-off-by: Marcos Del Sol Vives <marcos@orca.pet>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211017094408.1512158-1-marcos@orca.pet
|
|
For dynamically enabled features it's required to get the features which
are enabled for that context when restoring from sigframe.
The same applies for all signal frame size calculations.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/87ilxz5iew.ffs@tglx
|
|
Prepare for dynamically enabled states per task. The function needs to
retrieve the features and sizes which are valid in a fpstate
context. Retrieve them from fpstate.
Move the function declarations to the core header as they are not
required anywhere else.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145323.233529986@linutronix.de
|
|
With dynamically enabled features the copy function must know the features
and the size which is valid for the task. Retrieve them from fpstate.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145323.181495492@linutronix.de
|
|
Straight forward conversion. No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145323.129699950@linutronix.de
|
|
With dynamically enabled features the sigframe code must know the features
which are enabled for the task. Get them from fpstate.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145323.077781448@linutronix.de
|
|
With variable feature sets XSAVE[S] requires to know the feature set for
which the buffer is valid. Retrieve it from fpstate.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145323.025695590@linutronix.de
|
|
Make use of fpstate::size in various places which require the buffer size
information for sanity checks or memcpy() sizing.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145322.973518954@linutronix.de
|
|
Add state size and feature mask information to the fpstate container. This
will be used for runtime checks with the upcoming support for dynamically
enabled features and dynamically sized buffers. That avoids conditionals
all over the place as the required information is accessible for both
default and extended buffers.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145322.921388806@linutronix.de
|
|
In preparation for dynamically enabled FPU features move the function
out of line as the goal is to expose less and not more information.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145322.869001791@linutronix.de
|
|
If fork fails early then the copied task struct would carry the fpstate
pointer of the parent task.
Not a problem right now, but later when dynamically allocated buffers
are available, keeping the pointer might result in freeing the
parent's buffer. Set it to NULL which prevents that. If fork reaches
clone_thread(), the pointer will be correctly set to the new task
context.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145322.817101108@linutronix.de
|
|
We don't need special hook for graph tracer entry point,
but instead we can use graph_ops::func function to install
the return_hooker.
This moves the graph tracing setup _before_ the direct
trampoline prepares the stack, so the return_hooker will
be called when the direct trampoline is finished.
This simplifies the code, because we don't need to take into
account the direct trampoline setup when preparing the graph
tracer hooker and we can allow function graph tracer on entries
registered with direct trampoline.
Link: https://lkml.kernel.org/r/20211008091336.33616-4-jolsa@kernel.org
[fixed compile error reported by kernel test robot <lkp@intel.com>]
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
All users converted. Remove it along with the sanity checks.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145322.765063318@linutronix.de
|
|
Convert the rest of the core code to the new register storage mechanism in
preparation for dynamically sized buffers.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145322.659456185@linutronix.de
|
|
Convert signal related code to the new register storage mechanism in
preparation for dynamically sized buffers.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145322.607370221@linutronix.de
|
|
Convert regset related code to the new register storage mechanism in
preparation for dynamically sized buffers.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145322.555239736@linutronix.de
|
|
In order to prepare for the support of dynamically enabled FPU features,
move the clearing of xstate components to the FPU core code.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: kvm@vger.kernel.org
Link: https://lkml.kernel.org/r/20211013145322.399567049@linutronix.de
|
|
Convert restore_fpregs_from_fpstate() and related code to the new
register storage mechanism in preparation for dynamically sized buffers.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145322.347395546@linutronix.de
|
|
Convert fpstate_init() and related code to the new register storage
mechanism in preparation for dynamically sized buffers.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145322.292157401@linutronix.de
|
|
New xfeatures will not longer be automatically stored in the regular XSAVE
buffer in thread_struct::fpu.
The kernel will provide the default sized buffer for storing the regular
features up to AVX512 in thread_struct::fpu and if a task requests to use
one of the new features then the register storage has to be extended.
The state will be accessed via a pointer in thread_struct::fpu which
defaults to the builtin storage and can be switched when extended storage
is required.
To avoid conditionals all over the code, create a new container for the
register storage which will gain other information, e.g. size, feature
masks etc., later. For now it just contains the register storage, which
gives it exactly the same layout as the exiting fpu::state.
Stick fpu::state and the new fpu::__fpstate into an anonymous union and
initialize the pointer. Add build time checks to validate that both are
at the same place and have the same size.
This allows step by step conversion of all users.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145322.234458659@linutronix.de
|
|
Similar to the copy from user function the FPU core has this already
implemented with all bells and whistles.
Get rid of the duplicated code and use the core functionality.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: kvm@vger.kernel.org
Link: https://lkml.kernel.org/r/20211015011539.244101845@linutronix.de
|
|
Replace open coded parsing of CPU nodes' 'reg' property with
of_get_cpu_hwid().
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: x86@kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Rob Herring <robh@kernel.org>
Link: https://lore.kernel.org/r/20211006164332.1981454-11-robh@kernel.org
|
|
I do not see panic calling rewind_stack_do_exit anywhere, nor can I
find anywhere in the history where doublefault_shim has called
rewind_stack_do_exit. So I don't think this comment was ever actually
correct.
Cc: Andy Lutomirski <luto@kernel.org>
Fixes: 7d8d8cfdee9a ("x86/doublefault/32: Rewrite the x86_32 #DF handler and unify with 64-bit")
Link: https://lkml.kernel.org/r/20211020174406.17889-1-ebiederm@xmission.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
To make upcoming changes for support of dynamically enabled features
simpler, provide a proper function for the exception handler which removes
exposure of FPU internals.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211015011540.053515012@linutronix.de
|
|
Now that the file is empty, fixup all references with the proper includes
and delete the former kitchen sink.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211015011540.001197214@linutronix.de
|
|
Move the global interfaces to api.h and the rest into the core.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211015011539.948837194@linutronix.de
|
|
Include the header which only provides the XCR accessors. That's all what
is needed here.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211015011539.896573039@linutronix.de
|
|
In order to remove internal.h make signal.h independent of it.
Include asm/fpu/xstate.h to fix a missing update_regset_xstate_info()
prototype, which is
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211015011539.844565975@linutronix.de
|
|
Move function declarations which need to be globally available to api.h
where they belong.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211015011539.792363754@linutronix.de
|
|
No need to expose that to code which only needs the XCR0 accessors.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211015011539.740012411@linutronix.de
|
|
Only used internally in the FPU core code.
While at it, convert to the percpu accessors which verify preemption is
disabled.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211015011539.686806639@linutronix.de
|
|
No point in being in global headers.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211015011539.628516182@linutronix.de
|
|
Nothing outside the core code requires them.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211015011539.572439164@linutronix.de
|
|
Nothing outside the core code needs these.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211015011539.513368075@linutronix.de
|