summaryrefslogtreecommitdiff
path: root/arch/x86/kvm
AgeCommit message (Collapse)Author
2024-08-22KVM: SVM: Disallow guest from changing userspace's MSR_AMD64_DE_CFG valueSean Christopherson
Inject a #GP if the guest attempts to change MSR_AMD64_DE_CFG from its *current* value, not if the guest attempts to write a value other than KVM's set of supported bits. As per the comment and the changelog of the original code, the intent is to effectively make MSR_AMD64_DE_CFG read- only for the guest. Opportunistically use a more conventional equality check instead of an exclusive-OR check to detect attempts to change bits. Fixes: d1d93fa90f1a ("KVM: SVM: Add MSR-based feature support for serializing LFENCE") Cc: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Link: https://lore.kernel.org/r/20240802181935.292540-2-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22KVM: x86/mmu: Clean up function comments for dirty logging APIsSean Christopherson
Rework the function comment for kvm_arch_mmu_enable_log_dirty_pt_masked() into the body of the function, as it has gotten a bit stale, is harder to read without the code context, and is the last source of warnings for W=1 builds in KVM x86 due to using a kernel-doc comment without documenting all parameters. Opportunistically subsume the functions comments for kvm_mmu_write_protect_pt_masked() and kvm_mmu_clear_dirty_pt_masked(), as there is no value in regurgitating similar information at a higher level, and capturing the differences between write-protection and PML-based dirty logging is best done in a common location. No functional change intended. Cc: David Matlack <dmatlack@google.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Reviewed-by: Pankaj Gupta <pankaj.gupta@amd.com> Link: https://lore.kernel.org/r/20240802202006.340854-1-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22KVM: x86: Use this_cpu_ptr() in kvm_user_return_msr_cpu_onlineLi Chen
Use this_cpu_ptr() instead of open coding the equivalent in kvm_user_return_msr_cpu_online. Signed-off-by: Li Chen <chenl311@chinatelecom.cn> Link: https://lore.kernel.org/r/87zfp96ojk.wl-me@linux.beauty Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22KVM: VMX: hyper-v: Prevent impossible NULL pointer dereference in evmcs_load()Vitaly Kuznetsov
GCC 12.3.0 complains about a potential NULL pointer dereference in evmcs_load() as hv_get_vp_assist_page() can return NULL. In fact, this cannot happen because KVM verifies (hv_init_evmcs()) that every CPU has a valid VP assist page and aborts enabling the feature otherwise. CPU onlining path is also checked in vmx_hardware_enable(). To make the compiler happy and to future proof the code, add a KVM_BUG_ON() sentinel. It doesn't seem to be possible (and logical) to observe evmcs_load() happening without an active vCPU so it is presumed that kvm_get_running_vcpu() can't return NULL. No functional change intended. Reported-by: Mirsad Todorovac <mtodorovac69@gmail.com> Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Link: https://lore.kernel.org/r/20240816130124.286226-1-vkuznets@redhat.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22KVM: nVMX: Use vmx_segment_cache_clear() instead of open coded equivalentMaxim Levitsky
In prepare_vmcs02_rare(), call vmx_segment_cache_clear() instead of setting segment_cache.bitmask directly. Using the helper minimizes the chances of prepare_vmcs02_rare() doing the wrong thing in the future, e.g. if KVM ends up doing more than just zero the bitmask when purging the cache. No functional change intended. Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Link: https://lore.kernel.org/r/20240725175232.337266-2-mlevitsk@redhat.com [sean: massage changelog] Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22KVM: nVMX: Honor userspace MSR filter lists for nested VM-Enter/VM-ExitSean Christopherson
Synthesize a consistency check VM-Exit (VM-Enter) or VM-Abort (VM-Exit) if L1 attempts to load/store an MSR via the VMCS MSR lists that userspace has disallowed access to via an MSR filter. Intel already disallows including a handful of "special" MSRs in the VMCS lists, so denying access isn't completely without precedent. More importantly, the behavior is well-defined _and_ can be communicated the end user, e.g. to the customer that owns a VM running as L1 on top of KVM. On the other hand, ignoring userspace MSR filters is all but guaranteed to result in unexpected behavior as the access will hit KVM's internal state, which is likely not up-to-date. Unlike KVM-internal accesses, instruction emulation, and dedicated VMCS fields, the MSRs in the VMCS load/store lists are 100% guest controlled, thus making it all but impossible to reason about the correctness of ignoring the MSR filter. And if userspace *really* wants to deny access to MSRs via the aforementioned scenarios, userspace can hide the associated feature from the guest, e.g. by disabling the PMU to prevent accessing PERF_GLOBAL_CTRL via its VMCS field. But for the MSR lists, KVM is blindly processing MSRs; the MSR filters are the _only_ way for userspace to deny access. This partially reverts commit ac8d6cad3c7b ("KVM: x86: Only do MSR filtering when access MSR by rdmsr/wrmsr"). Cc: Hou Wenlong <houwenlong.hwl@antgroup.com> Cc: Jim Mattson <jmattson@google.com> Link: https://lore.kernel.org/r/20240722235922.3351122-1-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22KVM: VMX: Do not account for temporary memory allocation in ECREATE emulationKai Huang
In handle_encls_ecreate(), a page is allocated to store a copy of SECS structure used by the ENCLS[ECREATE] leaf from the guest. This page is only used temporarily and is freed after use in handle_encls_ecreate(). Don't account for the memory allocation of this page per [1]. Link: https://lore.kernel.org/kvm/b999afeb588eb75d990891855bc6d58861968f23.camel@intel.com/T/#mb81987afc3ab308bbb5861681aa9a20f2aece7fd [1] Signed-off-by: Kai Huang <kai.huang@intel.com> Link: https://lore.kernel.org/r/20240715101224.90958-1-kai.huang@intel.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22KVM: VMX: Modify the BUILD_BUG_ON_MSG of the 32-bit field in the ↵Qiang Liu
vmcs_check16 function According to the SDM, the meaning of field bit 0 is: Access type (0 = full; 1 = high); must be full for 16-bit, 32-bit, and natural-width fields. So there is no 32-bit high field here, it should be a 32-bit field instead. Signed-off-by: Qiang Liu <liuq131@chinatelecom.cn> Link: https://lore.kernel.org/r/20240702064609.52487-1-liuq131@chinatelecom.cn Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22KVM: SVM: Remove unnecessary GFP_KERNEL_ACCOUNT in svm_set_nested_state()Yongqiang Liu
The fixed size temporary variables vmcb_control_area and vmcb_save_area allocated in svm_set_nested_state() are released when the function exits. Meanwhile, svm_set_nested_state() also have vcpu mutex held to avoid massive concurrency allocation, so we don't need to set GFP_KERNEL_ACCOUNT. Signed-off-by: Yongqiang Liu <liuyongqiang13@huawei.com> Link: https://lore.kernel.org/r/20240821112737.3649937-1-liuyongqiang13@huawei.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22KVM: nVMX: Use macros and #defines in vmx_restore_vmx_misc()Xin Li
Use macros in vmx_restore_vmx_misc() instead of open coding everything using BIT_ULL() and GENMASK_ULL(). Opportunistically split feature bits and reserved bits into separate variables, and add a comment explaining the subset logic (it's not immediately obvious that the set of feature bits is NOT the set of _supported_ feature bits). Cc: Shan Kang <shan.kang@intel.com> Cc: Kai Huang <kai.huang@intel.com> Signed-off-by: Xin Li <xin3.li@intel.com> [sean: split to separate patch, write changelog, drop #defines] Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Reviewed-by: Zhao Liu <zhao1.liu@intel.com> Link: https://lore.kernel.org/r/20240605231918.2915961-11-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22KVM: VMX: Open code VMX preemption timer rate mask in its accessorXin Li
Use vmx_misc_preemption_timer_rate() to get the rate in hardware_setup(), and open code the rate's bitmask in vmx_misc_preemption_timer_rate() so that the function looks like all the helpers that grab values from VMX_BASIC and VMX_MISC MSR values. No functional change intended. Cc: Shan Kang <shan.kang@intel.com> Cc: Kai Huang <kai.huang@intel.com> Signed-off-by: Xin Li <xin3.li@intel.com> [sean: split to separate patch, write changelog] Reviewed-by: Kai Huang <kai.huang@intel.com> Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com> Link: https://lore.kernel.org/r/20240605231918.2915961-10-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22KVM VMX: Move MSR_IA32_VMX_MISC bit defines to asm/vmx.hSean Christopherson
Move the handful of MSR_IA32_VMX_MISC bit defines that are currently in msr-indx.h to vmx.h so that all of the VMX_MISC defines and wrappers can be found in a single location. Opportunistically use BIT_ULL() instead of open coding hex values, add defines for feature bits that are architecturally defined, and move the defines down in the file so that they are colocated with the helpers for getting fields from VMX_MISC. No functional change intended. Cc: Shan Kang <shan.kang@intel.com> Cc: Kai Huang <kai.huang@intel.com> Signed-off-by: Xin Li <xin3.li@intel.com> [sean: split to separate patch, write changelog] Reviewed-by: Zhao Liu <zhao1.liu@intel.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com> Link: https://lore.kernel.org/r/20240605231918.2915961-9-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22KVM: nVMX: Add a helper to encode VMCS info in MSR_IA32_VMX_BASICSean Christopherson
Add a helper to encode the VMCS revision, size, and supported memory types in MSR_IA32_VMX_BASIC, i.e. when synthesizing KVM's supported BASIC MSR value, and delete the now unused VMCS size and memtype shift macros. For a variety of reasons, KVM has shifted (pun intended) to using helpers to *get* information from the VMX MSRs, as opposed to defined MASK and SHIFT macros for direct use. Provide a similar helper for the nested VMX code, which needs to *set* information, so that KVM isn't left with a mix of SHIFT macros and dedicated helpers. Reported-by: Xiaoyao Li <xiaoyao.li@intel.com> Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Link: https://lore.kernel.org/r/20240605231918.2915961-8-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22KVM: nVMX: Use macros and #defines in vmx_restore_vmx_basic()Xin Li
Use macros in vmx_restore_vmx_basic() instead of open coding everything using BIT_ULL() and GENMASK_ULL(). Opportunistically split feature bits and reserved bits into separate variables, and add a comment explaining the subset logic (it's not immediately obvious that the set of feature bits is NOT the set of _supported_ feature bits). Cc: Shan Kang <shan.kang@intel.com> Cc: Kai Huang <kai.huang@intel.com> Signed-off-by: Xin Li <xin3.li@intel.com> [sean: split to separate patch, write changelog, drop #defines] Reviewed-by: Zhao Liu <zhao1.liu@intel.com> Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Link: https://lore.kernel.org/r/20240605231918.2915961-7-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22KVM: VMX: Track CPU's MSR_IA32_VMX_BASIC as a single 64-bit valueXin Li
Track the "basic" capabilities VMX MSR as a single u64 in vmcs_config instead of splitting it across three fields, that obviously don't combine into a single 64-bit value, so that KVM can use the macros that define MSR bits using their absolute position. Replace all open coded shifts and masks, many of which are relative to the "high" half, with the appropriate macro. Opportunistically use VMX_BASIC_32BIT_PHYS_ADDR_ONLY instead of an open coded equivalent, and clean up the related comment to not reference a specific SDM section (to the surprise of no one, the comment is stale). No functional change intended (though obviously the code generation will be quite different). Cc: Shan Kang <shan.kang@intel.com> Cc: Kai Huang <kai.huang@intel.com> Signed-off-by: Xin Li <xin3.li@intel.com> [sean: split to separate patch, write changelog] Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Reviewed-by: Zhao Liu <zhao1.liu@intel.com> Link: https://lore.kernel.org/r/20240605231918.2915961-6-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22KVM: x86: Stuff vCPU's PAT with default value at RESET, not creationSean Christopherson
Move the stuffing of the vCPU's PAT to the architectural "default" value from kvm_arch_vcpu_create() to kvm_vcpu_reset(), guarded by !init_event, to better capture that the default value is the value "Following Power-up or Reset". E.g. setting PAT only during creation would break if KVM were to expose a RESET ioctl() to userspace (which is unlikely, but that's not a good reason to have unintuitive code). No functional change. Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Reviewed-by: Jim Mattson <jmattson@google.com> Reviewed-by: Zhao Liu <zhao1.liu@intel.com> Link: https://lore.kernel.org/r/20240605231918.2915961-4-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22x86/cpu: KVM: Move macro to encode PAT value to common headerSean Christopherson
Move pat/memtype.c's PAT() macro to msr-index.h as PAT_VALUE(), and use it in KVM to define the default (Power-On / RESET) PAT value instead of open coding an inscrutable magic number. No functional change intended. Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20240605231918.2915961-3-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22x86/cpu: KVM: Add common defines for architectural memory types (PAT, MTRRs, ↵Sean Christopherson
etc.) Add defines for the architectural memory types that can be shoved into various MSRs and registers, e.g. MTRRs, PAT, VMX capabilities MSRs, EPTPs, etc. While most MSRs/registers support only a subset of all memory types, the values themselves are architectural and identical across all users. Leave the goofy MTRR_TYPE_* definitions as-is since they are in a uapi header, but add compile-time assertions to connect the dots (and sanity check that the msr-index.h values didn't get fat-fingered). Keep the VMX_EPTP_MT_* defines so that it's slightly more obvious that the EPTP holds a single memory type in 3 of its 64 bits; those bits just happen to be 2:0, i.e. don't need to be shifted. Opportunistically use X86_MEMTYPE_WB instead of an open coded '6' in setup_vmcs_config(). No functional change intended. Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Kai Huang <kai.huang@intel.com> Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Link: https://lore.kernel.org/r/20240605231918.2915961-2-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22KVM: SVM: fix emulation of msr reads/writes of MSR_FS_BASE and MSR_GS_BASEMaxim Levitsky
If these msrs are read by the emulator (e.g due to 'force emulation' prefix), SVM code currently fails to extract the corresponding segment bases, and return them to the emulator. Fix that. Cc: stable@vger.kernel.org Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Link: https://lore.kernel.org/r/20240802151608.72896-3-mlevitsk@redhat.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22KVM: x86: Acquire kvm->srcu when handling KVM_SET_VCPU_EVENTSSean Christopherson
Grab kvm->srcu when processing KVM_SET_VCPU_EVENTS, as KVM will forcibly leave nested VMX/SVM if SMM mode is being toggled, and leaving nested VMX reads guest memory. Note, kvm_vcpu_ioctl_x86_set_vcpu_events() can also be called from KVM_RUN via sync_regs(), which already holds SRCU. I.e. trying to precisely use kvm_vcpu_srcu_read_lock() around the problematic SMM code would cause problems. Acquiring SRCU isn't all that expensive, so for simplicity, grab it unconditionally for KVM_SET_VCPU_EVENTS. ============================= WARNING: suspicious RCU usage 6.10.0-rc7-332d2c1d713e-next-vm #552 Not tainted ----------------------------- include/linux/kvm_host.h:1027 suspicious rcu_dereference_check() usage! other info that might help us debug this: rcu_scheduler_active = 2, debug_locks = 1 1 lock held by repro/1071: #0: ffff88811e424430 (&vcpu->mutex){+.+.}-{3:3}, at: kvm_vcpu_ioctl+0x7d/0x970 [kvm] stack backtrace: CPU: 15 PID: 1071 Comm: repro Not tainted 6.10.0-rc7-332d2c1d713e-next-vm #552 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 Call Trace: <TASK> dump_stack_lvl+0x7f/0x90 lockdep_rcu_suspicious+0x13f/0x1a0 kvm_vcpu_gfn_to_memslot+0x168/0x190 [kvm] kvm_vcpu_read_guest+0x3e/0x90 [kvm] nested_vmx_load_msr+0x6b/0x1d0 [kvm_intel] load_vmcs12_host_state+0x432/0xb40 [kvm_intel] vmx_leave_nested+0x30/0x40 [kvm_intel] kvm_vcpu_ioctl_x86_set_vcpu_events+0x15d/0x2b0 [kvm] kvm_arch_vcpu_ioctl+0x1107/0x1750 [kvm] ? mark_held_locks+0x49/0x70 ? kvm_vcpu_ioctl+0x7d/0x970 [kvm] ? kvm_vcpu_ioctl+0x497/0x970 [kvm] kvm_vcpu_ioctl+0x497/0x970 [kvm] ? lock_acquire+0xba/0x2d0 ? find_held_lock+0x2b/0x80 ? do_user_addr_fault+0x40c/0x6f0 ? lock_release+0xb7/0x270 __x64_sys_ioctl+0x82/0xb0 do_syscall_64+0x6c/0x170 entry_SYSCALL_64_after_hwframe+0x4b/0x53 RIP: 0033:0x7ff11eb1b539 </TASK> Fixes: f7e570780efc ("KVM: x86: Forcibly leave nested virt when SMM state is toggled") Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20240723232055.3643811-1-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22KVM: x86/mmu: Check that root is valid/loaded when pre-faulting SPTEsSean Christopherson
Error out if kvm_mmu_reload() fails when pre-faulting memory, as trying to fault-in SPTEs will fail miserably due to root.hpa pointing at garbage. Note, kvm_mmu_reload() can return -EIO and thus trigger the WARN on -EIO in kvm_vcpu_pre_fault_memory(), but all such paths also WARN, i.e. the WARN isn't user-triggerable and won't run afoul of warn-on-panic because the kernel would already be panicking. BUG: unable to handle page fault for address: 000029ffffffffe8 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: Oops: 0000 [#1] PREEMPT SMP CPU: 22 PID: 1069 Comm: pre_fault_memor Not tainted 6.10.0-rc7-332d2c1d713e-next-vm #548 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 RIP: 0010:is_page_fault_stale+0x3e/0xe0 [kvm] RSP: 0018:ffffc9000114bd48 EFLAGS: 00010206 RAX: 00003fffffffffc0 RBX: ffff88810a07c080 RCX: ffffc9000114bd78 RDX: ffff88810a07c080 RSI: ffffea0000000000 RDI: ffff88810a07c080 RBP: ffffc9000114bd78 R08: 00007fa3c8c00000 R09: 8000000000000225 R10: ffffea00043d7d80 R11: 0000000000000000 R12: ffff88810a07c080 R13: 0000000100000000 R14: ffffc9000114be58 R15: 0000000000000000 FS: 00007fa3c9da0740(0000) GS:ffff888277d80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000029ffffffffe8 CR3: 000000011d698000 CR4: 0000000000352eb0 Call Trace: <TASK> kvm_tdp_page_fault+0xcc/0x160 [kvm] kvm_mmu_do_page_fault+0xfb/0x1f0 [kvm] kvm_arch_vcpu_pre_fault_memory+0xd0/0x1a0 [kvm] kvm_vcpu_ioctl+0x761/0x8c0 [kvm] __x64_sys_ioctl+0x82/0xb0 do_syscall_64+0x5b/0x160 entry_SYSCALL_64_after_hwframe+0x4b/0x53 </TASK> Modules linked in: kvm_intel kvm CR2: 000029ffffffffe8 ---[ end trace 0000000000000000 ]--- Fixes: 6e01b7601dfe ("KVM: x86: Implement kvm_arch_vcpu_pre_fault_memory()") Reported-by: syzbot+23786faffb695f17edaa@syzkaller.appspotmail.com Closes: https://lore.kernel.org/all/0000000000002b84dc061dd73544@google.com Reviewed-by: Kai Huang <kai.huang@intel.com> Tested-by: xingwei lee <xrivendell7@gmail.com> Tested-by: yuxin wang <wang1315768607@163.com> Link: https://lore.kernel.org/r/20240723000211.3352304-1-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22KVM: x86/mmu: Fixup comments missed by the REMOVED_SPTE=>FROZEN_SPTE renameYan Zhao
Replace "removed" with "frozen" in comments as appropriate to complete the rename of REMOVED_SPTE to FROZEN_SPTE. Fixes: 964cea817196 ("KVM: x86/tdp_mmu: Rename REMOVED_SPTE to FROZEN_SPTE") Signed-off-by: Yan Zhao <yan.y.zhao@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Link: https://lore.kernel.org/r/20240712233438.518591-1-rick.p.edgecombe@intel.com [sean: write changelog] Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22KVM: x86: Advertise AVX10.1 CPUID to userspaceTao Su
Advertise AVX10.1 related CPUIDs, i.e. report AVX10 support bit via CPUID.(EAX=07H, ECX=01H):EDX[bit 19] and new CPUID leaf 0x24H so that guest OS and applications can query the AVX10.1 CPUIDs directly. Intel AVX10 represents the first major new vector ISA since the introduction of Intel AVX512, which will establish a common, converged vector instruction set across all Intel architectures[1]. AVX10.1 is an early version of AVX10, that enumerates the Intel AVX512 instruction set at 128, 256, and 512 bits which is enabled on Granite Rapids. I.e., AVX10.1 is only a new CPUID enumeration with no new functionality. New features, e.g. Embedded Rounding and Suppress All Exceptions (SAE) will be introduced in AVX10.2. Advertising AVX10.1 is safe because there is nothing to enable for AVX10.1, i.e. it's purely a new way to enumerate support, thus there will never be anything for the kernel to enable. Note just the CPUID checking is changed when using AVX512 related instructions, e.g. if using one AVX512 instruction needs to check (AVX512 AND AVX512DQ), it can check ((AVX512 AND AVX512DQ) OR AVX10.1) after checking XCR0[7:5]. The versions of AVX10 are expected to be inclusive, e.g. version N+1 is a superset of version N. Per the spec, the version can never be 0, just advertise AVX10.1 if it's supported in hardware. Moreover, advertising AVX10_{128,256,512} needs to land in the same commit as advertising basic AVX10.1 support, otherwise KVM would advertise an impossible CPU model. E.g. a CPU with AVX512 but not AVX10.1/512 is impossible per the SDM. As more and more AVX related CPUIDs are added (it would have resulted in around 40-50 CPUID flags when developing AVX10), the versioning approach is introduced. But incrementing version numbers are bad for virtualization. E.g. if AVX10.2 has a feature that shouldn't be enumerated to guests for whatever reason, then KVM can't enumerate any "later" features either, because the only way to hide the problematic AVX10.2 feature is to set the version to AVX10.1 or lower[2]. But most AVX features are just passed through and don't have virtualization controls, so AVX10 should not be problematic in practice, so long as Intel honors their promise that future versions will be supersets of past versions. [1] https://cdrdv2.intel.com/v1/dl/getContent/784267 [2] https://lore.kernel.org/all/Zkz5Ak0PQlAN8DxK@google.com/ Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Tao Su <tao1.su@linux.intel.com> Link: https://lore.kernel.org/r/20240819062327.3269720-1-tao1.su@linux.intel.com [sean: minor changelog tweaks] Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-22KVM: x86: Optimize local variable in start_sw_tscdeadline()Thorsten Blum
Change the data type of the local variable this_tsc_khz to u32 because virtual_tsc_khz is also declared as u32. Since do_div() casts the divisor to u32 anyway, changing the data type of this_tsc_khz to u32 also removes the following Coccinelle/coccicheck warning reported by do_div.cocci: WARNING: do_div() does a 64-by-32 division, please consider using div64_ul instead Signed-off-by: Thorsten Blum <thorsten.blum@toblux.com> Link: https://lore.kernel.org/r/20240814203345.2234-2-thorsten.blum@toblux.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-14KVM: x86/mmu: Introduce a quirk to control memslot zap behaviorYan Zhao
Introduce the quirk KVM_X86_QUIRK_SLOT_ZAP_ALL to allow users to select KVM's behavior when a memslot is moved or deleted for KVM_X86_DEFAULT_VM VMs. Make sure KVM behave as if the quirk is always disabled for non-KVM_X86_DEFAULT_VM VMs. The KVM_X86_QUIRK_SLOT_ZAP_ALL quirk offers two behavior options: - when enabled: Invalidate/zap all SPTEs ("zap-all"), - when disabled: Precisely zap only the leaf SPTEs within the range of the moving/deleting memory slot ("zap-slot-leafs-only"). "zap-all" is today's KVM behavior to work around a bug [1] where the changing the zapping behavior of memslot move/deletion would cause VM instability for VMs with an Nvidia GPU assigned; while "zap-slot-leafs-only" allows for more precise zapping of SPTEs within the memory slot range, improving performance in certain scenarios [2], and meeting the functional requirements for TDX. Previous attempts to select "zap-slot-leafs-only" include a per-VM capability approach [3] (which was not preferred because the root cause of the bug remained unidentified) and a per-memslot flag approach [4]. Sean and Paolo finally recommended the implementation of this quirk and explained that it's the least bad option [5]. By default, the quirk is enabled on KVM_X86_DEFAULT_VM VMs to use "zap-all". Users have the option to disable the quirk to select "zap-slot-leafs-only" for specific KVM_X86_DEFAULT_VM VMs that are unaffected by this bug. For non-KVM_X86_DEFAULT_VM VMs, the "zap-slot-leafs-only" behavior is always selected without user's opt-in, regardless of if the user opts for "zap-all". This is because it is assumed until proven otherwise that non- KVM_X86_DEFAULT_VM VMs will not be exposed to the bug [1], and most importantly, it's because TDX must have "zap-slot-leafs-only" always selected. In TDX's case a memslot's GPA range can be a mixture of "private" or "shared" memory. Shared is roughly analogous to how EPT is handled for normal VMs, but private GPAs need lots of special treatment: 1) "zap-all" would require to zap private root page or non-leaf entries or at least leaf-entries beyond the deleting memslot scope. However, TDX demands that the root page of the private page table remains unchanged, with leaf entries being zapped before non-leaf entries, and any dropped private guest pages must be re-accepted by the guest. 2) if "zap-all" zaps only shared page tables, it would result in private pages still being mapped when the memslot is gone. This may affect even other processes if later the gmem fd was whole punched, causing the pages being freed on the host while still mapped in the TD, because there's no pgoff to the gfn information to zap the private page table after memslot is gone. So, simply go "zap-slot-leafs-only" as if the quirk is always disabled for non-KVM_X86_DEFAULT_VM VMs to avoid manual opt-in for every VM type [6] or complicating quirk disabling interface (current quirk disabling interface is limited, no way to query quirks, or force them to be disabled). Add a new function kvm_mmu_zap_memslot_leafs() to implement "zap-slot-leafs-only". This function does not call kvm_unmap_gfn_range(), bypassing special handling to APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, as 1) The APIC_ACCESS_PAGE_PRIVATE_MEMSLOT cannot be created by users, nor can it be moved. It is only deleted by KVM when APICv is permanently inhibited. 2) kvm_vcpu_reload_apic_access_page() effectively does nothing when APIC_ACCESS_PAGE_PRIVATE_MEMSLOT is deleted. 3) Avoid making all cpus request of KVM_REQ_APIC_PAGE_RELOAD can save on costly IPIs. Suggested-by: Kai Huang <kai.huang@intel.com> Suggested-by: Sean Christopherson <seanjc@google.com> Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Link: https://patchwork.kernel.org/project/kvm/patch/20190205210137.1377-11-sean.j.christopherson@intel.com [1] Link: https://patchwork.kernel.org/project/kvm/patch/20190205210137.1377-11-sean.j.christopherson@intel.com/#25054908 [2] Link: https://lore.kernel.org/kvm/20200713190649.GE29725@linux.intel.com/T/#mabc0119583dacf621025e9d873c85f4fbaa66d5c [3] Link: https://lore.kernel.org/all/20240515005952.3410568-3-rick.p.edgecombe@intel.com [4] Link: https://lore.kernel.org/all/7df9032d-83e4-46a1-ab29-6c7973a2ab0b@redhat.com [5] Link: https://lore.kernel.org/all/ZnGa550k46ow2N3L@google.com [6] Co-developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Yan Zhao <yan.y.zhao@intel.com> Message-ID: <20240703021043.13881-1-yan.y.zhao@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-08-13KVM: x86: Make x2APIC ID 100% readonlySean Christopherson
Ignore the userspace provided x2APIC ID when fixing up APIC state for KVM_SET_LAPIC, i.e. make the x2APIC fully readonly in KVM. Commit a92e2543d6a8 ("KVM: x86: use hardware-compatible format for APIC ID register"), which added the fixup, didn't intend to allow userspace to modify the x2APIC ID. In fact, that commit is when KVM first started treating the x2APIC ID as readonly, apparently to fix some race: static inline u32 kvm_apic_id(struct kvm_lapic *apic) { - return (kvm_lapic_get_reg(apic, APIC_ID) >> 24) & 0xff; + /* To avoid a race between apic_base and following APIC_ID update when + * switching to x2apic_mode, the x2apic mode returns initial x2apic id. + */ + if (apic_x2apic_mode(apic)) + return apic->vcpu->vcpu_id; + + return kvm_lapic_get_reg(apic, APIC_ID) >> 24; } Furthermore, KVM doesn't support delivering interrupts to vCPUs with a modified x2APIC ID, but KVM *does* return the modified value on a guest RDMSR and for KVM_GET_LAPIC. I.e. no remotely sane setup can actually work with a modified x2APIC ID. Making the x2APIC ID fully readonly fixes a WARN in KVM's optimized map calculation, which expects the LDR to align with the x2APIC ID. WARNING: CPU: 2 PID: 958 at arch/x86/kvm/lapic.c:331 kvm_recalculate_apic_map+0x609/0xa00 [kvm] CPU: 2 PID: 958 Comm: recalc_apic_map Not tainted 6.4.0-rc3-vanilla+ #35 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Arch Linux 1.16.2-1-1 04/01/2014 RIP: 0010:kvm_recalculate_apic_map+0x609/0xa00 [kvm] Call Trace: <TASK> kvm_apic_set_state+0x1cf/0x5b0 [kvm] kvm_arch_vcpu_ioctl+0x1806/0x2100 [kvm] kvm_vcpu_ioctl+0x663/0x8a0 [kvm] __x64_sys_ioctl+0xb8/0xf0 do_syscall_64+0x56/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 RIP: 0033:0x7fade8b9dd6f Unfortunately, the WARN can still trigger for other CPUs than the current one by racing against KVM_SET_LAPIC, so remove it completely. Reported-by: Michal Luczaj <mhal@rbox.co> Closes: https://lore.kernel.org/all/814baa0c-1eaa-4503-129f-059917365e80@rbox.co Reported-by: Haoyu Wu <haoyuwu254@gmail.com> Closes: https://lore.kernel.org/all/20240126161633.62529-1-haoyuwu254@gmail.com Reported-by: syzbot+545f1326f405db4e1c3e@syzkaller.appspotmail.com Closes: https://lore.kernel.org/all/000000000000c2a6b9061cbca3c3@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> Message-ID: <20240802202941.344889-2-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-08-13KVM: x86: Use this_cpu_ptr() instead of per_cpu_ptr(smp_processor_id())Isaku Yamahata
Use this_cpu_ptr() instead of open coding the equivalent in various user return MSR helpers. Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com> Reviewed-by: Chao Gao <chao.gao@intel.com> Reviewed-by: Yuan Yao <yuan.yao@intel.com> [sean: massage changelog] Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Pankaj Gupta <pankaj.gupta@amd.com> Message-ID: <20240802201630.339306-1-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-08-13KVM: x86: hyper-v: Remove unused inline function kvm_hv_free_pa_page()Yue Haibing
There is no caller in tree since introduction in commit b4f69df0f65e ("KVM: x86: Make Hyper-V emulation optional") Signed-off-by: Yue Haibing <yuehaibing@huawei.com> Message-ID: <20240803113233.128185-1-yuehaibing@huawei.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-08-13KVM: SVM: Fix an error code in sev_gmem_post_populate()Dan Carpenter
The copy_from_user() function returns the number of bytes which it was not able to copy. Return -EFAULT instead. Fixes: dee5a47cc7a4 ("KVM: SEV: Add KVM_SEV_SNP_LAUNCH_UPDATE command") Signed-off-by: Dan Carpenter <dan.carpenter@linaro.org> Message-ID: <20240612115040.2423290-4-dan.carpenter@linaro.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-08-13KVM: SVM: Fix uninitialized variable bugDan Carpenter
If snp_lookup_rmpentry() fails then "assigned" is printed in the error message but it was never initialized. Initialize it to false. Fixes: dee5a47cc7a4 ("KVM: SEV: Add KVM_SEV_SNP_LAUNCH_UPDATE command") Signed-off-by: Dan Carpenter <dan.carpenter@linaro.org> Message-ID: <20240612115040.2423290-3-dan.carpenter@linaro.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-08-12introduce fd_file(), convert all accessors to it.Al Viro
For any changes of struct fd representation we need to turn existing accesses to fields into calls of wrappers. Accesses to struct fd::flags are very few (3 in linux/file.h, 1 in net/socket.c, 3 in fs/overlayfs/file.c and 3 more in explicit initializers). Those can be dealt with in the commit converting to new layout; accesses to struct fd::file are too many for that. This commit converts (almost) all of f.file to fd_file(f). It's not entirely mechanical ('file' is used as a member name more than just in struct fd) and it does not even attempt to distinguish the uses in pointer context from those in boolean context; the latter will be eventually turned into a separate helper (fd_empty()). NOTE: mass conversion to fd_empty(), tempting as it might be, is a bad idea; better do that piecewise in commit that convert from fdget...() to CLASS(...). [conflicts in fs/fhandle.c, kernel/bpf/syscall.c, mm/memcontrol.c caught by git; fs/stat.c one got caught by git grep] [fs/xattr.c conflict] Reviewed-by: Christian Brauner <brauner@kernel.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2024-08-02Merge branch 'kvm-fixes' into HEADPaolo Bonzini
* fix latent bug in how usage of large pages is determined for confidential VMs * fix "underline too short" in docs * eliminate log spam from limited APIC timer periods * disallow pre-faulting of memory before SEV-SNP VMs are initialized * delay clearing and encrypting private memory until it is added to guest page tables * this change also enables another small cleanup: the checks in SNP_LAUNCH_UPDATE that limit it to non-populated, private pages can now be moved in the common kvm_gmem_populate() function
2024-08-01KVM: x86/mmu: fix determination of max NPT mapping level for private pagesAckerley Tng
The `if (req_max_level)` test was meant ignore req_max_level if PG_LEVEL_NONE was returned. Hence, this function should return max_level instead of the ignored req_max_level. This is only a latent issue for now, since guest_memfd does not support large pages. Signed-off-by: Ackerley Tng <ackerleytng@google.com> Message-ID: <20240801173955.1975034-1-ackerleytng@google.com> Fixes: f32fb32820b1 ("KVM: x86: Add hook for determining max NPT mapping level") Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-07-26KVM: guest_memfd: let kvm_gmem_populate() operate only on private gfnsPaolo Bonzini
This check is currently performed by sev_gmem_post_populate(), but it applies to all callers of kvm_gmem_populate(): the point of the function is that the memory is being encrypted and some work has to be done on all the gfns in order to encrypt them. Therefore, check the KVM_MEMORY_ATTRIBUTE_PRIVATE attribute prior to invoking the callback, and stop the operation if a shared page is encountered. Because CONFIG_KVM_PRIVATE_MEM in principle does not require attributes, this makes kvm_gmem_populate() depend on CONFIG_KVM_GENERIC_PRIVATE_MEM (which does require them). Reviewed-by: Michael Roth <michael.roth@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-07-26KVM: extend kvm_range_has_memory_attributes() to check subset of attributesPaolo Bonzini
While currently there is no other attribute than KVM_MEMORY_ATTRIBUTE_PRIVATE, KVM code such as kvm_mem_is_private() is written to expect their existence. Allow using kvm_range_has_memory_attributes() as a multi-page version of kvm_mem_is_private(), without it breaking later when more attributes are introduced. Reviewed-by: Michael Roth <michael.roth@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-07-26KVM: guest_memfd: move check for already-populated page to common codePaolo Bonzini
Do not allow populating the same page twice with startup data. In the case of SEV-SNP, for example, the firmware does not allow it anyway, since the launch-update operation is only possible on pages that are still shared in the RMP. Even if it worked, kvm_gmem_populate()'s callback is meant to have side effects such as updating launch measurements, and updating the same page twice is unlikely to have the desired results. Races between calls to the ioctl are not possible because kvm_gmem_populate() holds slots_lock and the VM should not be running. But again, even if this worked on other confidential computing technology, it doesn't matter to guest_memfd.c whether this is something fishy such as missing synchronization in userspace, or rather something intentional. One of the racers wins, and the page is initialized by either kvm_gmem_prepare_folio() or kvm_gmem_populate(). Anyway, out of paranoia, adjust sev_gmem_post_populate() anyway to use the same errno that kvm_gmem_populate() is using. Reviewed-by: Michael Roth <michael.roth@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-07-26KVM: remove kvm_arch_gmem_prepare_needed()Paolo Bonzini
It is enough to return 0 if a guest need not do any preparation. This is in fact how sev_gmem_prepare() works for non-SNP guests, and it extends naturally to Intel hosts: the x86 callback for gmem_prepare is optional and returns 0 if not defined. Reviewed-by: Michael Roth <michael.roth@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-07-26KVM: rename CONFIG_HAVE_KVM_GMEM_* to CONFIG_HAVE_KVM_ARCH_GMEM_*Paolo Bonzini
Add "ARCH" to the symbols; shortly, the "prepare" phase will include both the arch-independent step to clear out contents left in the page by the host, and the arch-dependent step enabled by CONFIG_HAVE_KVM_GMEM_PREPARE. For consistency do the same for CONFIG_HAVE_KVM_GMEM_INVALIDATE as well. Reviewed-by: Michael Roth <michael.roth@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-07-26KVM: x86: disallow pre-fault for SNP VMs before initializationPaolo Bonzini
KVM_PRE_FAULT_MEMORY for an SNP guest can race with sev_gmem_post_populate() in bad ways. The following sequence for instance can potentially trigger an RMP fault: thread A, sev_gmem_post_populate: called thread B, sev_gmem_prepare: places below 'pfn' in a private state in RMP thread A, sev_gmem_post_populate: *vaddr = kmap_local_pfn(pfn + i); thread A, sev_gmem_post_populate: copy_from_user(vaddr, src + i * PAGE_SIZE, PAGE_SIZE); RMP #PF Fix this by only allowing KVM_PRE_FAULT_MEMORY to run after a guest's initial private memory contents have been finalized via KVM_SEV_SNP_LAUNCH_FINISH. Beyond fixing this issue, it just sort of makes sense to enforce this, since the KVM_PRE_FAULT_MEMORY documentation states: "KVM maps memory as if the vCPU generated a stage-2 read page fault" which sort of implies we should be acting on the same guest state that a vCPU would see post-launch after the initial guest memory is all set up. Co-developed-by: Michael Roth <michael.roth@amd.com> Signed-off-by: Michael Roth <michael.roth@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-07-26KVM: x86: Eliminate log spam from limited APIC timer periodsJim Mattson
SAP's vSMP MemoryONE continuously requests a local APIC timer period less than 500 us, resulting in the following kernel log spam: kvm: vcpu 15: requested 70240 ns lapic timer period limited to 500000 ns kvm: vcpu 19: requested 52848 ns lapic timer period limited to 500000 ns kvm: vcpu 15: requested 70256 ns lapic timer period limited to 500000 ns kvm: vcpu 9: requested 70256 ns lapic timer period limited to 500000 ns kvm: vcpu 9: requested 70208 ns lapic timer period limited to 500000 ns kvm: vcpu 9: requested 387520 ns lapic timer period limited to 500000 ns kvm: vcpu 9: requested 70160 ns lapic timer period limited to 500000 ns kvm: vcpu 66: requested 205744 ns lapic timer period limited to 500000 ns kvm: vcpu 9: requested 70224 ns lapic timer period limited to 500000 ns kvm: vcpu 9: requested 70256 ns lapic timer period limited to 500000 ns limit_periodic_timer_frequency: 7569 callbacks suppressed ... To eliminate this spam, change the pr_info_ratelimited() in limit_periodic_timer_frequency() to pr_info_once(). Reported-by: James Houghton <jthoughton@google.com> Signed-off-by: Jim Mattson <jmattson@google.com> Message-ID: <20240724190640.2449291-1-jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-07-20Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds
Pull kvm updates from Paolo Bonzini: "ARM: - Initial infrastructure for shadow stage-2 MMUs, as part of nested virtualization enablement - Support for userspace changes to the guest CTR_EL0 value, enabling (in part) migration of VMs between heterogenous hardware - Fixes + improvements to pKVM's FF-A proxy, adding support for v1.1 of the protocol - FPSIMD/SVE support for nested, including merged trap configuration and exception routing - New command-line parameter to control the WFx trap behavior under KVM - Introduce kCFI hardening in the EL2 hypervisor - Fixes + cleanups for handling presence/absence of FEAT_TCRX - Miscellaneous fixes + documentation updates LoongArch: - Add paravirt steal time support - Add support for KVM_DIRTY_LOG_INITIALLY_SET - Add perf kvm-stat support for loongarch RISC-V: - Redirect AMO load/store access fault traps to guest - perf kvm stat support - Use guest files for IMSIC virtualization, when available s390: - Assortment of tiny fixes which are not time critical x86: - Fixes for Xen emulation - Add a global struct to consolidate tracking of host values, e.g. EFER - Add KVM_CAP_X86_APIC_BUS_CYCLES_NS to allow configuring the effective APIC bus frequency, because TDX - Print the name of the APICv/AVIC inhibits in the relevant tracepoint - Clean up KVM's handling of vendor specific emulation to consistently act on "compatible with Intel/AMD", versus checking for a specific vendor - Drop MTRR virtualization, and instead always honor guest PAT on CPUs that support self-snoop - Update to the newfangled Intel CPU FMS infrastructure - Don't advertise IA32_PERF_GLOBAL_OVF_CTRL as an MSR-to-be-saved, as it reads '0' and writes from userspace are ignored - Misc cleanups x86 - MMU: - Small cleanups, renames and refactoring extracted from the upcoming Intel TDX support - Don't allocate kvm_mmu_page.shadowed_translation for shadow pages that can't hold leafs SPTEs - Unconditionally drop mmu_lock when allocating TDP MMU page tables for eager page splitting, to avoid stalling vCPUs when splitting huge pages - Bug the VM instead of simply warning if KVM tries to split a SPTE that is non-present or not-huge. KVM is guaranteed to end up in a broken state because the callers fully expect a valid SPTE, it's all but dangerous to let more MMU changes happen afterwards x86 - AMD: - Make per-CPU save_area allocations NUMA-aware - Force sev_es_host_save_area() to be inlined to avoid calling into an instrumentable function from noinstr code - Base support for running SEV-SNP guests. API-wise, this includes a new KVM_X86_SNP_VM type, encrypting/measure the initial image into guest memory, and finalizing it before launching it. Internally, there are some gmem/mmu hooks needed to prepare gmem-allocated pages before mapping them into guest private memory ranges This includes basic support for attestation guest requests, enough to say that KVM supports the GHCB 2.0 specification There is no support yet for loading into the firmware those signing keys to be used for attestation requests, and therefore no need yet for the host to provide certificate data for those keys. To support fetching certificate data from userspace, a new KVM exit type will be needed to handle fetching the certificate from userspace. An attempt to define a new KVM_EXIT_COCO / KVM_EXIT_COCO_REQ_CERTS exit type to handle this was introduced in v1 of this patchset, but is still being discussed by community, so for now this patchset only implements a stub version of SNP Extended Guest Requests that does not provide certificate data x86 - Intel: - Remove an unnecessary EPT TLB flush when enabling hardware - Fix a series of bugs that cause KVM to fail to detect nested pending posted interrupts as valid wake eents for a vCPU executing HLT in L2 (with HLT-exiting disable by L1) - KVM: x86: Suppress MMIO that is triggered during task switch emulation Explicitly suppress userspace emulated MMIO exits that are triggered when emulating a task switch as KVM doesn't support userspace MMIO during complex (multi-step) emulation Silently ignoring the exit request can result in the WARN_ON_ONCE(vcpu->mmio_needed) firing if KVM exits to userspace for some other reason prior to purging mmio_needed See commit 0dc902267cb3 ("KVM: x86: Suppress pending MMIO write exits if emulator detects exception") for more details on KVM's limitations with respect to emulated MMIO during complex emulator flows Generic: - Rename the AS_UNMOVABLE flag that was introduced for KVM to AS_INACCESSIBLE, because the special casing needed by these pages is not due to just unmovability (and in fact they are only unmovable because the CPU cannot access them) - New ioctl to populate the KVM page tables in advance, which is useful to mitigate KVM page faults during guest boot or after live migration. The code will also be used by TDX, but (probably) not through the ioctl - Enable halt poll shrinking by default, as Intel found it to be a clear win - Setup empty IRQ routing when creating a VM to avoid having to synchronize SRCU when creating a split IRQCHIP on x86 - Rework the sched_in/out() paths to replace kvm_arch_sched_in() with a flag that arch code can use for hooking both sched_in() and sched_out() - Take the vCPU @id as an "unsigned long" instead of "u32" to avoid truncating a bogus value from userspace, e.g. to help userspace detect bugs - Mark a vCPU as preempted if and only if it's scheduled out while in the KVM_RUN loop, e.g. to avoid marking it preempted and thus writing guest memory when retrieving guest state during live migration blackout Selftests: - Remove dead code in the memslot modification stress test - Treat "branch instructions retired" as supported on all AMD Family 17h+ CPUs - Print the guest pseudo-RNG seed only when it changes, to avoid spamming the log for tests that create lots of VMs - Make the PMU counters test less flaky when counting LLC cache misses by doing CLFLUSH{OPT} in every loop iteration" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (227 commits) crypto: ccp: Add the SNP_VLEK_LOAD command KVM: x86/pmu: Add kvm_pmu_call() to simplify static calls of kvm_pmu_ops KVM: x86: Introduce kvm_x86_call() to simplify static calls of kvm_x86_ops KVM: x86: Replace static_call_cond() with static_call() KVM: SEV: Provide support for SNP_EXTENDED_GUEST_REQUEST NAE event x86/sev: Move sev_guest.h into common SEV header KVM: SEV: Provide support for SNP_GUEST_REQUEST NAE event KVM: x86: Suppress MMIO that is triggered during task switch emulation KVM: x86/mmu: Clean up make_huge_page_split_spte() definition and intro KVM: x86/mmu: Bug the VM if KVM tries to split a !hugepage SPTE KVM: selftests: x86: Add test for KVM_PRE_FAULT_MEMORY KVM: x86: Implement kvm_arch_vcpu_pre_fault_memory() KVM: x86/mmu: Make kvm_mmu_do_page_fault() return mapped level KVM: x86/mmu: Account pf_{fixed,emulate,spurious} in callers of "do page fault" KVM: x86/mmu: Bump pf_taken stat only in the "real" page fault handler KVM: Add KVM_PRE_FAULT_MEMORY vcpu ioctl to pre-populate guest memory KVM: Document KVM_PRE_FAULT_MEMORY ioctl mm, virt: merge AS_UNMOVABLE and AS_INACCESSIBLE perf kvm: Add kvm-stat for loongarch64 LoongArch: KVM: Add PV steal time support in guest side ...
2024-07-16KVM: x86/pmu: Add kvm_pmu_call() to simplify static calls of kvm_pmu_opsWei Wang
Similar to kvm_x86_call(), kvm_pmu_call() is added to streamline the usage of static calls of kvm_pmu_ops, which improves code readability. Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Wei Wang <wei.w.wang@intel.com> Link: https://lore.kernel.org/r/20240507133103.15052-4-wei.w.wang@intel.com Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-07-16KVM: x86: Introduce kvm_x86_call() to simplify static calls of kvm_x86_opsWei Wang
Introduces kvm_x86_call(), to streamline the usage of static calls of kvm_x86_ops. The current implementation of these calls is verbose and could lead to alignment challenges. This makes the code susceptible to exceeding the "80 columns per single line of code" limit as defined in the coding-style document. Another issue with the existing implementation is that the addition of kvm_x86_ prefix to hooks at the static_call sites hinders code readability and navigation. kvm_x86_call() is added to improve code readability and maintainability, while adhering to the coding style guidelines. Signed-off-by: Wei Wang <wei.w.wang@intel.com> Link: https://lore.kernel.org/r/20240507133103.15052-3-wei.w.wang@intel.com Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-07-16KVM: x86: Replace static_call_cond() with static_call()Wei Wang
The use of static_call_cond() is essentially the same as static_call() on x86 (e.g. static_call() now handles a NULL pointer as a NOP), so replace it with static_call() to simplify the code. Link: https://lore.kernel.org/all/3916caa1dcd114301a49beafa5030eca396745c1.1679456900.git.jpoimboe@kernel.org/ Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Wei Wang <wei.w.wang@intel.com> Link: https://lore.kernel.org/r/20240507133103.15052-2-wei.w.wang@intel.com Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-07-16Merge branch 'kvm-6.11-sev-attestation' into HEADPaolo Bonzini
The GHCB 2.0 specification defines 2 GHCB request types to allow SNP guests to send encrypted messages/requests to firmware: SNP Guest Requests and SNP Extended Guest Requests. These encrypted messages are used for things like servicing attestation requests issued by the guest. Implementing support for these is required to be fully GHCB-compliant. For the most part, KVM only needs to handle forwarding these requests to firmware (to be issued via the SNP_GUEST_REQUEST firmware command defined in the SEV-SNP Firmware ABI), and then forwarding the encrypted response to the guest. However, in the case of SNP Extended Guest Requests, the host is also able to provide the certificate data corresponding to the endorsement key used by firmware to sign attestation report requests. This certificate data is provided by userspace because: 1) It allows for different keys/key types to be used for each particular guest with requiring any sort of KVM API to configure the certificate table in advance on a per-guest basis. 2) It provides additional flexibility with how attestation requests might be handled during live migration where the certificate data for source/dest might be different. 3) It allows all synchronization between certificates and firmware/signing key updates to be handled purely by userspace rather than requiring some in-kernel mechanism to facilitate it. [1] To support fetching certificate data from userspace, a new KVM exit type will be needed to handle fetching the certificate from userspace. An attempt to define a new KVM_EXIT_COCO/KVM_EXIT_COCO_REQ_CERTS exit type to handle this was introduced in v1 of this patchset, but is still being discussed by community, so for now this patchset only implements a stub version of SNP Extended Guest Requests that does not provide certificate data, but is still enough to provide compliance with the GHCB 2.0 spec.
2024-07-16KVM: SEV: Provide support for SNP_EXTENDED_GUEST_REQUEST NAE eventMichael Roth
Version 2 of GHCB specification added support for the SNP Extended Guest Request Message NAE event. This event serves a nearly identical purpose to the previously-added SNP_GUEST_REQUEST event, but for certain message types it allows the guest to supply a buffer to be used for additional information in some cases. Currently the GHCB spec only defines extended handling of this sort in the case of attestation requests, where the additional buffer is used to supply a table of certificate data corresponding to the attestion report's signing key. Support for this extended handling will require additional KVM APIs to handle coordinating with userspace. Whether or not the hypervisor opts to provide this certificate data is optional. However, support for processing SNP_EXTENDED_GUEST_REQUEST GHCB requests is required by the GHCB 2.0 specification for SNP guests, so for now implement a stub implementation that provides an empty certificate table to the guest if it supplies an additional buffer, but otherwise behaves identically to SNP_GUEST_REQUEST. Reviewed-by: Carlos Bilbao <carlos.bilbao.osdev@gmail.com> Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Liam Merwick <liam.merwick@oracle.com> Signed-off-by: Michael Roth <michael.roth@amd.com> Message-ID: <20240701223148.3798365-4-michael.roth@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-07-16KVM: SEV: Provide support for SNP_GUEST_REQUEST NAE eventBrijesh Singh
Version 2 of GHCB specification added support for the SNP Guest Request Message NAE event. The event allows for an SEV-SNP guest to make requests to the SEV-SNP firmware through the hypervisor using the SNP_GUEST_REQUEST API defined in the SEV-SNP firmware specification. This is used by guests primarily to request attestation reports from firmware. There are other request types are available as well, but the specifics of what guest requests are being made generally does not affect how they are handled by the hypervisor, which only serves as a proxy for the guest requests and firmware responses. Implement handling for these events. When an SNP Guest Request is issued, the guest will provide its own request/response pages, which could in theory be passed along directly to firmware. However, these pages would need special care: - Both pages are from shared guest memory, so they need to be protected from migration/etc. occurring while firmware reads/writes to them. At a minimum, this requires elevating the ref counts and potentially needing an explicit pinning of the memory. This places additional restrictions on what type of memory backends userspace can use for shared guest memory since there would be some reliance on using refcounted pages. - The response page needs to be switched to Firmware-owned state before the firmware can write to it, which can lead to potential host RMP #PFs if the guest is misbehaved and hands the host a guest page that KVM is writing to for other reasons (e.g. virtio buffers). Both of these issues can be avoided completely by using separately-allocated bounce pages for both the request/response pages and passing those to firmware instead. So that's the approach taken here. Signed-off-by: Brijesh Singh <brijesh.singh@amd.com> Co-developed-by: Alexey Kardashevskiy <aik@amd.com> Signed-off-by: Alexey Kardashevskiy <aik@amd.com> Co-developed-by: Ashish Kalra <ashish.kalra@amd.com> Signed-off-by: Ashish Kalra <ashish.kalra@amd.com> Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Liam Merwick <liam.merwick@oracle.com> [mdr: ensure FW command failures are indicated to guest, drop extended request handling to be re-written as separate patch, massage commit] Signed-off-by: Michael Roth <michael.roth@amd.com> Message-ID: <20240701223148.3798365-2-michael.roth@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-07-16KVM: x86: Suppress MMIO that is triggered during task switch emulationSean Christopherson
Explicitly suppress userspace emulated MMIO exits that are triggered when emulating a task switch as KVM doesn't support userspace MMIO during complex (multi-step) emulation. Silently ignoring the exit request can result in the WARN_ON_ONCE(vcpu->mmio_needed) firing if KVM exits to userspace for some other reason prior to purging mmio_needed. See commit 0dc902267cb3 ("KVM: x86: Suppress pending MMIO write exits if emulator detects exception") for more details on KVM's limitations with respect to emulated MMIO during complex emulator flows. Reported-by: syzbot+2fb9f8ed752c01bc9a3f@syzkaller.appspotmail.com Signed-off-by: Sean Christopherson <seanjc@google.com> Message-ID: <20240712144841.1230591-1-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-07-16KVM: x86/mmu: Clean up make_huge_page_split_spte() definition and introSean Christopherson
Tweak the definition of make_huge_page_split_spte() to eliminate an unnecessarily long line, and opportunistically initialize child_spte to make it more obvious that the child is directly derived from the huge parent. No functional change intended. Signed-off-by: Sean Christopherson <seanjc@google.com> Message-ID: <20240712151335.1242633-3-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-07-16KVM: x86/mmu: Bug the VM if KVM tries to split a !hugepage SPTESean Christopherson
Bug the VM instead of simply warning if KVM tries to split a SPTE that is non-present or not-huge. KVM is guaranteed to end up in a broken state as the callers fully expect a valid SPTE, e.g. the shadow MMU will add an rmap entry, and all MMUs will account the expected small page. Returning '0' is also technically wrong now that SHADOW_NONPRESENT_VALUE exists, i.e. would cause KVM to create a potential #VE SPTE. While it would be possible to have the callers gracefully handle failure, doing so would provide no practical value as the scenario really should be impossible, while the error handling would add a non-trivial amount of noise. Fixes: a3fe5dbda0a4 ("KVM: x86/mmu: Split huge pages mapped by the TDP MMU when dirty logging is enabled") Cc: David Matlack <dmatlack@google.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-ID: <20240712151335.1242633-2-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>