summaryrefslogtreecommitdiff
path: root/arch/x86
AgeCommit message (Collapse)Author
2022-03-10tracehook: Remove tracehook.hEric W. Biederman
Now that all of the definitions have moved out of tracehook.h into ptrace.h, sched/signal.h, resume_user_mode.h there is nothing left in tracehook.h so remove it. Update the few files that were depending upon tracehook.h to bring in definitions to use the headers they need directly. Reviewed-by: Kees Cook <keescook@chromium.org> Link: https://lkml.kernel.org/r/20220309162454.123006-13-ebiederm@xmission.com Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2022-03-10task_work: Call tracehook_notify_signal from get_signal on all architecturesEric W. Biederman
Always handle TIF_NOTIFY_SIGNAL in get_signal. With commit 35d0b389f3b2 ("task_work: unconditionally run task_work from get_signal()") always calling task_work_run all of the work of tracehook_notify_signal is already happening except clearing TIF_NOTIFY_SIGNAL. Factor clear_notify_signal out of tracehook_notify_signal and use it in get_signal so that get_signal only needs one call of task_work_run. To keep the semantics in sync update xfer_to_guest_mode_work (which does not call get_signal) to call tracehook_notify_signal if either _TIF_SIGPENDING or _TIF_NOTIFY_SIGNAL. Reviewed-by: Kees Cook <keescook@chromium.org> Link: https://lkml.kernel.org/r/20220309162454.123006-8-ebiederm@xmission.com Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2022-03-10task_work: Remove unnecessary include from posix_timers.hEric W. Biederman
Break a header file circular dependency by removing the unnecessary include of task_work.h from posix_timers.h. sched.h -> posix-timers.h posix-timers.h -> task_work.h task_work.h -> sched.h Add missing includes of task_work.h to: arch/x86/mm/tlb.c kernel/time/posix-cpu-timers.c Reviewed-by: Kees Cook <keescook@chromium.org> Link: https://lkml.kernel.org/r/20220309162454.123006-6-ebiederm@xmission.com Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2022-03-10x86, ACPI: rename init_freq_invariance_cppc() to arch_init_invariance_cppc()Ionela Voinescu
init_freq_invariance_cppc() was called in acpi_cppc_processor_probe(), after CPU performance information and controls were populated from the per-cpu _CPC objects. But these _CPC objects provide information that helps with both CPU (u-arch) and frequency invariance. Therefore, change the function name to a more generic one, while adding the arch_ prefix, as this function is expected to be defined differently by different architectures. Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2022-03-10x86/xen: Fix kerneldoc warningJiapeng Chong
Fix the following W=1 kernel warnings: arch/x86/xen/setup.c:725: warning: expecting prototype for machine_specific_memory_setup(). Prototype was for xen_memory_setup() instead. Reported-by: Abaci Robot <abaci@linux.alibaba.com> Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Link: https://lore.kernel.org/r/20220307062554.8334-1-jiapeng.chong@linux.alibaba.com Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
2022-03-10xen: delay xen_hvm_init_time_ops() if kdump is boot on vcpu>=32Dongli Zhang
The sched_clock() can be used very early since commit 857baa87b642 ("sched/clock: Enable sched clock early"). In addition, with commit 38669ba205d1 ("x86/xen/time: Output xen sched_clock time from 0"), kdump kernel in Xen HVM guest may panic at very early stage when accessing &__this_cpu_read(xen_vcpu)->time as in below: setup_arch() -> init_hypervisor_platform() -> x86_init.hyper.init_platform = xen_hvm_guest_init() -> xen_hvm_init_time_ops() -> xen_clocksource_read() -> src = &__this_cpu_read(xen_vcpu)->time; This is because Xen HVM supports at most MAX_VIRT_CPUS=32 'vcpu_info' embedded inside 'shared_info' during early stage until xen_vcpu_setup() is used to allocate/relocate 'vcpu_info' for boot cpu at arbitrary address. However, when Xen HVM guest panic on vcpu >= 32, since xen_vcpu_info_reset(0) would set per_cpu(xen_vcpu, cpu) = NULL when vcpu >= 32, xen_clocksource_read() on vcpu >= 32 would panic. This patch calls xen_hvm_init_time_ops() again later in xen_hvm_smp_prepare_boot_cpu() after the 'vcpu_info' for boot vcpu is registered when the boot vcpu is >= 32. This issue can be reproduced on purpose via below command at the guest side when kdump/kexec is enabled: "taskset -c 33 echo c > /proc/sysrq-trigger" The bugfix for PVM is not implemented due to the lack of testing environment. [boris: xen_hvm_init_time_ops() returns on errors instead of jumping to end] Cc: Joe Jin <joe.jin@oracle.com> Signed-off-by: Dongli Zhang <dongli.zhang@oracle.com> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Link: https://lore.kernel.org/r/20220302164032.14569-3-dongli.zhang@oracle.com Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
2022-03-09x86/boot: Add setup_indirect support in early_memremap_is_setup_data()Ross Philipson
The x86 boot documentation describes the setup_indirect structures and how they are used. Only one of the two functions in ioremap.c that needed to be modified to be aware of the introduction of setup_indirect functionality was updated. Adds comparable support to the other function where it was missing. Fixes: b3c72fc9a78e ("x86/boot: Introduce setup_indirect") Signed-off-by: Ross Philipson <ross.philipson@oracle.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com> Cc: <stable@vger.kernel.org> Link: https://lore.kernel.org/r/1645668456-22036-3-git-send-email-ross.philipson@oracle.com
2022-03-09x86/boot: Fix memremap of setup_indirect structuresRoss Philipson
As documented, the setup_indirect structure is nested inside the setup_data structures in the setup_data list. The code currently accesses the fields inside the setup_indirect structure but only the sizeof(struct setup_data) is being memremapped. No crash occurred but this is just due to how the area is remapped under the covers. Properly memremap both the setup_data and setup_indirect structures in these cases before accessing them. Fixes: b3c72fc9a78e ("x86/boot: Introduce setup_indirect") Signed-off-by: Ross Philipson <ross.philipson@oracle.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com> Cc: <stable@vger.kernel.org> Link: https://lore.kernel.org/r/1645668456-22036-2-git-send-email-ross.philipson@oracle.com
2022-03-08x86/hyperv: Output host build info as normal Windows version numberMichael Kelley
Hyper-V provides host version number information that is output in text form by a Linux guest when it boots. For whatever reason, the formatting has historically been non-standard. Change it to output in normal Windows version format for better readability. Similar code for ARM64 guests already outputs in normal Windows version format. Signed-off-by: Michael Kelley <mikelley@microsoft.com> Link: https://lore.kernel.org/r/1646767364-2234-1-git-send-email-mikelley@microsoft.com Signed-off-by: Wei Liu <wei.liu@kernel.org>
2022-03-08ACPI / x86: Work around broken XSDT on Advantech DAC-BJ01 boardMark Cilissen
On this board the ACPI RSDP structure points to both a RSDT and an XSDT, but the XSDT points to a truncated FADT. This causes all sorts of trouble and usually a complete failure to boot after the following error occurs: ACPI Error: Unsupported address space: 0x20 (*/hwregs-*) ACPI Error: AE_SUPPORT, Unable to initialize fixed events (*/evevent-*) ACPI: Unable to start ACPI Interpreter This leaves the ACPI implementation in such a broken state that subsequent kernel subsystem initialisations go wrong, resulting in among others mismapped PCI memory, SATA and USB enumeration failures, and freezes. As this is an older embedded platform that will likely never see any BIOS updates to address this issue and its default shipping OS only complies to ACPI 1.0, work around this by forcing `acpi=rsdt`. This patch, applied on top of Linux 5.10.102, was confirmed on real hardware to fix the issue. Signed-off-by: Mark Cilissen <mark@yotsuba.nl> Cc: All applicable <stable@vger.kernel.org> Reviewed-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2022-03-08x86/ACPI: CPPC: Move init_freq_invariance_cppc() into x86 CPPCHuang Rui
The init_freq_invariance_cppc code actually doesn't need the SMP functionality. So setting the CONFIG_SMP as the check condition for init_freq_invariance_cppc may cause the confusion to misunderstand the CPPC. And the x86 CPPC file is better space to store the CPPC related functions, while the init_freq_invariance_cppc is out of smpboot, that means, the CONFIG_SMP won't be mandatory condition any more. And It's more clear than before. Signed-off-by: Huang Rui <ray.huang@amd.com> [ rjw: Subject adjustment ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2022-03-08x86: Expose init_freq_invariance() to topology headerHuang Rui
The function init_freq_invariance will be used on x86 CPPC, so expose it in the topology header. Signed-off-by: Huang Rui <ray.huang@amd.com> [ rjw: Subject adjustment ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2022-03-08x86/ACPI: CPPC: Move AMD maximum frequency ratio setting function into x86 CPPCHuang Rui
The AMD maximum frequency ratio setting function depends on CPPC, so the x86 CPPC implementation file is better space for this function. Signed-off-by: Huang Rui <ray.huang@amd.com> [ rjw: Subject adjustment ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2022-03-08x86/ACPI: CPPC: Rename cppc_msr.c to cppc.cHuang Rui
Rename the cppc_msr.c to cppc.c in x86 ACPI, that expects to use this file to cover more function implementation for ACPI CPPC beside MSR helpers. Naming as "cppc" is more straightforward as one of the functionalities under ACPI subsystem. Signed-off-by: Huang Rui <ray.huang@amd.com> [ rjw: Subject ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2022-03-08KVM: SVM: Allow AVIC support on system w/ physical APIC ID > 255Suravee Suthikulpanit
Expand KVM's mask for the AVIC host physical ID to the full 12 bits defined by the architecture. The number of bits consumed by hardware is model specific, e.g. early CPUs ignored bits 11:8, but there is no way for KVM to enumerate the "true" size. So, KVM must allow using all bits, else it risks rejecting completely legal x2APIC IDs on newer CPUs. This means KVM relies on hardware to not assign x2APIC IDs that exceed the "true" width of the field, but presumably hardware is smart enough to tie the width to the max x2APIC ID. KVM also relies on hardware to support at least 8 bits, as the legacy xAPIC ID is writable by software. But, those assumptions are unavoidable due to the lack of any way to enumerate the "true" width. Cc: stable@vger.kernel.org Cc: Maxim Levitsky <mlevitsk@redhat.com> Suggested-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Sean Christopherson <seanjc@google.com> Fixes: 44a95dae1d22 ("KVM: x86: Detect and Initialize AVIC support") Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Message-Id: <20220211000851.185799-1-suravee.suthikulpanit@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-08KVM: x86/mmu: WARN on any attempt to atomically update REMOVED SPTESean Christopherson
Disallow calling tdp_mmu_set_spte_atomic() with a REMOVED "old" SPTE. This solves a conundrum introduced by commit 3255530ab191 ("KVM: x86/mmu: Automatically update iter->old_spte if cmpxchg fails"); if the helper doesn't update old_spte in the REMOVED case, then theoretically the caller could get stuck in an infinite loop as it will fail indefinitely on the REMOVED SPTE. E.g. until recently, clear_dirty_gfn_range() didn't check for a present SPTE and would have spun until getting rescheduled. In practice, only the page fault path should "create" a new SPTE, all other paths should only operate on existing, a.k.a. shadow present, SPTEs. Now that the page fault path pre-checks for a REMOVED SPTE in all cases, require all other paths to indirectly pre-check by verifying the target SPTE is a shadow-present SPTE. Note, this does not guarantee the actual SPTE isn't REMOVED, nor is that scenario disallowed. The invariant is only that the caller mustn't invoke tdp_mmu_set_spte_atomic() if the SPTE was REMOVED when last observed by the caller. Cc: David Matlack <dmatlack@google.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20220226001546.360188-25-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-08KVM: x86/mmu: Check for a REMOVED leaf SPTE before making the SPTESean Christopherson
Explicitly check for a REMOVED leaf SPTE prior to attempting to map the final SPTE when handling a TDP MMU fault. Functionally, this is a nop as tdp_mmu_set_spte_atomic() will eventually detect the frozen SPTE. Pre-checking for a REMOVED SPTE is a minor optmization, but the real goal is to allow tdp_mmu_set_spte_atomic() to have an invariant that the "old" SPTE is never a REMOVED SPTE. Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Ben Gardon <bgardon@google.com> Message-Id: <20220226001546.360188-24-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-08KVM: x86/mmu: Zap defunct roots via asynchronous workerPaolo Bonzini
Zap defunct roots, a.k.a. roots that have been invalidated after their last reference was initially dropped, asynchronously via the existing work queue instead of forcing the work upon the unfortunate task that happened to drop the last reference. If a vCPU task drops the last reference, the vCPU is effectively blocked by the host for the entire duration of the zap. If the root being zapped happens be fully populated with 4kb leaf SPTEs, e.g. due to dirty logging being active, the zap can take several hundred seconds. Unsurprisingly, most guests are unhappy if a vCPU disappears for hundreds of seconds. E.g. running a synthetic selftest that triggers a vCPU root zap with ~64tb of guest memory and 4kb SPTEs blocks the vCPU for 900+ seconds. Offloading the zap to a worker drops the block time to <100ms. There is an important nuance to this change. If the same work item was queued twice before the work function has run, it would only execute once and one reference would be leaked. Therefore, now that queueing and flushing items is not anymore protected by kvm->slots_lock, kvm_tdp_mmu_invalidate_all_roots() has to check root->role.invalid and skip already invalid roots. On the other hand, kvm_mmu_zap_all_fast() must return only after those skipped roots have been zapped as well. These two requirements can be satisfied only if _all_ places that change invalid to true now schedule the worker before releasing the mmu_lock. There are just two, kvm_tdp_mmu_put_root() and kvm_tdp_mmu_invalidate_all_roots(). Co-developed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Ben Gardon <bgardon@google.com> Message-Id: <20220226001546.360188-23-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-08KVM: x86/mmu: Zap roots in two passes to avoid inducing RCU stallsSean Christopherson
When zapping a TDP MMU root, perform the zap in two passes to avoid zapping an entire top-level SPTE while holding RCU, which can induce RCU stalls. In the first pass, zap SPTEs at PG_LEVEL_1G, and then zap top-level entries in the second pass. With 4-level paging, zapping a PGD that is fully populated with 4kb leaf SPTEs take up to ~7 or so seconds (time varies based on kernel config, number of (v)CPUs, etc...). With 5-level paging, that time can balloon well into hundreds of seconds. Before remote TLB flushes were omitted, the problem was even worse as waiting for all active vCPUs to respond to the IPI introduced significant overhead for VMs with large numbers of vCPUs. By zapping 1gb SPTEs (both shadow pages and hugepages) in the first pass, the amount of work that is done without dropping RCU protection is strictly bounded, with the worst case latency for a single operation being less than 100ms. Zapping at 1gb in the first pass is not arbitrary. First and foremost, KVM relies on being able to zap 1gb shadow pages in a single shot when when repacing a shadow page with a hugepage. Zapping a 1gb shadow page that is fully populated with 4kb dirty SPTEs also triggers the worst case latency due writing back the struct page accessed/dirty bits for each 4kb page, i.e. the two-pass approach is guaranteed to work so long as KVM can cleany zap a 1gb shadow page. rcu: INFO: rcu_sched self-detected stall on CPU rcu: 52-....: (20999 ticks this GP) idle=7be/1/0x4000000000000000 softirq=15759/15759 fqs=5058 (t=21016 jiffies g=66453 q=238577) NMI backtrace for cpu 52 Call Trace: ... mark_page_accessed+0x266/0x2f0 kvm_set_pfn_accessed+0x31/0x40 handle_removed_tdp_mmu_page+0x259/0x2e0 __handle_changed_spte+0x223/0x2c0 handle_removed_tdp_mmu_page+0x1c1/0x2e0 __handle_changed_spte+0x223/0x2c0 handle_removed_tdp_mmu_page+0x1c1/0x2e0 __handle_changed_spte+0x223/0x2c0 zap_gfn_range+0x141/0x3b0 kvm_tdp_mmu_zap_invalidated_roots+0xc8/0x130 kvm_mmu_zap_all_fast+0x121/0x190 kvm_mmu_invalidate_zap_pages_in_memslot+0xe/0x10 kvm_page_track_flush_slot+0x5c/0x80 kvm_arch_flush_shadow_memslot+0xe/0x10 kvm_set_memslot+0x172/0x4e0 __kvm_set_memory_region+0x337/0x590 kvm_vm_ioctl+0x49c/0xf80 Reported-by: David Matlack <dmatlack@google.com> Cc: Ben Gardon <bgardon@google.com> Cc: Mingwei Zhang <mizhang@google.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Ben Gardon <bgardon@google.com> Message-Id: <20220226001546.360188-22-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-08KVM: x86/mmu: Allow yielding when zapping GFNs for defunct TDP MMU rootPaolo Bonzini
Allow yielding when zapping SPTEs after the last reference to a valid root is put. Because KVM must drop all SPTEs in response to relevant mmu_notifier events, mark defunct roots invalid and reset their refcount prior to zapping the root. Keeping the refcount elevated while the zap is in-progress ensures the root is reachable via mmu_notifier until the zap completes and the last reference to the invalid, defunct root is put. Allowing kvm_tdp_mmu_put_root() to yield fixes soft lockup issues if the root in being put has a massive paging structure, e.g. zapping a root that is backed entirely by 4kb pages for a guest with 32tb of memory can take hundreds of seconds to complete. watchdog: BUG: soft lockup - CPU#49 stuck for 485s! [max_guest_memor:52368] RIP: 0010:kvm_set_pfn_dirty+0x30/0x50 [kvm] __handle_changed_spte+0x1b2/0x2f0 [kvm] handle_removed_tdp_mmu_page+0x1a7/0x2b8 [kvm] __handle_changed_spte+0x1f4/0x2f0 [kvm] handle_removed_tdp_mmu_page+0x1a7/0x2b8 [kvm] __handle_changed_spte+0x1f4/0x2f0 [kvm] tdp_mmu_zap_root+0x307/0x4d0 [kvm] kvm_tdp_mmu_put_root+0x7c/0xc0 [kvm] kvm_mmu_free_roots+0x22d/0x350 [kvm] kvm_mmu_reset_context+0x20/0x60 [kvm] kvm_arch_vcpu_ioctl_set_sregs+0x5a/0xc0 [kvm] kvm_vcpu_ioctl+0x5bd/0x710 [kvm] __se_sys_ioctl+0x77/0xc0 __x64_sys_ioctl+0x1d/0x20 do_syscall_64+0x44/0xa0 entry_SYSCALL_64_after_hwframe+0x44/0xae KVM currently doesn't put a root from a non-preemptible context, so other than the mmu_notifier wrinkle, yielding when putting a root is safe. Yield-unfriendly iteration uses for_each_tdp_mmu_root(), which doesn't take a reference to each root (it requires mmu_lock be held for the entire duration of the walk). tdp_mmu_next_root() is used only by the yield-friendly iterator. tdp_mmu_zap_root_work() is explicitly yield friendly. kvm_mmu_free_roots() => mmu_free_root_page() is a much bigger fan-out, but is still yield-friendly in all call sites, as all callers can be traced back to some combination of vcpu_run(), kvm_destroy_vm(), and/or kvm_create_vm(). Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20220226001546.360188-21-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-08KVM: x86/mmu: Zap invalidated roots via asynchronous workerPaolo Bonzini
Use the system worker threads to zap the roots invalidated by the TDP MMU's "fast zap" mechanism, implemented by kvm_tdp_mmu_invalidate_all_roots(). At this point, apart from allowing some parallelism in the zapping of roots, the workqueue is a glorified linked list: work items are added and flushed entirely within a single kvm->slots_lock critical section. However, the workqueue fixes a latent issue where kvm_mmu_zap_all_invalidated_roots() assumes that it owns a reference to all invalid roots; therefore, no one can set the invalid bit outside kvm_mmu_zap_all_fast(). Putting the invalidated roots on a linked list... erm, on a workqueue ensures that tdp_mmu_zap_root_work() only puts back those extra references that kvm_mmu_zap_all_invalidated_roots() had gifted to it. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-08KVM: x86/mmu: Defer TLB flush to caller when freeing TDP MMU shadow pagesSean Christopherson
Defer TLB flushes to the caller when freeing TDP MMU shadow pages instead of immediately flushing. Because the shadow pages are freed in an RCU callback, so long as at least one CPU holds RCU, all CPUs are protected. For vCPUs running in the guest, i.e. consuming TLB entries, KVM only needs to ensure the caller services the pending TLB flush before dropping its RCU protections. I.e. use the caller's RCU as a proxy for all vCPUs running in the guest. Deferring the flushes allows batching flushes, e.g. when installing a 1gb hugepage and zapping a pile of SPs. And when zapping an entire root, deferring flushes allows skipping the flush entirely (because flushes are not needed in that case). Avoiding flushes when zapping an entire root is especially important as synchronizing with other CPUs via IPI after zapping every shadow page can cause significant performance issues for large VMs. The issue is exacerbated by KVM zapping entire top-level entries without dropping RCU protection, which can lead to RCU stalls even when zapping roots backing relatively "small" amounts of guest memory, e.g. 2tb. Removing the IPI bottleneck largely mitigates the RCU issues, though it's likely still a problem for 5-level paging. A future patch will further address the problem by zapping roots in multiple passes to avoid holding RCU for an extended duration. Reviewed-by: Ben Gardon <bgardon@google.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20220226001546.360188-20-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-08KVM: x86/mmu: Do remote TLB flush before dropping RCU in TDP MMU reschedSean Christopherson
When yielding in the TDP MMU iterator, service any pending TLB flush before dropping RCU protections in anticipation of using the caller's RCU "lock" as a proxy for vCPUs in the guest. Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Ben Gardon <bgardon@google.com> Message-Id: <20220226001546.360188-19-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-08KVM: x86/mmu: Zap only TDP MMU leafs in kvm_zap_gfn_range()Sean Christopherson
Zap only leaf SPTEs in the TDP MMU's zap_gfn_range(), and rename various functions accordingly. When removing mappings for functional correctness (except for the stupid VFIO GPU passthrough memslots bug), zapping the leaf SPTEs is sufficient as the paging structures themselves do not point at guest memory and do not directly impact the final translation (in the TDP MMU). Note, this aligns the TDP MMU with the legacy/full MMU, which zaps only the rmaps, a.k.a. leaf SPTEs, in kvm_zap_gfn_range() and kvm_unmap_gfn_range(). Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Ben Gardon <bgardon@google.com> Message-Id: <20220226001546.360188-18-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-08KVM: x86/mmu: Require mmu_lock be held for write to zap TDP MMU rangeSean Christopherson
Now that all callers of zap_gfn_range() hold mmu_lock for write, drop support for zapping with mmu_lock held for read. That all callers hold mmu_lock for write isn't a random coincidence; now that the paths that need to zap _everything_ have their own path, the only callers left are those that need to zap for functional correctness. And when zapping is required for functional correctness, mmu_lock must be held for write, otherwise the caller has no guarantees about the state of the TDP MMU page tables after it has run, e.g. the SPTE(s) it zapped can be immediately replaced by a vCPU faulting in a page. Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Ben Gardon <bgardon@google.com> Message-Id: <20220226001546.360188-17-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-08KVM: x86/mmu: Add dedicated helper to zap TDP MMU root shadow pageSean Christopherson
Add a dedicated helper for zapping a TDP MMU root, and use it in the three flows that do "zap_all" and intentionally do not do a TLB flush if SPTEs are zapped (zapping an entire root is safe if and only if it cannot be in use by any vCPU). Because a TLB flush is never required, unconditionally pass "false" to tdp_mmu_iter_cond_resched() when potentially yielding. Opportunistically document why KVM must not yield when zapping roots that are being zapped by kvm_tdp_mmu_put_root(), i.e. roots whose refcount has reached zero, and further harden the flow to detect improper KVM behavior with respect to roots that are supposed to be unreachable. In addition to hardening zapping of roots, isolating zapping of roots will allow future simplification of zap_gfn_range() by having it zap only leaf SPTEs, and by removing its tricky "zap all" heuristic. By having all paths that truly need to free _all_ SPs flow through the dedicated root zapper, the generic zapper can be freed of those concerns. Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Ben Gardon <bgardon@google.com> Message-Id: <20220226001546.360188-16-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-08KVM: x86/mmu: Skip remote TLB flush when zapping all of TDP MMUSean Christopherson
Don't flush the TLBs when zapping all TDP MMU pages, as the only time KVM uses the slow version of "zap everything" is when the VM is being destroyed or the owning mm has exited. In either case, KVM_RUN is unreachable for the VM, i.e. the guest TLB entries cannot be consumed. Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Ben Gardon <bgardon@google.com> Message-Id: <20220226001546.360188-15-seanjc@google.com> Reviewed-by: Mingwei Zhang <mizhang@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-08KVM: x86/mmu: Zap only the target TDP MMU shadow page in NX recoverySean Christopherson
When recovering a potential hugepage that was shattered for the iTLB multihit workaround, precisely zap only the target page instead of iterating over the TDP MMU to find the SP that was passed in. This will allow future simplification of zap_gfn_range() by having it zap only leaf SPTEs. Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20220226001546.360188-14-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-08KVM: x86/mmu: Refactor low-level TDP MMU set SPTE helper to take raw valuesSean Christopherson
Refactor __tdp_mmu_set_spte() to work with raw values instead of a tdp_iter objects so that a future patch can modify SPTEs without doing a walk, and without having to synthesize a tdp_iter. No functional change intended. Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Ben Gardon <bgardon@google.com> Message-Id: <20220226001546.360188-13-seanjc@google.com> Reviewed-by: Mingwei Zhang <mizhang@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-08KVM: x86/mmu: WARN if old _or_ new SPTE is REMOVED in non-atomic pathSean Christopherson
WARN if the new_spte being set by __tdp_mmu_set_spte() is a REMOVED_SPTE, which is called out by the comment as being disallowed but not actually checked. Keep the WARN on the old_spte as well, because overwriting a REMOVED_SPTE in the non-atomic path is also disallowed (as evidence by lack of splats with the existing WARN). Fixes: 08f07c800e9d ("KVM: x86/mmu: Flush TLBs after zap in TDP MMU PF handler") Cc: Ben Gardon <bgardon@google.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Ben Gardon <bgardon@google.com> Message-Id: <20220226001546.360188-12-seanjc@google.com> Reviewed-by: Mingwei Zhang <mizhang@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-08KVM: x86/mmu: Add helpers to read/write TDP MMU SPTEs and document RCUSean Christopherson
Add helpers to read and write TDP MMU SPTEs instead of open coding rcu_dereference() all over the place, and to provide a convenient location to document why KVM doesn't exempt holding mmu_lock for write from having to hold RCU (and any future changes to the rules). No functional change intended. Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Ben Gardon <bgardon@google.com> Message-Id: <20220226001546.360188-11-seanjc@google.com> Reviewed-by: Mingwei Zhang <mizhang@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-08KVM: x86/mmu: Drop RCU after processing each root in MMU notifier hooksSean Christopherson
Drop RCU protection after processing each root when handling MMU notifier hooks that aren't the "unmap" path, i.e. aren't zapping. Temporarily drop RCU to let RCU do its thing between roots, and to make it clear that there's no special behavior that relies on holding RCU across all roots. Currently, the RCU protection is completely superficial, it's necessary only to make rcu_dereference() of SPTE pointers happy. A future patch will rely on holding RCU as a proxy for vCPUs in the guest, e.g. to ensure shadow pages aren't freed before all vCPUs do a TLB flush (or rather, acknowledge the need for a flush), but in that case RCU needs to be held until the flush is complete if and only if the flush is needed because a shadow page may have been removed. And except for the "unmap" path, MMU notifier events cannot remove SPs (don't toggle PRESENT bit, and can't change the PFN for a SP). Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Ben Gardon <bgardon@google.com> Message-Id: <20220226001546.360188-10-seanjc@google.com> Reviewed-by: Mingwei Zhang <mizhang@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-08KVM: x86/mmu: Batch TLB flushes from TDP MMU for MMU notifier change_spteSean Christopherson
Batch TLB flushes (with other MMUs) when handling ->change_spte() notifications in the TDP MMU. The MMU notifier path in question doesn't allow yielding and correcty flushes before dropping mmu_lock. Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Ben Gardon <bgardon@google.com> Message-Id: <20220226001546.360188-9-seanjc@google.com> Reviewed-by: Mingwei Zhang <mizhang@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-08KVM: x86/mmu: Check for !leaf=>leaf, not PFN change, in TDP MMU SP removalSean Christopherson
Look for a !leaf=>leaf conversion instead of a PFN change when checking if a SPTE change removed a TDP MMU shadow page. Convert the PFN check into a WARN, as KVM should never change the PFN of a shadow page (except when its being zapped or replaced). From a purely theoretical perspective, it's not illegal to replace a SP with a hugepage pointing at the same PFN. In practice, it's impossible as that would require mapping guest memory overtop a kernel-allocated SP. Either way, the check is odd. Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Ben Gardon <bgardon@google.com> Message-Id: <20220226001546.360188-8-seanjc@google.com> Reviewed-by: Mingwei Zhang <mizhang@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-08KVM: x86/mmu: do not allow readers to acquire references to invalid rootsPaolo Bonzini
Remove the "shared" argument of for_each_tdp_mmu_root_yield_safe, thus ensuring that readers do not ever acquire a reference to an invalid root. After this patch, all readers except kvm_tdp_mmu_zap_invalidated_roots() treat refcount=0/valid, refcount=0/invalid and refcount=1/invalid in exactly the same way. kvm_tdp_mmu_zap_invalidated_roots() is different but it also does not acquire a reference to the invalid root, and it cannot see refcount=0/invalid because it is guaranteed to run after kvm_tdp_mmu_invalidate_all_roots(). Opportunistically add a lockdep assertion to the yield-safe iterator. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-08KVM: x86/mmu: only perform eager page splitting on valid rootsPaolo Bonzini
Eager page splitting is an optimization; it does not have to be performed on invalid roots. It is also the only case in which a reader might acquire a reference to an invalid root, so after this change we know that readers will skip both dying and invalid roots. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-08KVM: x86/mmu: Require mmu_lock be held for write in unyielding root iterSean Christopherson
Assert that mmu_lock is held for write by users of the yield-unfriendly TDP iterator. The nature of a shared walk means that the caller needs to play nice with other tasks modifying the page tables, which is more or less the same thing as playing nice with yielding. Theoretically, KVM could gain a flow where it could legitimately take mmu_lock for read in a non-preemptible context, but that's highly unlikely and any such case should be viewed with a fair amount of scrutiny. Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Ben Gardon <bgardon@google.com> Message-Id: <20220226001546.360188-7-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-08KVM: x86/mmu: Document that zapping invalidated roots doesn't need to flushSean Christopherson
Remove the misleading flush "handling" when zapping invalidated TDP MMU roots, and document that flushing is unnecessary for all flavors of MMUs when zapping invalid/obsolete roots/pages. The "handling" in the TDP MMU is dead code, as zap_gfn_range() is called with shared=true, in which case it will never return true due to the flushing being handled by tdp_mmu_zap_spte_atomic(). No functional change intended. Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Ben Gardon <bgardon@google.com> Message-Id: <20220226001546.360188-6-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-08KVM: x86/mmu: Formalize TDP MMU's (unintended?) deferred TLB flush logicSean Christopherson
Explicitly ignore the result of zap_gfn_range() when putting the last reference to a TDP MMU root, and add a pile of comments to formalize the TDP MMU's behavior of deferring TLB flushes to alloc/reuse. Note, this only affects the !shared case, as zap_gfn_range() subtly never returns true for "flush" as the flush is handled by tdp_mmu_zap_spte_atomic(). Putting the root without a flush is ok because even if there are stale references to the root in the TLB, they are unreachable because KVM will not run the guest with the same ASID without first flushing (where ASID in this context refers to both SVM's explicit ASID and Intel's implicit ASID that is constructed from VPID+PCID+EPT4A+etc...). Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20220226001546.360188-5-seanjc@google.com> Reviewed-by: Mingwei Zhang <mizhang@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-08KVM: x86/mmu: Fix wrong/misleading comments in TDP MMU fast zapSean Christopherson
Fix misleading and arguably wrong comments in the TDP MMU's fast zap flow. The comments, and the fact that actually zapping invalid roots was added separately, strongly suggests that zapping invalid roots is an optimization and not required for correctness. That is a lie. KVM _must_ zap invalid roots before returning from kvm_mmu_zap_all_fast(), because when it's called from kvm_mmu_invalidate_zap_pages_in_memslot(), KVM is relying on it to fully remove all references to the memslot. Once the memslot is gone, KVM's mmu_notifier hooks will be unable to find the stale references as the hva=>gfn translation is done via the memslots. If KVM doesn't immediately zap SPTEs and userspace unmaps a range after deleting a memslot, KVM will fail to zap in response to the mmu_notifier due to not finding a memslot corresponding to the notifier's range, which leads to a variation of use-after-free. The other misleading comment (and code) explicitly states that roots without a reference should be skipped. While that's technically true, it's also extremely misleading as it should be impossible for KVM to encounter a defunct root on the list while holding mmu_lock for write. Opportunistically add a WARN to enforce that invariant. Fixes: b7cccd397f31 ("KVM: x86/mmu: Fast invalidation for TDP MMU") Fixes: 4c6654bd160d ("KVM: x86/mmu: Tear down roots before kvm_mmu_zap_all_fast returns") Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Ben Gardon <bgardon@google.com> Message-Id: <20220226001546.360188-4-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-08KVM: x86/mmu: Check for present SPTE when clearing dirty bit in TDP MMUSean Christopherson
Explicitly check for present SPTEs when clearing dirty bits in the TDP MMU. This isn't strictly required for correctness, as setting the dirty bit in a defunct SPTE will not change the SPTE from !PRESENT to PRESENT. However, the guarded MMU_WARN_ON() in spte_ad_need_write_protect() would complain if anyone actually turned on KVM's MMU debugging. Fixes: a6a0b05da9f3 ("kvm: x86/mmu: Support dirty logging for the TDP MMU") Cc: Ben Gardon <bgardon@google.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Ben Gardon <bgardon@google.com> Message-Id: <20220226001546.360188-3-seanjc@google.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-08KVM: use __vcalloc for very large allocationsPaolo Bonzini
Allocations whose size is related to the memslot size can be arbitrarily large. Do not use kvzalloc/kvcalloc, as those are limited to "not crazy" sizes that fit in 32 bits. Cc: stable@vger.kernel.org Fixes: 7661809d493b ("mm: don't allow oversized kvmalloc() calls") Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-08x86/module: Fix the paravirt vs alternative orderPeter Zijlstra
Ever since commit 4e6292114c74 ("x86/paravirt: Add new features for paravirt patching") there is an ordering dependency between patching paravirt ops and patching alternatives, the module loader still violates this. Fixes: 4e6292114c74 ("x86/paravirt: Add new features for paravirt patching") Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Miroslav Benes <mbenes@suse.cz> Cc: <stable@vger.kernel.org> Link: https://lore.kernel.org/r/20220303112825.068773913@infradead.org
2022-03-07Merge tag 'x86_bugs_for_v5.17' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 spectre fixes from Borislav Petkov: - Mitigate Spectre v2-type Branch History Buffer attacks on machines which support eIBRS, i.e., the hardware-assisted speculation restriction after it has been shown that such machines are vulnerable even with the hardware mitigation. - Do not use the default LFENCE-based Spectre v2 mitigation on AMD as it is insufficient to mitigate such attacks. Instead, switch to retpolines on all AMD by default. - Update the docs and add some warnings for the obviously vulnerable cmdline configurations. * tag 'x86_bugs_for_v5.17' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/speculation: Warn about eIBRS + LFENCE + Unprivileged eBPF + SMT x86/speculation: Warn about Spectre v2 LFENCE mitigation x86/speculation: Update link to AMD speculation whitepaper x86/speculation: Use generic retpoline by default on AMD x86/speculation: Include unprivileged eBPF status in Spectre v2 mitigation reporting Documentation/hw-vuln: Update spectre doc x86/speculation: Add eIBRS + Retpoline options x86/speculation: Rename RETPOLINE_AMD to RETPOLINE_LFENCE
2022-03-06Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds
Pull kvm fixes from Paolo Bonzini: "x86 guest: - Tweaks to the paravirtualization code, to avoid using them when they're pointless or harmful x86 host: - Fix for SRCU lockdep splat - Brown paper bag fix for the propagation of errno" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: KVM: x86: pull kvm->srcu read-side to kvm_arch_vcpu_ioctl_run KVM: x86/mmu: Passing up the error state of mmu_alloc_shadow_roots() KVM: x86: Yield to IPI target vCPU only if it is busy x86/kvmclock: Fix Hyper-V Isolated VM's boot issue when vCPUs > 64 x86/kvm: Don't waste memory if kvmclock is disabled x86/kvm: Don't use PV TLB/yield when mwait is advertised
2022-03-05x86/speculation: Warn about eIBRS + LFENCE + Unprivileged eBPF + SMTJosh Poimboeuf
The commit 44a3918c8245 ("x86/speculation: Include unprivileged eBPF status in Spectre v2 mitigation reporting") added a warning for the "eIBRS + unprivileged eBPF" combination, which has been shown to be vulnerable against Spectre v2 BHB-based attacks. However, there's no warning about the "eIBRS + LFENCE retpoline + unprivileged eBPF" combo. The LFENCE adds more protection by shortening the speculation window after a mispredicted branch. That makes an attack significantly more difficult, even with unprivileged eBPF. So at least for now the logic doesn't warn about that combination. But if you then add SMT into the mix, the SMT attack angle weakens the effectiveness of the LFENCE considerably. So extend the "eIBRS + unprivileged eBPF" warning to also include the "eIBRS + LFENCE + unprivileged eBPF + SMT" case. [ bp: Massage commit message. ] Suggested-by: Alyssa Milburn <alyssa.milburn@linux.intel.com> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Borislav Petkov <bp@suse.de>
2022-03-05x86/speculation: Warn about Spectre v2 LFENCE mitigationJosh Poimboeuf
With: f8a66d608a3e ("x86,bugs: Unconditionally allow spectre_v2=retpoline,amd") it became possible to enable the LFENCE "retpoline" on Intel. However, Intel doesn't recommend it, as it has some weaknesses compared to retpoline. Now AMD doesn't recommend it either. It can still be left available as a cmdline option. It's faster than retpoline but is weaker in certain scenarios -- particularly SMT, but even non-SMT may be vulnerable in some cases. So just unconditionally warn if the user requests it on the cmdline. [ bp: Massage commit message. ] Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Borislav Petkov <bp@suse.de>
2022-03-04Merge https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-nextJakub Kicinski
Daniel Borkmann says: ==================== pull-request: bpf-next 2022-03-04 We've added 32 non-merge commits during the last 14 day(s) which contain a total of 59 files changed, 1038 insertions(+), 473 deletions(-). The main changes are: 1) Optimize BPF stackmap's build_id retrieval by caching last valid build_id, as consecutive stack frames are likely to be in the same VMA and therefore have the same build id, from Hao Luo. 2) Several improvements to arm64 BPF JIT, that is, support for JITing the atomic[64]_fetch_add, atomic[64]_[fetch_]{and,or,xor} and lastly atomic[64]_{xchg|cmpxchg}. Also fix the BTF line info dump for JITed programs, from Hou Tao. 3) Optimize generic BPF map batch deletion by only enforcing synchronize_rcu() barrier once upon return to user space, from Eric Dumazet. 4) For kernel build parse DWARF and generate BTF through pahole with enabled multithreading, from Kui-Feng Lee. 5) BPF verifier usability improvements by making log info more concise and replacing inv with scalar type name, from Mykola Lysenko. 6) Two follow-up fixes for BPF prog JIT pack allocator, from Song Liu. 7) Add a new Kconfig to allow for loading kernel modules with non-matching BTF type info; their BTF info is then removed on load, from Connor O'Brien. 8) Remove reallocarray() usage from bpftool and switch to libbpf_reallocarray() in order to fix compilation errors for older glibc, from Mauricio Vásquez. 9) Fix libbpf to error on conflicting name in BTF when type declaration appears before the definition, from Xu Kuohai. 10) Fix issue in BPF preload for in-kernel light skeleton where loaded BPF program fds prevent init process from setting up fd 0-2, from Yucong Sun. 11) Fix libbpf reuse of pinned perf RB map when max_entries is auto-determined by libbpf, from Stijn Tintel. 12) Several cleanups for libbpf and a fix to enforce perf RB map #pages to be non-zero, from Yuntao Wang. * https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (32 commits) bpf: Small BPF verifier log improvements libbpf: Add a check to ensure that page_cnt is non-zero bpf, x86: Set header->size properly before freeing it x86: Disable HAVE_ARCH_HUGE_VMALLOC on 32-bit x86 bpf, test_run: Fix overflow in XDP frags bpf_test_finish selftests/bpf: Update btf_dump case for conflicting names libbpf: Skip forward declaration when counting duplicated type names bpf: Add some description about BPF_JIT_ALWAYS_ON in Kconfig bpf, docs: Add a missing colon in verifier.rst bpf: Cache the last valid build_id libbpf: Fix BPF_MAP_TYPE_PERF_EVENT_ARRAY auto-pinning bpf, selftests: Use raw_tp program for atomic test bpf, arm64: Support more atomic operations bpftool: Remove redundant slashes bpf: Add config to allow loading modules with BTF mismatches bpf, arm64: Feed byte-offset into bpf line info bpf, arm64: Call build_prologue() first in first JIT pass bpf: Fix issue with bpf preload module taking over stdout/stdin of kernel. bpftool: Bpf skeletons assert type sizes bpf: Cleanup comments ... ==================== Link: https://lore.kernel.org/r/20220304164313.31675-1-daniel@iogearbox.net Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-03-04Merge branch 'kvm-bugfixes' into HEADPaolo Bonzini
Merge bugfixes from 5.17 before merging more tricky work.
2022-03-04sysfb: Enable boot time VESA graphic mode selectionMichal Suchanek
Since switch to simplefb/simpledrm VESA graphic mode selection with vga= kernel parameter is no longer available with legacy BIOS. The x86 realmode boot code enables the VESA graphic modes when option FB_BOOT_VESA_SUPPORT is enabled. This option is selected by vesafb but not simplefb/simpledrm. To enable use of VESA modes with simplefb in legacy BIOS boot mode drop dependency of BOOT_VESA_SUPPORT on FB, also drop the FB_ prefix. Select the option from sysfb rather than the drivers that depend on it. The BOOT_VESA_SUPPORT is not specific to framebuffer but rather to x86 platform, move it from fbdev to x86 Kconfig. Fixes: e3263ab389a7 ("x86: provide platform-devices for boot-framebuffers") Signed-off-by: Michal Suchanek <msuchanek@suse.de> Reviewed-by: Javier Martinez Canillas <javierm@redhat.com> Acked-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Zimmermann <tzimmermann@suse.de> Link: https://patchwork.freedesktop.org/patch/msgid/948c39940a4e99f5b43bdbcbe537faae71a43e1d.1645822213.git.msuchanek@suse.de