summaryrefslogtreecommitdiff
path: root/arch/x86/kvm
AgeCommit message (Collapse)Author
2025-02-27x86/bugs: Move the X86_FEATURE_USE_IBPB check into callersYosry Ahmed
indirect_branch_prediction_barrier() only performs the MSR write if X86_FEATURE_USE_IBPB is set, using alternative_msr_write(). In preparation for removing X86_FEATURE_USE_IBPB, move the feature check into the callers so that they can be addressed one-by-one, and use X86_FEATURE_IBPB instead to guard the MSR write. Signed-off-by: Yosry Ahmed <yosry.ahmed@linux.dev> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Josh Poimboeuf <jpoimboe@kernel.org> Acked-by: Sean Christopherson <seanjc@google.com> Link: https://lore.kernel.org/r/20250227012712.3193063-2-yosry.ahmed@linux.dev
2025-02-26KVM: Drop kvm_arch_sync_events() now that all implementations are nopsSean Christopherson
Remove kvm_arch_sync_events() now that x86 no longer uses it (no other arch has ever used it). No functional change intended. Signed-off-by: Sean Christopherson <seanjc@google.com> Acked-by: Claudio Imbrenda <imbrenda@linux.ibm.com> Reviewed-by: Bibo Mao <maobibo@loongson.cn> Message-ID: <20250224235542.2562848-8-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-02-26KVM: x86: Fold guts of kvm_arch_sync_events() into kvm_arch_pre_destroy_vm()Sean Christopherson
Fold the guts of kvm_arch_sync_events() into kvm_arch_pre_destroy_vm(), as the kvmclock and PIT background workers only need to be stopped before destroying vCPUs (to avoid accessing vCPUs as they are being freed); it's a-ok for them to be running while the VM is visible on the global vm_list. Note, the PIT also needs to be stopped before IRQ routing is freed (because KVM's IRQ routing is garbage and assumes there is always non-NULL routing). Opportunistically add comments to explain why KVM stops/frees certain assets early. Signed-off-by: Sean Christopherson <seanjc@google.com> Message-ID: <20250224235542.2562848-7-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-02-26KVM: x86: Unload MMUs during vCPU destruction, not beforeSean Christopherson
When destroying a VM, unload a vCPU's MMUs as part of normal vCPU freeing, instead of as a separate prepratory action. Unloading MMUs ahead of time is a holdover from commit 7b53aa565084 ("KVM: Fix vcpu freeing for guest smp"), which "fixed" a rather egregious flaw where KVM would attempt to free *all* MMU pages when destroying a vCPU. At the time, KVM would spin on all MMU pages in a VM when free a single vCPU, and so would hang due to the way KVM pins and zaps root pages (roots are invalidated but not freed if they are pinned by a vCPU). static void free_mmu_pages(struct kvm_vcpu *vcpu) { struct kvm_mmu_page *page; while (!list_empty(&vcpu->kvm->active_mmu_pages)) { page = container_of(vcpu->kvm->active_mmu_pages.next, struct kvm_mmu_page, link); kvm_mmu_zap_page(vcpu->kvm, page); } free_page((unsigned long)vcpu->mmu.pae_root); } Now that KVM doesn't try to free all MMU pages when destroying a single vCPU, there's no need to unpin roots prior to destroying a vCPU. Note! While KVM mostly destroys all MMUs before calling kvm_arch_destroy_vm() (see commit f00be0cae4e6 ("KVM: MMU: do not free active mmu pages in free_mmu_pages()")), unpinning MMU roots during vCPU destruction will unfortunately trigger remote TLB flushes, i.e. will try to send requests to all vCPUs. Happily, thanks to commit 27592ae8dbe4 ("KVM: Move wiping of the kvm->vcpus array to common code"), that's a non-issue as freed vCPUs are naturally skipped by xa_for_each_range(), i.e. by kvm_for_each_vcpu(). Prior to that commit, KVM x86 rather stupidly freed vCPUs one-by-one, and _then_ nullified them, one-by-one. I.e. triggering a VM-wide request would hit a use-after-free. Signed-off-by: Sean Christopherson <seanjc@google.com> Message-ID: <20250224235542.2562848-6-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-02-26KVM: x86: Don't load/put vCPU when unloading its MMU during teardownSean Christopherson
Don't load (and then put) a vCPU when unloading its MMU during VM destruction, as nothing in kvm_mmu_unload() accesses vCPU state beyond the root page/address of each MMU, i.e. can't possible need to run with the vCPU loaded. Signed-off-by: Sean Christopherson <seanjc@google.com> Message-ID: <20250224235542.2562848-5-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-02-26x86/bugs: KVM: Add support for SRSO_MSR_FIXBorislav Petkov
Add support for CPUID Fn8000_0021_EAX[31] (SRSO_MSR_FIX). If this bit is 1, it indicates that software may use MSR BP_CFG[BpSpecReduce] to mitigate SRSO. Enable BpSpecReduce to mitigate SRSO across guest/host boundaries. Switch back to enabling the bit when virtualization is enabled and to clear the bit when virtualization is disabled because using a MSR slot would clear the bit when the guest is exited and any training the guest has done, would potentially influence the host kernel when execution enters the kernel and hasn't VMRUN the guest yet. More detail on the public thread in Link below. Co-developed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20241202120416.6054-1-bp@kernel.org
2025-02-26KVM: nVMX: Process events on nested VM-Exit if injectable IRQ or NMI is pendingSean Christopherson
Process pending events on nested VM-Exit if the vCPU has an injectable IRQ or NMI, as the event may have become pending while L2 was active, i.e. may not be tracked in the context of vmcs01. E.g. if L1 has passed its APIC through to L2 and an IRQ arrives while L2 is active, then KVM needs to request an IRQ window prior to running L1, otherwise delivery of the IRQ will be delayed until KVM happens to process events for some other reason. The missed failure is detected by vmx_apic_passthrough_tpr_threshold_test in KVM-Unit-Tests, but has effectively been masked due to a flaw in KVM's PIC emulation that causes KVM to make spurious KVM_REQ_EVENT requests (and apparently no one ever ran the test with split IRQ chips). Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <seanjc@google.com> Message-ID: <20250224235542.2562848-3-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-02-26KVM: x86: Free vCPUs before freeing VM stateSean Christopherson
Free vCPUs before freeing any VM state, as both SVM and VMX may access VM state when "freeing" a vCPU that is currently "in" L2, i.e. that needs to be kicked out of nested guest mode. Commit 6fcee03df6a1 ("KVM: x86: avoid loading a vCPU after .vm_destroy was called") partially fixed the issue, but for unknown reasons only moved the MMU unloading before VM destruction. Complete the change, and free all vCPU state prior to destroying VM state, as nVMX accesses even more state than nSVM. In addition to the AVIC, KVM can hit a use-after-free on MSR filters: kvm_msr_allowed+0x4c/0xd0 __kvm_set_msr+0x12d/0x1e0 kvm_set_msr+0x19/0x40 load_vmcs12_host_state+0x2d8/0x6e0 [kvm_intel] nested_vmx_vmexit+0x715/0xbd0 [kvm_intel] nested_vmx_free_vcpu+0x33/0x50 [kvm_intel] vmx_free_vcpu+0x54/0xc0 [kvm_intel] kvm_arch_vcpu_destroy+0x28/0xf0 kvm_vcpu_destroy+0x12/0x50 kvm_arch_destroy_vm+0x12c/0x1c0 kvm_put_kvm+0x263/0x3c0 kvm_vm_release+0x21/0x30 and an upcoming fix to process injectable interrupts on nested VM-Exit will access the PIC: BUG: kernel NULL pointer dereference, address: 0000000000000090 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page CPU: 23 UID: 1000 PID: 2658 Comm: kvm-nx-lpage-re RIP: 0010:kvm_cpu_has_extint+0x2f/0x60 [kvm] Call Trace: <TASK> kvm_cpu_has_injectable_intr+0xe/0x60 [kvm] nested_vmx_vmexit+0x2d7/0xdf0 [kvm_intel] nested_vmx_free_vcpu+0x40/0x50 [kvm_intel] vmx_vcpu_free+0x2d/0x80 [kvm_intel] kvm_arch_vcpu_destroy+0x2d/0x130 [kvm] kvm_destroy_vcpus+0x8a/0x100 [kvm] kvm_arch_destroy_vm+0xa7/0x1d0 [kvm] kvm_destroy_vm+0x172/0x300 [kvm] kvm_vcpu_release+0x31/0x50 [kvm] Inarguably, both nSVM and nVMX need to be fixed, but punt on those cleanups for the moment. Conceptually, vCPUs should be freed before VM state. Assets like the I/O APIC and PIC _must_ be allocated before vCPUs are created, so it stands to reason that they must be freed _after_ vCPUs are destroyed. Reported-by: Aaron Lewis <aaronlewis@google.com> Closes: https://lore.kernel.org/all/20240703175618.2304869-2-aaronlewis@google.com Cc: Jim Mattson <jmattson@google.com> Cc: Yan Zhao <yan.y.zhao@intel.com> Cc: Rick P Edgecombe <rick.p.edgecombe@intel.com> Cc: Kai Huang <kai.huang@intel.com> Cc: Isaku Yamahata <isaku.yamahata@intel.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-ID: <20250224235542.2562848-2-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-02-25KVM: SVM: Add Idle HLT intercept supportManali Shukla
Add support for "Idle HLT" interception on AMD CPUs, and enable Idle HLT interception instead of "normal" HLT interception for all VMs for which HLT-exiting is enabled. Idle HLT provides a mild performance boost for all VM types, by avoiding a VM-Exit in the scenario where KVM would immediately "wake" and resume the vCPU. Idle HLT makes HLT-exiting conditional on the vCPU not having a valid, unmasked interrupt. Specifically, a VM-Exit occurs on execution of HLT if and only if there are no pending V_IRQ or V_NMI events. Note, Idle is a replacement for full HLT interception, i.e. enabling HLT interception would result in all HLT instructions causing unconditional VM-Exits. Per the APM: When both HLT and Idle HLT intercepts are active at the same time, the HLT intercept takes priority. This intercept occurs only if a virtual interrupt is not pending (V_INTR or V_NMI). For KVM's use of V_IRQ (also called V_INTR in the APM) to detect interrupt windows, the net effect of enabling Idle HLT is that, if a virtual interupt is pending and unmasked at the time of HLT, the vCPU will take a V_IRQ intercept instead of a HLT intercept. When AVIC is enabled, Idle HLT works as intended: the vCPU continues unimpeded and services the pending virtual interrupt. Note, the APM's description of V_IRQ interaction with AVIC is quite confusing, and requires piecing together implied behavior. Per the APM, when AVIC is enabled, V_IRQ *from the VMCB* is ignored: When AVIC mode is enabled for a virtual processor, the V_IRQ, V_INTR_PRIO, V_INTR_VECTOR, and V_IGN_TPR fields in the VMCB are ignored. Which seems to contradict the behavior of Idle HLT: This intercept occurs only if a virtual interrupt is not pending (V_INTR or V_NMI). What's not explicitly stated is that hardware's internal copy of V_IRQ (and related fields) *are* still active, i.e. are presumably used to cache information from the virtual APIC. Handle Idle HLT exits as if they were normal HLT exits, e.g. don't try to optimize the handling under the assumption that there isn't a pending IRQ. Irrespective of AVIC, Idle HLT is inherently racy with respect to the vIRR, as KVM can set vIRR bits asychronously. No changes are required to support KVM's use Idle HLT while running L2. In fact, supporting Idle HLT is actually a bug fix to some extent. If L1 wants to intercept HLT, recalc_intercepts() will enable HLT interception in vmcb02 and forward the intercept to L1 as normal. But if L1 does not want to intercept HLT, then KVM will run L2 with Idle HLT enabled and HLT interception disabled. If a V_IRQ or V_NMI for L2 becomes pending and L2 executes HLT, then use of Idle HLT will do the right thing, i.e. not #VMEXIT and instead deliver the virtual event. KVM currently doesn't handle this scenario correctly, e.g. doesn't check V_IRQ or V_NMI in vmcs02 as part of kvm_vcpu_has_events(). Do not expose Idle HLT to L1 at this time, as supporting nested Idle HLT is more complex than just enumerating the feature, e.g. requires KVM to handle the aforementioned scenarios of V_IRQ and V_NMI at the time of exit. Signed-off-by: Manali Shukla <Manali.Shukla@amd.com> Reviewed-by: Nikunj A Dadhania <nikunj@amd.com> Link: https://bugzilla.kernel.org/attachment.cgi?id=306250 Link: https://lore.kernel.org/r/20250128124812.7324-3-manali.shukla@amd.com [sean: rewrite changelog, drop nested "support"] Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-25KVM: SVM: Provide helpers to set the error codeMelody Wang
Provide helpers to set the error code when converting VMGEXIT SW_EXITINFO1 and SW_EXITINFO2 codes from plain numbers to proper defines. Add comments for better code readability. No functionality changed. Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Melody Wang <huibo.wang@amd.com> Link: https://lore.kernel.org/r/20250225213937.2471419-3-huibo.wang@amd.com [sean: tweak comments, fix formatting goofs] Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-25KVM: SVM: Convert plain error code numbers to definesMelody Wang
Convert VMGEXIT SW_EXITINFO1 codes from plain numbers to proper defines. Opportunistically update the comment for the malformed input "sub-error" codes to state that they are defined by the GHCB, and to capure the relationship to the malformed input response. No functional change intended. Signed-off-by: Melody Wang <huibo.wang@amd.com> Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Pavan Kumar Paluri <papaluri@amd.com> Link: https://lore.kernel.org/r/20250225213937.2471419-2-huibo.wang@amd.com [sean: update comments] Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-25KVM: VMX: Pass XFD_ERR as pseudo-payload when injecting #NMSean Christopherson
Pass XFD_ERR via KVM's exception payload mechanism when injecting an #NM after interception so that XFD_ERR can be propagated to FRED's event_data field without needing a dedicated field (which would need to be migrated). For non-FRED vCPUs, this is a glorified NOP as kvm_deliver_exception_payload() will simply do nothing (which is desirable and correct). Signed-off-by: Xin Li (Intel) <xin@zytor.com> Tested-by: Shan Kang <shan.kang@intel.com> Link: https://lore.kernel.org/r/20241001050110.3643764-15-xin@zytor.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-25KVM: VMX: Don't modify guest XFD_ERR if CR0.TS=1Sean Christopherson
Don't update the guest's XFD_ERR MSR if CR0.TS is set; per the SDM, XFD_ERR is not modified if CR0.TS=1. Although it's not explicitly stated in the SDM, conceptually it makes sense the CR0.TS check would be done prior to the XFD_ERR check, e.g. CR0.TS=1 blocks all SIMD state, whereas XFD blocks only XTILE state. Device-not-available exceptions that are not due to XFD - those resulting from setting CR0.TS to 1 - do not modify the IA32_XFD_ERR MSR. Opportunistically update the comment to call out that XFD_ERR is updated before the VM-Exit check occurs. Nothing in the SDM explicitly calls out this behavior, but logically it must be the behavior, otherwise reading XFD_ERR in handle_nm_fault_irqoff() would return stale data, i.e. the to-be-delivered XFD_ERR value would need to be saved in EXIT_QUALIFICATION, a la DR6 for #DB and CR2 for #PF, so that software could capture the guest value. Fixes: ec5be88ab29f ("kvm: x86: Intercept #NM for saving IA32_XFD_ERR") Signed-off-by: Xin Li (Intel) <xin@zytor.com> Tested-by: Shan Kang <shan.kang@intel.com> Link: https://lore.kernel.org/r/20241001050110.3643764-3-xin@zytor.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-25KVM: x86: Use a dedicated flow for queueing re-injected exceptionsSean Christopherson
Open code the filling of vcpu->arch.exception in kvm_requeue_exception() instead of bouncing through kvm_multiple_exception(), as re-injection doesn't actually share that much code with "normal" injection, e.g. the VM-Exit interception check, payload delivery, and nested exception code is all bypassed as those flows only apply during initial injection. When FRED comes along, the special casing will only get worse, as FRED explicitly tracks nested exceptions and essentially delivers the payload on the stack frame, i.e. re-injection will need more inputs, and normal injection will have yet more code that needs to be bypassed when KVM is re-injecting an exception. No functional change intended. Signed-off-by: Xin Li (Intel) <xin@zytor.com> Tested-by: Shan Kang <shan.kang@intel.com> Link: https://lore.kernel.org/r/20241001050110.3643764-2-xin@zytor.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-25KVM: x86: Rename and invert async #PF's send_user_only flag to send_alwaysSean Christopherson
Rename send_user_only to avoid "user", because KVM's ABI is to not inject page faults into CPL0, whereas "user" in x86 is specifically CPL3. Invert the polarity to keep the naming simple and unambiguous. E.g. while KVM often refers to CPL0 as "kernel", that terminology isn't ubiquitous, and "send_kernel" could be misconstrued as "send only to kernel". Link: https://lore.kernel.org/r/20250215010609.1199982-3-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-25KVM: x86: Don't inject PV async #PF if SEND_ALWAYS=0 and guest state is ↵Sean Christopherson
protected Don't inject PV async #PFs into guests with protected register state, i.e. SEV-ES and SEV-SNP guests, unless the guest has opted-in to receiving #PFs at CPL0. For protected guests, the actual CPL of the guest is unknown. Note, no sane CoCo guest should enable PV async #PF, but the current state of Linux-as-a-CoCo-guest isn't entirely sane. Fixes: add5e2f04541 ("KVM: SVM: Add support for the SEV-ES VMSA") Link: https://lore.kernel.org/r/20250215010609.1199982-2-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-25KVM: x86: Update Xen TSC leaves during CPUID emulationFred Griffoul
The Xen emulation in KVM modifies certain CPUID leaves to expose TSC information to the guest. Previously, these CPUID leaves were updated whenever guest time changed, but this conflicts with KVM_SET_CPUID/KVM_SET_CPUID2 ioctls which reject changes to CPUID entries on running vCPUs. Fix this by updating the TSC information directly in the CPUID emulation handler instead of modifying the vCPU's CPUID entries. Signed-off-by: Fred Griffoul <fgriffo@amazon.co.uk> Reviewed-by: Paul Durrant <paul@xen.org> Reviewed-by: David Woodhouse <dwmw@amazon.co.uk> Link: https://lore.kernel.org/r/20250124150539.69975-1-fgriffo@amazon.co.uk Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-24KVM: nVMX: Synthesize nested VM-Exit for supported emulation interceptsSean Christopherson
When emulating an instruction on behalf of L2 that L1 wants to intercept, generate a nested VM-Exit instead of injecting a #UD into L2. Now that (most of) the necessary information is available, synthesizing a VM-Exit isn't terribly difficult. Punt on decoding the ModR/M for descriptor table exits for now. There is no evidence that any hypervisor intercepts descriptor table accesses *and* uses the EXIT_QUALIFICATION to expedite emulation, i.e. it's not worth delaying basic support for. To avoid doing more harm than good, e.g. by putting L2 into an infinite or effectively corrupting its code stream, inject #UD if the instruction length is nonsensical. Link: https://lore.kernel.org/r/20250201015518.689704-11-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-24KVM: nVMX: Allow the caller to provide instruction length on nested VM-ExitSean Christopherson
Rework the nested VM-Exit helper to take the instruction length as a parameter, and convert nested_vmx_vmexit() into a "default" wrapper that grabs the length from vmcs02 as appropriate. This will allow KVM to set the correct instruction length when synthesizing a nested VM-Exit when emulating an instruction that L1 wants to intercept. No functional change intended, as the path to prepare_vmcs12()'s reading of vmcs02.VM_EXIT_INSTRUCTION_LEN is gated on the same set of conditions as the VMREAD in the new nested_vmx_vmexit(). Link: https://lore.kernel.org/r/20250201015518.689704-10-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-24KVM: x86: Add a #define for the architectural max instruction lengthSean Christopherson
Add a #define to capture x86's architecturally defined max instruction length instead of open coding the literal in a variety of places. No functional change intended. Link: https://lore.kernel.org/r/20250201015518.689704-9-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-24KVM: x86: Plumb the emulator's starting RIP into nested intercept checksSean Christopherson
When checking for intercept when emulating an instruction on behalf of L2, pass the emulator's view of the RIP of the instruction being emulated to vendor code. Unlike SVM, which communicates the next RIP on VM-Exit, VMX communicates the length of the instruction that generated the VM-Exit, i.e. requires the current and next RIPs. Note, unless userspace modifies RIP during a userspace exit that requires completion, kvm_rip_read() will contain the same information. Pass the emulator's view largely out of a paranoia, and because there is no meaningful cost in doing so. Link: https://lore.kernel.org/r/20250201015518.689704-8-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-24KVM: x86: Plumb the src/dst operand types through to .check_intercept()Sean Christopherson
When checking for intercept when emulating an instruction on behalf of L2, forward the source and destination operand types to vendor code so that VMX can synthesize the correct EXIT_QUALIFICATION for port I/O VM-Exits. Link: https://lore.kernel.org/r/20250201015518.689704-7-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-24KVM: nVMX: Consolidate missing X86EMUL_INTERCEPTED logic in L2 emulationSean Christopherson
Refactor the handling of port I/O interception checks when emulating on behalf of L2 in anticipation of synthesizing a nested VM-Exit to L1 instead of injecting a #UD into L2. No functional change intended. Link: https://lore.kernel.org/r/20250201015518.689704-6-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-24KVM: nVMX: Emulate HLT in L2 if it's not interceptedSean Christopherson
Extend VMX's nested intercept logic for emulated instructions to handle HLT interception, primarily for testing purposes. Failure to allow emulation of HLT isn't all that interesting, as emulating HLT while L2 is active either requires forced emulation (and no #UD intercept in L1), TLB games in the guest to coerce KVM into emulating the wrong instruction, or a bug elsewhere in KVM. E.g. without commit 47ef3ef843c0 ("KVM: VMX: Handle event vectoring error in check_emulate_instruction()"), KVM can end up trying to emulate HLT if RIP happens to point at a HLT when a vectored event arrives with L2's IDT pointing at emulated MMIO. Note, vmx_check_intercept() is still broken when L1 wants to intercept an instruction, as KVM injects a #UD instead of synthesizing a nested VM-Exit. That issue extends far beyond HLT, punt on it for now. Link: https://lore.kernel.org/r/20250201015518.689704-5-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-24KVM: nVMX: Allow emulating RDPID on behalf of L2Sean Christopherson
Return X86EMUL_CONTINUE instead X86EMUL_UNHANDLEABLE when emulating RDPID on behalf of L2 and L1 _does_ expose RDPID/RDTSCP to L2. When RDPID emulation was added by commit fb6d4d340e05 ("KVM: x86: emulate RDPID"), KVM incorrectly allowed emulation by default. Commit 07721feee46b ("KVM: nVMX: Don't emulate instructions in guest mode") fixed that flaw, but missed that RDPID emulation was relying on the common return path to allow emulation on behalf of L2. Fixes: 07721feee46b ("KVM: nVMX: Don't emulate instructions in guest mode") Link: https://lore.kernel.org/r/20250201015518.689704-4-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-24KVM: nSVM: Pass next RIP, not current RIP, for nested VM-Exit on emulationSean Christopherson
Set "next_rip" in the emulation interception info passed to vendor code using the emulator context's "_eip", not "eip". "eip" holds RIP from the start of emulation, i.e. the RIP of the instruction that's being emulated, whereas _eip tracks the context's current position in decoding the code stream, which at the time of the intercept checks is effectively the RIP of the next instruction. Passing the current RIP as next_rip causes SVM to stuff the wrong value value into vmcb12->control.next_rip if a nested VM-Exit is generated, i.e. if L1 wants to intercept the instruction, and could result in L1 putting L2 into an infinite loop due to restarting L2 with the same RIP over and over. Fixes: 8a76d7f25f8f ("KVM: x86: Add x86 callback for intercept check") Link: https://lore.kernel.org/r/20250201015518.689704-3-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-24KVM: nVMX: Check PAUSE_EXITING, not BUS_LOCK_DETECTION, on PAUSE emulationSean Christopherson
When emulating PAUSE on behalf of L2, check for interception in vmcs12 by looking at primary execution controls, not secondary execution controls. Checking for PAUSE_EXITING in secondary execution controls effectively results in KVM looking for BUS_LOCK_DETECTION, which KVM doesn't expose to L1, i.e. is always off in vmcs12, and ultimately results in KVM failing to "intercept" PAUSE. Because KVM doesn't handle interception during emulation correctly on VMX, i.e. the "fixed" code is still quite broken, and not intercepting PAUSE is relatively benign, for all intents and purposes the bug means that L2 gets to live when it would otherwise get an unexpected #UD. Fixes: 4984563823f0 ("KVM: nVMX: Emulate NOPs in L2, and PAUSE if it's not intercepted") Link: https://lore.kernel.org/r/20250201015518.689704-2-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-24KVM: x86/xen: Move kvm_xen_hvm_config field into kvm_xenSean Christopherson
Now that all KVM usage of the Xen HVM config information is buried behind CONFIG_KVM_XEN=y, move the per-VM kvm_xen_hvm_config field out of kvm_arch and into kvm_xen. No functional change intended. Reviewed-by: David Woodhouse <dwmw@amazon.co.uk> Reviewed-by: Paul Durrant <paul@xen.org> Link: https://lore.kernel.org/r/20250215011437.1203084-6-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-24KVM: x86/xen: Consult kvm_xen_enabled when checking for Xen MSR writesSean Christopherson
Query kvm_xen_enabled when detecting writes to the Xen hypercall page MSR so that the check is optimized away in the likely scenario that Xen isn't enabled for the VM. Deliberately open code the check instead of using kvm_xen_msr_enabled() in order to avoid a double load of xen_hvm_config.msr (which is admittedly rather pointless given the widespread lack of READ_ONCE() usage on the plethora of vCPU-scoped accesses to kvm->arch.xen state). No functional change intended. Reviewed-by: David Woodhouse <dwmw@amazon.co.uk> Reviewed-by: Paul Durrant <paul@xen.org> Link: https://lore.kernel.org/r/20250215011437.1203084-4-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-24KVM: x86/xen: Add an #ifdef'd helper to detect writes to Xen MSRSean Christopherson
Add a helper to detect writes to the Xen hypercall page MSR, and provide a stub for CONFIG_KVM_XEN=n to optimize out the check for kernels built without Xen support. Reviewed-by: Paul Durrant <paul@xen.org> Reviewed-by: David Woodhouse <dwmw@amazon.co.uk> Link: https://lore.kernel.org/r/20250215011437.1203084-3-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-24KVM: x86/xen: Restrict hypercall MSR to unofficial synthetic rangeSean Christopherson
Reject userspace attempts to set the Xen hypercall page MSR to an index outside of the "standard" virtualization range [0x40000000, 0x4fffffff], as KVM is not equipped to handle collisions with real MSRs, e.g. KVM doesn't update MSR interception, conflicts with VMCS/VMCB fields, special case writes in KVM, etc. While the MSR index isn't strictly ABI, i.e. can theoretically float to any value, in practice no known VMM sets the MSR index to anything other than 0x40000000 or 0x40000200. Cc: Joao Martins <joao.m.martins@oracle.com> Reviewed-by: David Woodhouse <dwmw@amazon.co.uk> Reviewed-by: Paul Durrant <paul@xen.org> Link: https://lore.kernel.org/r/20250215011437.1203084-2-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-18KVM: x86: Switch to use hrtimer_setup()Nam Cao
hrtimer_setup() takes the callback function pointer as argument and initializes the timer completely. Replace hrtimer_init() and the open coded initialization of hrtimer::function with the new setup mechanism. Patch was created by using Coccinelle. Signed-off-by: Nam Cao <namcao@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Sean Christopherson <seanjc@google.com> Link: https://lore.kernel.org/all/5051cfe7ed48ef9913bf2583eeca6795cb53d6ae.1738746821.git.namcao@linutronix.de
2025-02-14Merge tag 'kvm-x86-fixes-6.14-rcN' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini
KVM fixes for 6.14 part 1 - Reject Hyper-V SEND_IPI hypercalls if the local APIC isn't being emulated by KVM to fix a NULL pointer dereference. - Enter guest mode (L2) from KVM's perspective before initializing the vCPU's nested NPT MMU so that the MMU is properly tagged for L2, not L1. - Load the guest's DR6 outside of the innermost .vcpu_run() loop, as the guest's value may be stale if a VM-Exit is handled in the fastpath.
2025-02-14KVM: SVM: Ensure PSP module is initialized if KVM module is built-inSean Christopherson
The kernel's initcall infrastructure lacks the ability to express dependencies between initcalls, whereas the modules infrastructure automatically handles dependencies via symbol loading. Ensure the PSP SEV driver is initialized before proceeding in sev_hardware_setup() if KVM is built-in as the dependency isn't handled by the initcall infrastructure. Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Ashish Kalra <ashish.kalra@amd.com> Message-ID: <f78ddb64087df27e7bcb1ae0ab53f55aa0804fab.1739226950.git.ashish.kalra@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-02-14KVM: x86/mmu: Walk rmaps (shadow MMU) without holding mmu_lock when aging gfnsSean Christopherson
Convert the shadow MMU to use per-rmap locking instead of the per-VM mmu_lock to protect rmaps when aging SPTEs. When A/D bits are enabled, it is safe to simply clear the Accessed bits, i.e. KVM just needs to ensure the parent page table isn't freed. The less obvious case is marking SPTEs for access tracking in the non-A/D case (for EPT only). Because aging a gfn means making the SPTE not-present, KVM needs to play nice with the case where the CPU has TLB entries for a SPTE that is not-present in memory. For example, when doing dirty tracking, if KVM encounters a non-present shadow accessed SPTE, KVM must know to do a TLB invalidation. Fortunately, KVM already provides (and relies upon) the necessary functionality. E.g. KVM doesn't flush TLBs when aging pages (even in the clear_flush_young() case), and when harvesting dirty bitmaps, KVM flushes based on the dirty bitmaps, not on SPTEs. Co-developed-by: James Houghton <jthoughton@google.com> Signed-off-by: James Houghton <jthoughton@google.com> Link: https://lore.kernel.org/r/20250204004038.1680123-12-jthoughton@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-14KVM: x86/mmu: Add support for lockless walks of rmap SPTEsSean Christopherson
Add a lockless version of for_each_rmap_spte(), which is pretty much the same as the normal version, except that it doesn't BUG() the host if a non-present SPTE is encountered. When mmu_lock is held, it should be impossible for a different task to zap a SPTE, _and_ zapped SPTEs must be removed from their rmap chain prior to dropping mmu_lock. Thus, the normal walker BUG()s if a non-present SPTE is encountered as something is wildly broken. When walking rmaps without holding mmu_lock, the SPTEs pointed at by the rmap chain can be zapped/dropped, and so a lockless walk can observe a non-present SPTE if it runs concurrently with a different operation that is zapping SPTEs. Signed-off-by: James Houghton <jthoughton@google.com> Link: https://lore.kernel.org/r/20250204004038.1680123-11-jthoughton@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-14KVM: x86/mmu: Add infrastructure to allow walking rmaps outside of mmu_lockSean Christopherson
Steal another bit from rmap entries (which are word aligned pointers, i.e. have 2 free bits on 32-bit KVM, and 3 free bits on 64-bit KVM), and use the bit to implement a *very* rudimentary per-rmap spinlock. The only anticipated usage of the lock outside of mmu_lock is for aging gfns, and collisions between aging and other MMU rmap operations are quite rare, e.g. unless userspace is being silly and aging a tiny range over and over in a tight loop, time between contention when aging an actively running VM is O(seconds). In short, a more sophisticated locking scheme shouldn't be necessary. Note, the lock only protects the rmap structure itself, SPTEs that are pointed at by a locked rmap can still be modified and zapped by another task (KVM drops/zaps SPTEs before deleting the rmap entries) Co-developed-by: James Houghton <jthoughton@google.com> Signed-off-by: James Houghton <jthoughton@google.com> Link: https://lore.kernel.org/r/20250204004038.1680123-10-jthoughton@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-14KVM: x86/mmu: Refactor low level rmap helpers to prep for walking w/o mmu_lockSean Christopherson
Refactor the pte_list and rmap code to always read and write rmap_head->val exactly once, e.g. by collecting changes in a local variable and then propagating those changes back to rmap_head->val as appropriate. This will allow implementing a per-rmap rwlock (of sorts) by adding a LOCKED bit into the rmap value alongside the MANY bit. Signed-off-by: James Houghton <jthoughton@google.com> Acked-by: Yu Zhao <yuzhao@google.com> Reviewed-by: James Houghton <jthoughton@google.com> Link: https://lore.kernel.org/r/20250204004038.1680123-9-jthoughton@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-14KVM: x86/mmu: Only check gfn age in shadow MMU if indirect_shadow_pages > 0James Houghton
When aging SPTEs and the TDP MMU is enabled, process the shadow MMU if and only if the VM has at least one shadow page, as opposed to checking if the VM has rmaps. Checking for rmaps will effectively yield a false positive if the VM ran nested TDP VMs in the past, but is not currently doing so. Signed-off-by: James Houghton <jthoughton@google.com> Acked-by: Yu Zhao <yuzhao@google.com> Link: https://lore.kernel.org/r/20250204004038.1680123-8-jthoughton@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-14KVM: x86/mmu: Skip shadow MMU test_young if TDP MMU reports page as youngJames Houghton
Reorder the processing of the TDP MMU versus the shadow MMU when aging SPTEs, and skip the shadow MMU entirely in the test-only case if the TDP MMU reports that the page is young, i.e. completely avoid taking mmu_lock if the TDP MMU SPTE is young. Swap the order for the test-and-age helper as well for consistency. Signed-off-by: James Houghton <jthoughton@google.com> Acked-by: Yu Zhao <yuzhao@google.com> Link: https://lore.kernel.org/r/20250204004038.1680123-7-jthoughton@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-14KVM: x86/mmu: Age TDP MMU SPTEs without holding mmu_lockSean Christopherson
Walk the TDP MMU in an RCU read-side critical section without holding mmu_lock when harvesting and potentially updating age information on TDP MMU SPTEs. Add a new macro to do RCU-safe walking of TDP MMU roots, and do all SPTE aging with atomic updates; while clobbering Accessed information is ok, KVM must not corrupt other bits, e.g. must not drop a Dirty or Writable bit when making a SPTE young.. If updating a SPTE to mark it for access tracking fails, leave it as is and treat it as if it were young. If the spte is being actively modified, it is most likely young. Acquire and release mmu_lock for write when harvesting age information from the shadow MMU, as the shadow MMU doesn't yet support aging outside of mmu_lock. Suggested-by: Yu Zhao <yuzhao@google.com> Signed-off-by: James Houghton <jthoughton@google.com> Reviewed-by: David Matlack <dmatlack@google.com> Link: https://lore.kernel.org/r/20250204004038.1680123-5-jthoughton@google.com [sean: massage changelog] Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-14KVM: x86/mmu: Always update A/D-disabled SPTEs atomicallySean Christopherson
In anticipation of aging SPTEs outside of mmu_lock, force A/D-disabled SPTEs to be updated atomically, as aging A/D-disabled SPTEs will mark them for access-tracking outside of mmu_lock. Coupled with restoring access- tracked SPTEs in the fast page fault handler, the end result is that A/D-disable SPTEs will be volatile at all times. Reviewed-by: James Houghton <jthoughton@google.com> Link: https://lore.kernel.org/all/Z60bhK96JnKIgqZQ@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-14KVM: x86/mmu: Don't force atomic update if only the Accessed bit is volatileJames Houghton
Don't force SPTE modifications to be done atomically if the only volatile bit in the SPTE is the Accessed bit. KVM and the primary MMU tolerate stale aging state, and the probability of an Accessed bit A/D assist being clobbered *and* affecting again is likely far lower than the probability of consuming stale information due to not flushing TLBs when aging. Rename spte_has_volatile_bits() to spte_needs_atomic_update() to better capture the nature of the helper. Opportunstically do s/write/update on the TDP MMU wrapper, as it's not simply the "write" that needs to be done atomically, it's the entire update, i.e. the entire read-modify-write operation needs to be done atomically so that KVM has an accurate view of the old SPTE. Leave kvm_tdp_mmu_write_spte_atomic() as is. While the name is imperfect, it pairs with kvm_tdp_mmu_write_spte(), which in turn pairs with kvm_tdp_mmu_read_spte(). And renaming all of those isn't obviously a net positive, and would require significant churn. Signed-off-by: James Houghton <jthoughton@google.com> Link: https://lore.kernel.org/r/20250204004038.1680123-6-jthoughton@google.com Co-developed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-14KVM: x86/mmu: Factor out spte atomic bit clearing routineJames Houghton
This new function, tdp_mmu_clear_spte_bits_atomic(), will be used in a follow-up patch to enable lockless Accessed bit clearing. Signed-off-by: James Houghton <jthoughton@google.com> Acked-by: Yu Zhao <yuzhao@google.com> Link: https://lore.kernel.org/r/20250204004038.1680123-4-jthoughton@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-12KVM: SEV: Use long-term pin when registering encrypted memory regionsGe Yang
When registering an encrypted memory region for SEV-MEM/SEV-ES guests, pin the pages with FOLL_TERM so that the pages are migrated out of MIGRATE_CMA/ZONE_MOVABLE. Failure to do so violates the CMA/MOVABLE mechanisms and can result in fragmentation due to unmovable pages, e.g. can make CMA allocations fail. Signed-off-by: Ge Yang <yangge1116@126.com> Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Acked-by: David Hildenbrand <david@redhat.com> Link: https://lore.kernel.org/r/1739241423-14326-1-git-send-email-yangge1116@126.com [sean: massage changelog, make @flags an unsigned int] Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-12KVM: x86: Override TSC_STABLE flag for Xen PV clocks in kvm_guest_time_update()Sean Christopherson
When updating PV clocks, handle the Xen-specific UNSTABLE_TSC override in the main kvm_guest_time_update() by simply clearing PVCLOCK_TSC_STABLE_BIT in the flags of the reference pvclock structure. Expand the comment to (hopefully) make it obvious that Xen clocks need to be processed after all clocks that care about the TSC_STABLE flag. No functional change intended. Cc: Paul Durrant <pdurrant@amazon.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Reviewed-by: Paul Durrant <paul@xen.org> Link: https://lore.kernel.org/r/20250201013827.680235-12-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-12KVM: x86: Setup Hyper-V TSC page before Xen PV clocks (during clock update)Sean Christopherson
When updating paravirtual clocks, setup the Hyper-V TSC page before Xen PV clocks. This will allow dropping xen_pvclock_tsc_unstable in favor of simply clearing PVCLOCK_TSC_STABLE_BIT in the reference flags. Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com> Reviewed-by: Paul Durrant <paul@xen.org> Link: https://lore.kernel.org/r/20250201013827.680235-11-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-12KVM: x86: Remove per-vCPU "cache" of its reference pvclockSean Christopherson
Remove the per-vCPU "cache" of the reference pvclock and instead cache only the TSC shift+multiplier. All other fields in pvclock are fully recomputed by kvm_guest_time_update(), i.e. aren't actually persisted. In addition to shaving a few bytes, explicitly tracking the TSC shift/mul fields makes it easier to see that those fields are tied to hw_tsc_khz (they exist to avoid having to do expensive math in the common case). And conversely, not tracking the other fields makes it easier to see that things like the version number are pulled from the guest's copy, not from KVM's reference. Reviewed-by: Paul Durrant <paul@xen.org> Link: https://lore.kernel.org/r/20250201013827.680235-10-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-12KVM: x86: Pass reference pvclock as a param to kvm_setup_guest_pvclock()Sean Christopherson
Pass the reference pvclock structure that's used to setup each individual pvclock as a parameter to kvm_setup_guest_pvclock() as a preparatory step toward removing kvm_vcpu_arch.hv_clock. No functional change intended. Reviewed-by: Paul Durrant <paul@xen.org> Link: https://lore.kernel.org/r/20250201013827.680235-9-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-12KVM: x86: Set PVCLOCK_GUEST_STOPPED only for kvmclock, not for Xen PV clockSean Christopherson
Handle "guest stopped" propagation only for kvmclock, as the flag is set if and only if kvmclock is "active", i.e. can only be set for Xen PV clock if kvmclock *and* Xen PV clock are in-use by the guest, which creates very bizarre behavior for the guest. Simply restrict the flag to kvmclock, e.g. instead of trying to handle Xen PV clock, as propagation of PVCLOCK_GUEST_STOPPED was unintentionally added during a refactoring, and while Xen proper defines XEN_PVCLOCK_GUEST_STOPPED, there's no evidence that Xen guests actually support the flag. Check and clear pvclock_set_guest_stopped_request if and only if kvmclock is active to preserve the original behavior, i.e. keep the flag pending if kvmclock happens to be disabled when KVM processes the initial request. Fixes: aa096aa0a05f ("KVM: x86/xen: setup pvclock updates") Cc: Paul Durrant <pdurrant@amazon.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Reviewed-by: Paul Durrant <paul@xen.org> Link: https://lore.kernel.org/r/20250201013827.680235-8-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>